
.Ben Forta with Keith Lauver,
Paut Fonte, Robert M. Juncker,

Ronan Mandel, and Dylan Bromby

1 1 1

with a Il

Master the concepts

WAP 1.2, WML (Wireless Markup

Language), WMLScript, Servers and

Gateways, Devices and Device

Emulators, and more

Build the applications

Create a currency convertor, an

online user directory, a personal

scheduler, and aphone-based

e-commerce application using

WML, WMLScript, and a variety

of back-end technologies

(including ASP, ColdFusion, and JSP)

Facebook's Exhibit No. 1004
Page 1

Facebook's Exhibit No. 1004
Page 2

Foreword
The Internet is changing the way we shop, entertain ourselves, and communicate. As the

Internet evolves, multiple distinct media are emerging—the YC, the TV, and now the mobile

phone.. Phone.com was instrumental in this evolution by originating the concept of the

browser-enabled phone and co-founding the WAP Forum with Ericsson, Nokia, and Motorola

in .1997. We continue this tradition of innovation with our dedicated support of the developer

~~i community.

WAP presents a major new market opportunity for the Internet community. The number of

mobile phones is forecast to exceed 1.4 Billion. by 2003. The characteristics of the mobile

phone.—its ,portability, "always on" nature, and its location-sensitivity—present a unique appli-

cation opportunity.

WAP is more than a protocol or a markup language; it ~is a new "mobile-centric" Internet appli-

cation platform. As such, there has been a lack of comprehensive developer-oriented material.

to guide Internet developers through the process of becoming great mobile-centric application

designers—not only the basics, but also a true real-world guide to creating great applications.

Whether you are an Internet or Intranet developer, WAP Development with WML and

~ WMLScript will serve as an invaluable tool in your exploration of the mobile Internet. This

book was written by some of the leading experts in WAP tools and application development,
with input from our own experts here at Phone.com. Its real-world approach and hands-on for-

mat will greatly benefit anyone interested in developing for this exciting mobile Internet mar-
', ketplace.

Ben Linder

Vice President, Phone.com

II developer.phone.com

Facebook's Exhibit No. 1004
Page 3

i , , , , ,
r ~ ~

Ben Forte

with ~ ~ I

Keith D. Lauver

Paul Fonte

Robert M. Juncker

Amy O'Leary

i

Ronan Mandel

I
Dylan Bromby ?

S/I MS
A Division of Macmillan USA

201 West 103rd St., Indianapolis, Indiana, 46290 USA

.,

Facebook's Exhibit No. 1004
Page 4

V1/AP Development with WML and
WMLScript
Copyright D 2000 by Sams Publishing

All rights reserved. No part of this book shall be reproduced, stored in a
retrieval system, or transmitted by any means, electronic, mechanical, photo-
copying, recording, or otherwise, without written pennissiou from the pub-
lisher. No patent liability is assumed with respect to the use of the information
contained herein. Although every precaution has been taken in the preparation
of this book, the publisher and authors assume no responsibility for errors or
omissions. Nor is any liability assumed for damages resulting from the use of
the information contained herein.

International. Standard Book Number: 0-672-31946-2

Library of Congress Catalog Card Number; 00-104240

Printed in the United States of America

First Printing: September 2000

03 02 O1 00 4 3 2 1

Trademarks
All terms mentioned in this book that are known to be trademarks or service
marks have been appropriately capitalized. Sams Publishing cannot attest to
the accuracy of this information. Use of a term in this book should not be
regarded as affecting the validity of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as
possible, buC no warranty or fitness is implied. The information provided is on
an "as is" basis. The authors and the publisher shall have neither liability nor
responsibility to any person or entity with respect to any loss or damages aris-
ing from the information contained in this book or from the use of the CD or
programs accompanying it.

ASSOCIATE PUBLISHER

Michael Stephens

ACQUISITIONS EDITOR

Angela Kozlowski

DEVELOPMENT EDITORS

Gus A. Miklos
Mark Renfrow

MANAGING EDITOR

Matt Purcell

PROJECT EDITOR

Christina Smith

COPY EDITOR

Michael Dietsch

INDEXER

Greg Pearson

PROOFREADER

Candice Hightower

TECHNICAL EDITORS

Andi Hindle
Aubrey Harden

TEAM COORDINATOR

Pamalee Nelson

MEDIA DEVELOPER

J.G. Moore

INTERIOR DESIGNER

Gary Adair

COVER C)ESIGNER

Arerx Howell

GRAPHIC ART CONVERSION
TECHNICIAN

Oliver ./ackson

PRODUCTION

Ayanna Lacey
Stacey DeRome-Richwine

Facebook's Exhibit No. 1004
Page 5

Contents at a Glance
Introduction 1

PART I Getting Starfied

1 Understanding WAP 9

2 Introducing WML 19

3 Writing for WAP in WML 43

PART II Creating WAP Applications

4 Card Navigation CS

5 Managing Output 95

6 Using Images 127

7 Working with User Input 141

Pn~r 111 Advanced WAP Development

8 Email Integration 197

9 Using WMLScript 213

10 Using Timers 239

11 Receiving Notifications 257

12 Securing Applications 279

13 Writing for HTML and WML 313

14 Best Practices 333

PART I~/ Sample Applications

15 Currency Converter 363

16 User Directory 379

17 Scheduling 405

18 E-Commerce 429

Facebook's Exhibit No. 1004
Page 6

PaRr V Appendixes

A Wireless Markup Language Reference 467

B WMLScript Library Reference 499

C Using Device Emulators 521

D Writing WML in Popular Development Tools 531

E Writing WML in Popular Development Languages 543

F Local Icons 551

G CD-ROM Contents 555

Index 559

Facebook's Exhibit No. 1004
Page 7

Introducfiion 1

Parr I Getting Sfia~'ted

1 Understanding WAP 9

Understanding Servers and Gateways ...11

WAP Devices ..13

WAP and WML ..16

5ummary..18

2 Intraducing WML 19

What Is WML? ..20

WML's Origins:...20

WML's Functionality ..21

Similarity to HTML and XML ..21

Getting Started with WML ...22

Configuring Your Web Server ..23

MIME Types for WML, WMLS, and HDML24

Adding the MIME Types to Various Servers24

Phones and Emulators ..27

Phones ..27

Emulators..29

Understanding WML Usage ..3
0

Mobile Users ..30

WML Overview ...36

Concepts ..36

Syntax Rules ..37

Programming Considet~ations ...38

WML Components ..40

Summlry ..41

3 Writing for WAP in WML 43

Creating Your First Card ..
..........44

Using Basic Text Formatting ..4
7

Using Basic Paragraph Formatting ..4
8

Building Decks of Cards ..4
9

Why Use Decks ..51

Digests ..53

Using Basic Navigation ..
....53

Creating Linlcs ..53

Using Actions ..55

Using Templates ..57

Summary..61

Facebook's Exhibit No. 1004
Page 8

WAP DEVELOPMENT WITH WML AfVD IIVMLSCRIPT

PART 01 Creating WAP Applications

4 Card 9Vavigafiion 65

Using URLs ..66
Tags Used in Navigation: ca>, <anchor>, and <go>72

The <a> Element ..72

The <anchor> Element ..73
The <go> Flement ..74

Using Phone ButCons and Function Keys ..75
Soft Keys ..75
Using Actions ..78

The postfield Element ..80

Setting the method Attribute to post ..82

The setvar Element ..83

Creating Soft Keys with the do Element ..84

Creating Intrinsic Events with the onevent Element88

Crud and Decic Task Overrides ..89
Navigational History ..91

Summary..94

5 tVlanaging Output 95

Basic Card Output ..96
Card Setup ..96
Paragraphs of Text ..98
Formatting Options ..100

Referencing Variables ..104
Layout..108

Handling Wrapping and Alignment ..108
Litre Breaks ..111

Tables..113

Preformatted Text ..119

Rendering ..121

Special Characters ..121

Internationalization ..124

Summary..126

6 iJsing Images 127

Using Images and Icons ..128
Image Restrictions ..133

Using localsrc Images ..135

Using Images Efficiently ..137
Using a Splash Screen ..137
Limited Animation ..138

Reusing Images with Cache ..138

Facebook's Exhibit No. 1004
Page 9

CONTENTS

Inline Images ..138

Multipart Messages ..138

Summary..139

7 Working with User Input 141

Using Variables ..142

Naming WML Variables ..142

Substitution ..148

Manipulation ...:..................................154

Free-forth Input with <input> ...:................159

Basic Attributes ..161

Formatted Input with <input format=> ..168

Restricted InpuC with <select> ..176

<select> Tag Attributes ..178

option and optgroup Elements ..182

Under-implemented Input Behavior ..187

Extended Attributes ..1$7

Layout with <fieldset> ..188

Delivering Data to Applications ..189

URL Construction ..189

Using the <go> tag ..191

Sending Data with <postfield> ...192

Summary...194

PA~r III ~►dvanced WAP Development

8 Emaillntegration 197

Email and WAP ..198

Obtaining Email Services ..l99

Phone.com ...200

Integrating Email into Your Applications ..201

Generating Email with WAP ..202

Receiving Email with WAP ..208

Summary..2t 1

9 Using WMLScript 213

WMLScript Versus JavaScript ..215

WMLScript Syntax and Conventions ...219

WMLScript Operators ...222

Using Operators ..223

Using WMLScript Functions ..224

Local Functions ..224

External Functions ..225

Library Functions ..225

Facebook's Exhibit No. 1004
Page 10

UVAP DEVELOPMENT WITH WML AiVD WIVILSCRIPT

Using WMLScript Libraries ..226
Validating User Input,,,227..

Validating an Email Address ..228
Sample Applications ..230

Animation with WMLScript ..230
Currency Converter ..232

Suinmary ..237

10 Using Timers 239

"I'he Timer Element ..240
The <timer> Tag Syntax ..243

Defining a Timer's Action ..244
E1 Basic Timer Action with the <card> Tag244
Expanded Timer Actions with the <onevent> Tag245

Practical Examples of Timers ..251
Summary............:...256

11 6teceiving fVotifications 257

Understanding Basic Notifications ..258
Alerts ..259
C1che Operations ..260
Content Messages ..261
Multi-part Messages ..261
Push Versus Pull Notifications ..2~2

The WAP Forum Push Access Protocol ..264
The Phone.com Notification Protocol ..266

Using Phone.com's Send Notification Tool267
Security ..270
Notification APIs ..271

Summary..277

12 Securing Applications 279

Security Basics ..280
Security Basics ..280
Threat Models ..282

WAP Security Architecture ..283
Request Path ..284
WTLS and SSL ...285
Security Certificates ..288

Session Management ..290
Client Authentication ..290
Persisting Session ..299

Facebook's Exhibit No. 1004
Page 11

.... __ . _.____. __ - - _ __ ___.. __-__

___.___~

_.___ .._... _,.,, ~, ,x
CONTENTS ':.

WML for Secure Applications ..306

Restricting Access ..307

Cleaning Up ..309

Summary..311

13 Writing for HTML and WNIL 313

WhyTwo Languages? ..314

How to Write fox Both Languages ..318

Phone Considerations ..318

PC Browser Considerations ..319

Database-Driven Applications ..320

Introduction to Employee Directory ..320

HTML Entry Point ..321

Phone Entry Point ..323

HTML-Specific Features ..326

Phone-specific Functionality ..329

Application Conclusions ..331.

Other I..anguages ..331

Summary..332

74 Best Pracfiices 333

Design Philosophies ..334

Working with Limited Bandwidth ..334

Working with Limited Screen Size ..336

Working with Diffet~ent Devices ...339

Creating a Usable WAP Application ..344

Backward Navigation ..344

Menu Items ..346

Limiting Required Input ..347

Building Data Entry Wizards ..348

Differences in WiVIL Implementations ...349

Major Differences ..349

Minor Differences ..357

Differentiating Based on USER AGENT ..358

Working with the HTTP_ACCEPT Header ..358

Working with the usER_AGENT Header ..358

Summary..359

P~~r IV Sarnp9e Applications

15 Currency Converter 363

Currency Converter Design ~,Zode1 ..365

Setting Up the WAP Header ..365

Facebook's Exhibit No. 1004
Page 12

x
V~/AP DEVELOPMENT WITH WML AND WIVILSCRIPT

The Homc Card ..366

Setting Up the Soft Keys ..366

The User Interface ..368

Passing and Storing Rate Information ..368

Displaying the Exchange Results ..369

Processing with WMLScript ..371

Getting the Exchange Kate ..371

String Conversions ..372

Setting the Result ..372

Support for Cookies ..374

Complete Code Listings ..374

Home. wml ..374

Process.wmis ..376

Summary..377

16 User Directory 379

User Directory Design Model ..380

Application Walkthrough ..381

Changing the WAP Header—home. asp ..381.

Dynamic Access—stafifi-detail. asp ..387

Executing a Phone Call—call.asp ..389

Sending Email—email. asp ..391

Complete Code Listings ..395

home.asp ..395

email. asp ...397

call.asp ..398

stafiflist.asp ..399

staffi-detail .asp ..400

staf-F.asp ..401

email-action. asp ..402

Summary ..403

17 Scheduling 405

Scheduling Application Design Model ..406

Application Walkthrough ..408

Adding an Appointment ..411

Writing Appointment Data to the Database Using ColdFusion412

Viewing Appointments ..416

Displaying Ap~ointmenc Data ..417

Complete Code Listings ..421

main. wml ..421

adtl. cfm ..423

schedule. cfm ..424

Summary ..428

Facebook's Exhibit No. 1004
Page 13

__ ..___~

_ _.._... _.._._ _.._. _.. _... _..._. xi
CONTENTS j,

18 E-Commerce 429

&Commerce Application Overview ..430

E-Commerce Application Walkthrough ..430

Keeping Track of the Data ..430

Preparing the Header, Data Source, and Session ID432

Creating a Login That Tracks Che User ..434

Dynamically Generating Product Catalogs435

Showing and Storing Dynamic Product Information441

Creating a "Checkout" Procedure ..445

Complete Code Listings ..451

login.jsp ..451.

main. j sp ..453

orderproduct. j sp ..456

addtocart. jsp ..458

checkout. jsp ..459

fiinishorder. j sp ..461

Summary.462

PART V Appendixes

A Wireless IVlarkup Language Reference 467

Wireless Markup Language Reference ..468

<a> ..468

<access> ..469

<anchor> ..469..............................

 ..470

<big> ..471

 ..471

<card> ..471.

<catch> ..472

<do> ..473

 ...:................................475

<exit> ..475

<fiieldset> ..475

<go> ..476

<head> ..477

<i> ..478

 ..478

<input> ..480

<link> ..481.

<meta> ..482

<noop> ..483

<onevent> ..483

Facebook's Exhibit No. 1004
Page 14

WAP DEVELOPMENT WITH WML RND WMLSCRIPT

<optgroup> ..484
<option> ..485
<p> ..486
<postfield> ..487
<prev> ..487
<receive> ..488
<refiresh> ..489
<reset> ..489
<select> ..490
<send> ..491
<setvar> ..491
<small> ..492
<spawn> ..492
 ..493
<table> ..493
<td> ..494
<template> ..495
<throw> ..496
<timer> ..496
<tr> ..497
<u> ..498
<wm1> ..498

B WMLScript Library Reference 499

yang Library ..500
abort ..500
abs ..500
characterSet..501
exit ..501
float ..50L
isFloat ..502
isInt ..502
max ..502
maxInt ..502
min ..503
minznt ..503

parseFloat ..503

parseInt ..503
random ..504
seed ..504

Float Library ..504
ceil ..504
floor504

Facebook's Exhibit No. 1004
Page 15

CONTENTS

int ..505

maxFloat ..505

minFloat ..505

pow ..505

round ..506

sgrt ..506

String Library ..506

charAt ..506

compare ..506

elementAt ..507

elements ..507

-Find ..507

fiormat ..508

insertAt ..509

isEmpty ..509

length ..510

removeAt ..510

replace ..510

replaceAt ..510

squeeze ..511

subString ..511

toString ..511

trim ..511

URL Library ..512

escapeString ..512

getBase ..512

getFragment..512

getHost ..512

getParameters..513

getPath ..513

getPort ..513

getQuery ..513

getReferer ..514

getScheme ..514

isvalid ..514

loadstring ..515

resolve ..515

unescapeString..515

WM~erowser Library ..516

getCurrentCard ..516

getVar ..516

go ..516

Facebook's Exhibit No. 1004
Page 16

WAP DEVELOPMENT WITH WML AND WMLSCRIPT

newContext ..517

prev ..517

refresh ..517

setVar ..517

Dialogs Library ..518

alert ..518

confirm ..518

prompt ..518

Debug Library ..519

closeFile ..519

openFile ..519

printLn ..520

Console Library ..520

print ..520

printLn ..520

C Using Device Emulators 521

Understanding Emulators ..522

Ericsson WapIDE SDK Browser ..523

Nokia WAP Toolkit ..526

Phone.com's UP.Simulator ..529

D Writing WML in Popular Development Tools 531

Adobe GoLive ..532

Allaire HomeSite (and ColdFusion Studio) ..533

Inetis DotWAP ...::.............................536

Macromedia Dreamweaver ..539

WAPTop EasyPad WAPtor ..540

E Writing WML in Popular Development Languages 543

Allaire ColdFusion ..546

Microsoft ASP ..547

Per1..548

PHP ..548

Sun JSP (Java Server Pages) ..549

F Locallcons 551

G CD-ROM Contents 555

Device Emulators ..556

Ericsson WapIDE SDK Browser ..556

Nokia WAP Toolkit ..556

Phone.com UP.SDK ..556

Facebook's Exhibit No. 1004
Page 17

CONTENTS

WAP Servers ..557

Editors and Layout Tools ..557

Allaire HomeSite (and ColdFusion Studio)557

Inetis DotWAP ..557

Macromedia Dreamweaver ...557

WAPDraw ..557

WAPTop EasyPad WAPtox ..557

Index 559

Facebook's Exhibit No. 1004
Page 18

About the Authors

dead Author
Ben Forta is Allaire Corporation's Product Evangelist for the ColdFusion product line. He has

over fifteen years of experience in the computer industry in product development, support,

training, and product marketing. Ben is the author of the best-selling ColdFusion Web

Application Construction Kit (now in its third edition), and its sequel Advanced ColdFusion 4

Development (both published by Que), as well as books on Windows 2000 development, JSP,

Allaire HomeSite, and Allaire Spectra. A member of WAP Forum, and frequent lecturer and

columnist on Internet technologies, Ben is finding himself spending more and more time on

WAP and wireless application development. Born in London, England, and educated in

London, New York, and Los Angeles, Ben now lives in Oak Park, Michigan with his wife

Marcy and their five children. Ben welcomes your email at ben@forts. eom, and invites you to

visit his Web site at http: //www.forta.com.

Contributing Authors
Keith D. Lauver began fifteen years ago at the company that is now known as

Gearworks.com. A recipient of the prestigious Cook Scholarship, Keith attended St. Paul's

School and later Carleton College, where he majored in Economics. During his time in high

school, Keith wrote many custom database applications, and while at college, he developed the

company's first commercial database application product. These endeavors would become the

foundation for Gearworks.com's focus on data-driven business-to-business solutions. Since

1995, Gearworks.com has grown steadily into afull-service provider of Web and wireless solu-

tions for national and multinational corporations. In 1999 ~s CEO of Gearworks.com, he

refined the company's offerings to focus on mobile application development, leveraging the

new emerging devices and standards enabled in part by WAP. Keith's experience includes sys.-

tem architecture, strategic and technical consulting, project management, and development

engineering.

Facebook's Exhibit No. 1004
Page 19

Paul Fonte is a Principal Software Engineer with Media Station Inc., located in Ann Arbor,

Michigan. He has been architecting, designing, and implementing commercial software sys-

tems for over 10 years. Paul received engineering degrees from both Purdue University and the

University of Michigan. He built his first wireless Web application back in 1997 using

HDML 2.0 for OnTime. With Media Station, he now contributes to the SelectPlay product—

a broadband home Internet application that delivers CD-ROMs to home Windows desktops on

demand. Paul welcomes your email correspondence at paul@fionte. com.

Robert M. Juneker's (Gearworks.com) history with technology dates back to 1990 when he

first captured the title, "State Programming Champion of New Jersey." Shortly after, Rob con-

ducted advanced application development for wireless alarm systems. During his time at

Carleton College where he majored in computer science, Rob entered the-field of speech

recognition, consulting with companies like IBM and Lernout & Hauspie. At ViA Inc., Rob

was the Software Director for Speech and Language Technologies, where he built a software

development warehouse and implemented the first voice-to-voice language translator designed

for a truly mobile operation. With over 10 years of computing experience and a deep

knowledge of wireless products, including wireless LAN development and PDA application

development, Rob has had unique exposure to new technologies building on C/C++, PL/SQL,

Delphi, Visual Basic, Codewarrior, HTML, ASP, DCOM, ActiveX, OLE, and ColdFusion. At

Gearworks.com, Rob is VP, Technology leading the technical teams;in developing innovative

wixeless solutions that leverage WAP and integrate with existing platforms such as Allaire

Spectra and ColdFusion.

Ronan Mandel has been the lead developer support engineer at Phone.com for the past two

years. Prior to that, he worked in the JavaSoftware Division of Sun Microsystems from 1995

until 1999. He has been working with Internet technologies since 1990 and holds a degree in

Geophysics from the University of California at Santa Cruz.

Dylan Bromby is Director of Wireless Product Development for Got Systems, Inc. in Irvine,

California. Prior to joining Got, Dylan worked in the advanced technology group of

Autobytel.coin where he created new consumer Web applications and assisted the exploration

of new business models and market opportunities with partners such as Intel Corporation. In

addition to working many hours at Got, Dylan has been a speaker on topics such as e-

commerce, Internet start-ups, and WAP on behalf of institutions such as the University of

Southern California Marshall School of Business and University of California, Irvine Graduate

School of Management. You can visit Got at http : / /www. go2online . com on the Internet,

HDML and WML-capable mobile phones, or RIM pagers. You are welcome to contact Dylan

at his permanent email address at dylan@bromby . com.

Facebook's Exhibit No. 1004
Page 20

Dedication
To Nancy, Johnny, Danny, and Mark—the proof that heaven is where the heart is.

—Paul Fonte

To Diana, for all the love through the .years.

—Ron

Acknowledgments
First of all I'd like to thank my co-authors Keith Lauver, Paul Fonte, Dylan Bromby, I
Rob Juncker, Amy O'Leary, and Ron Mandel, for their outstanding contributions. And an addi-
tional special thank you to Amy for all that extra last minute work. Thanks to Andi Hindle and
Aub Harden for a superb technical editing job. Thanks to Neil Cormia and Kathy Simpson of
Phone.com for lots of support and help. Thanks to all the developers and organizations who
gave us°pernussion to include their software on the accompanying CD-ROM, thereby increas-
ing the value of this book for all. And finally, thanks once again to everyone at Macmillan,
especially Gus Miklos for a superb development job, and J. G. Moore for tirelessly scoring_
the electronic universe for the software to be included. A very special thank you to my
Acquisitions Editor, Angela Kozlowski, who makes it close to impossible to work with other
AE's by constantly setting standards that no one else can ever hope to attain.

—Ben Forta

Special thanks to Rocky DeVries, Rob Davis, Jared Parish, ;Sarah Shomler, Jeb Sawyer, Dave
Morehouse, Mike Bollinger, Jeremy Raadt, Andrew Kass, Dave Anderson, Jim Larsen, and
Pete Kobs at Allaire. Extra special thanks to everybody at the Contented Cow in
Northfield, MN.

—Gearworks. com

Keith Lauver

Robert M. Juncker

Facebook's Exhibit No. 1004
Page 21

First, I would like to thank my family—Nancy; Johnny, Danny, and Mark—for helping me

write, each in her or his own special way. I must also thank my great friends at Media Station;

I'm privileged to be part of such a great team. Next, I would like to thank Anik Ganguly who

started me writing wireless applications with a wild idea one summer weekend. Of course, I

need to thank Ben Forta for inviting me into another great writing project. Finally, I would like

to thank all of my other co-authors, Angela Kozlowski, Gus Miklos, Michael Dietsch, and all

the other fabulous folks at Sams.

—Paul Fonte

I'd like to recognize and thank the thousands of dedicated people around the world who take

time out of their personal and professional lives to participate in the WAP Forum. and further

the collective WAP efforts on so many fronts. Thanks to Ben for the opportunity to get

involved with this project. And to Ben and Angela both, I thank you for your patience. I would

also like to thank the incredible people at Got. We all came from such diverse backgrounds

and expertise to make something great. Thank you to my parents for always encouraging and

challenging me to work hard and put people above everything else. Thank you to my mother

and father-in-law who have been great sources of encouragement and love and taken care of

my wife when work has taken me away from home. And the biggest thank you of all, I owe to

my beautiful wife Ann. I've learned from you, grown with you, and been through easy and

challenging times with you. Thank you for your sacrifices and for encouraging me to become

who I am.

—Dylan Broncby

I would like to thank my co-authors for helping me through this effort. At Phone.com my

deepest gratitude goes out to several folks, (including but not limited to) Paul Smothers, Jolie

Bories, Don Schuerholz, Darren Sloan, Jacky Mann, Kathy Simpson, Alistair France, and Ben

Linder. Most of all I would like to thank Diana, for all of her love and encouragement.

—Ronan Mandel

Facebook's Exhibit No. 1004
Page 22

Tell Us What You Think!
As the reader of this book, you are our most important critic and commentator. We value your

opinion and want to know what we're doing right, what we could do better, what areas you'd

like to see us publish in, and any other words of wisdom you're willing to pass our way.

As an Associate Publisher for Sams Publishing, I welcome your comments. You can fax, email,

or write me directly to let me know what you did or didn't like about this book—as well as

what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this book,

and that due to the high volume of mail I receive, I might not be able to reply to every mes-

sage.

When you write, please be sure to include this book's title and author as well as your name

and phone or fax number. I will carefully review your comments and share them with the

authors and editors who worked on the book.

Fax: 317-581-4770

Email: networking_sams@macmillanusa.com

Mail: Michael Stephens

Associate Publisher

Sams Publishing

201 West 103rd Street

Indianapolis, IN 46290 USA

Facebook's Exhibit No. 1004
Page 23

introduction

~/hy We Wrote This, Book
Every once in a while a technology comes along that simply captures the imagination.

The

desktop computer was definitely one of these, as were the introductions of HTTP, the World

Wide Web, and the recent explosive growth in wireless communication. And although each of

these is exciting by itself, when the three are merged the possibilities are nothing short of

mind-boggling.

Wireless data communication is not a new idea. For years now we've been hearing that wire-

less communication has finally come of age, only to be disappointed over and over again. And

vet this time we believe what we are hearing. This time wireless computing is becoming a

reality and in ways no one could have imagined.

WAP is the Wireless Application Protocol, a communications protocol (based on HTTP)

designed specifically for wireless communication and managed by the WAP Forum. WAP is

the transport used to communicate between devices (phones initially, but other devices eventu-

ally) and servers. WAP is very technical, but the reason that WAP will succeed where all others

have failed is anything but so. WAP will succeed because it is being supported by almost every

~ziajor hardware, software, device, data carrier, and telecom vendor. And with that kind of mus-

cle behind a common goal, anything is possible.

WAP is exciting, and that excitement is shared by developers, the press, the financial commu-

nity, and end users alike. But thus far obtaining all the information needed to leverage this new

and exciting technology has been rather difficult. A shortage of documentation, unclear guide-

lines, inadequate real-world advice, and hard-to-find tools have all contributed to complicating

the getting-started process. And that's where this book fits in.

Who Should Use This Book
This'book was written for developers who want to leverage what promises to be one of the

`most important protocols and standards ever developed.

If you are an HTML developer and want to learn how to port your sites to WAP, this book is

for you. If you are a Web application developer (writing in ASP, ColdFusion, Java, JSP, Perl,

or other server-side language) and want to learn how to generate content for wireless devices,

this book is also for you. And if you just want to learn more about WAP and related technolo-

gic;s, this book is for you too.

\' ~ i tten by developers for developers, and with input from WAP Forum members (including

}'h~ne.com and Allaire), this book teaches you everything you need to know to take advantage

Facebook's Exhibit No. 1004
Page 24

WAP DEVELOPMENT WITH WML AND WMLSCRIPT

of WAP and all it has to offer. From WAP fundamentals to the details and nuances of the WML

language, from using scripting with WMLScript to securing applications, from using alerts to

writing for both HTML and WML, from fine-tuning graphics to best practices and user inter-

face guidelines, you'll find more useful content in this volume than anywhere else: And;all in

an informative and highly code-centric style that makes learning a breeze.

How to Use This .Book
This book is designed to be used in two ways. -For starters, work through the book systemati-

cally, beginning with the very first chapter and continuing from there. More-experienced devel-

opers will find that the, extensive indexes and cross references make this book an invaluable

reference tool

This book is divided into five primary parts:

Part 1: Getting Started
This part covers the basics of WAP development and includes three chapters:

Chapter 1, "Understanding WAP," introduces the basis of WAP and. the components. that make

Chapter 2, "Introducing WML," introduces the Wireless Markup Language and explains some

of the basics do's and don'ts of this language.

This is continued in Chapter 3, "Writing for WAP in WML;" which walks you through creating

your first WML card using basic language elements:

Part 11: Creating WAP Applications
This part covers important application development fundamentals and includes four chapters:

Chapter 4, "Card Navigation," teaches the use of actions and key assignments.

Chapter 5, "Managing Output," covers card setup and layout, and text formatting functions..

Images must be used very carefully in WAP, and Chapter 6, "Using Images," explains how to

use. images and local icons in detail.

Chapter 7, "Working with User Input," teaches how to collect data from users, including wark-

ing with variables containing user input.

Part III: Advanced WAP Development
With the basics covered, this part teaches advanced WAP topics, and includes seven chapters:

Facebook's Exhibit No. 1004
Page 25

~~_

INTRODUCTION

c hapter 8, "Email Integration," tea
ches the use of provider mail services to both send and

,~ceive email from devices.

~~-'MLScript is a scripting language that can be used to extend your WML code, and Chapter 9,

~~Using WMLScript," introduces this language.

Chapter 10, "Using Timers," teaches the use of timers for greater program control and automa-

tio11.

Chapter 11, "Receiving Notifications," covers the differences between push and pull and the

i~s~ of notifications.

Security is an important part of application development, and Chapter 12, "Securing

Applications," teaches application security in detail.

Chapter 13, "Writing for HTML and WML," explains how to port code from HTML to WML

.and how to write code for both platforms at once.

This theme is continued in Chapter 14, "Best Practices," which details some of the hard-

le~xned important do's and don'ts of WAP development.

Part IV: Sample. Applications
This next part walks througfi four complete applications to help you jump-start your own

development:

Chapter 15, "Currency Converter," is an example of a client-side application using both WML

and WMLScript.

Chapter 16, "User Directory," is a complete database-driven directory application written in

Microsoft ASP.

Chapter 17, "Scheduling," is atime-management and scheduling application written in Allaire

ColdFusion.

Chapter 18, "E-Commerce," is a sample electronic commerce application written in JSP (with

mirror copies in ASP and ColdFusion on the CD-ROM).

Part V: Appendixes
This final part contains seven useful appendixes:.

Appendix A, "Wireless Markup Language Reference," is a complete alphabetical list of all

WML tags with syntax, examples, and usage notes for each.

Appendix B, "WMLScript Library Reference," is a complete list of available WMLScript

libraries and their functions, and even includes coverage of Nokia and Phone.com extension

libraries.

Facebook's Exhibit No. 1004
Page 26

WAP DEVELOPMENT WITH WML AND WMLSCRIPT

Appendix C, "Using Device Emulators," covers the use of the three major emulators (from

Ericsson, Nokia, and Phone.com).

Appendix D, "Writing WML in Popular Development Tools," explains how popular develop-

ment environments can be used to write WML.

Appendix E, "Writing WML in Popular Development Languages," teaches how to write WAP

applications in Allaire ColdFusion, Microsoft ASP, Perl, Java, JSP, and PHP.

Appendix F, "Local Icons," is a complete alphabetical reference of the local icons supported by

some devices.

Appendix G, "CD-ROM Contents," lists the programs and files included on the accompanying

CD-ROM.

So, turn the page, start reading, and welcome to the wonderful world of WAP and wireless

application development.

Special Conventions Used in the Book
The people at Sams and Macmillan USA have spent many years developing and publishing

computer books designed for ease of use and containing the most up-to-date information avail-

able. With that experience, we've learned what features help you the most. Look for these fea-

tures throughout this book to make it easier to read and understand and to help enhance your

learning experience.

• Screen messages, code listings, and command samples appear in monospace type.

• Uniform Resource Locators (URLs) used to identify pages on the Web and values for

HTML attributes also appear in monospace type.

• Terms that are defined in the text appear in italics. Italics are sometimes used for empha-

sis, too.

• In code lines, placeholders for variables are indicated by using italic monospace type.

• Console or keyboard input appears in bold type.

Supplemental Information
Throughout the book, you will see cross references to other chapters, sections, and Web sites

to help you broaden your knowledge of the topic. Source code listings that appear on the CD-

ROM that accompanies this book will be noted. In addition, you will see other helpfiil notes

and supplemental information as follows:

Facebook's Exhibit No. 1004
Page 27

INTRODUCTION

NOTE - -_

Notes present useful or interesting information that isn't necessarily essential to she

current discussion, but might augment your understanding with background material

or advice relating to the topic.

TiP

Tips give you advice on quit,': or overlooked procedures, including shortcuts.

CAUTION ___ _ - - _ -- -_ _ ---__-- __...__

Cautions warn you about potential problems a procedure might cause, unexpected

results, or mistakes That could prove costly.

Code Continuation Character
There are many source code listings in this book. Because of space limitations, some of the

code lines had to be wrapped (continued on the next line). In actual use, however, you would

enter this code as one ̀extended line without a line break. To indicate such lines, a special code

continuation character (~►) has been used. When you see this character at the beginning of a
line, it means that line should be added, as one line, to the line that precedes it.

Facebook's Exhibit No. 1004
Page 28

Facebook's Exhibit No. 1004
Page 29

Getting Started.

..~

1 Understanding WAP 9

2 Infiroducing WML 19

3 Writing for WAP in WML 43

Before you can start writing your own WAP

applications, you must understand some impor-

tant basic concepts and terms. In this part you'll

learn what WAP is, how it relates to WML, and

how to get started with this exciting new tech-

nology.

Facebook's Exhibit No. 1004
Page 30

1

Facebook's Exhibit No. 1004
Page 31

Understanding WAP

• Understanding Servers and Gateways 11

• WAP Devices 13

• WAP and WML 16

Facebook's Exhibit No. 1004
Page 32

Getting Started

PART

WAP stands for Wireless Application Protocol, the de facto standard for wireless computing

managed by a consortium of vendors called the WAP Forum. WAP does for wireless .devices

what HTTP does for Web browsers—it allows them to become clients in an Internet-based

clientlserver world.

So ̀what exactly is WAP? WAP is a protocol, a data transport mechanism. In many ways it is

similar to HTTP (the protocol that the Web uses for data transport), and WAP was also built on

top of established standards; such as IP, URLs, and XML. But WAP was designed from the

ground up for wireless computing, and was built to accommodate the unique and fundamental

limitations of wireless computing:

• Devices with limited processing power and memory

• Limited battery life and power

• Small displays

• Limited data input and user interaction capabilities

• Limited bandwidth and connection speeds

• Frequent unstable (lost or poor) connections

The job of the WAP Forum is to manage the evolving standards, while ensuring the highest

degree of interoperability.

The WAP Forum

The WAP Forum was formed in 1997 by Ericsson, Motorola, Nokia, and Phone,com (at

the tine known as Unwired Planet). Within te~vo years, more than 100 companies had

joined the group, which will define the standards for providina Internet content and

services to wireless devices, Member organizations now include almost every major

~~ software, hardware, and device vendor, along with all major carriers and telecom

providers.

The WAP Forum's Vdeb site (http: !iv~vuw.wapfor~im.o~~gr) is the primary resource for

WAPrelated documentation anci specifications.
i

WAP is actually not a single protocol; rather, it is a collection of protocols and standards that

make up a complete lightweight protocol stack (see Table 1,1) along with special markup and

scripting languages (as you'll see later in this chapter), which together define a complete solu-

tion.

Facebook's Exhibit No. 1004
Page 33

Understanding WAP
__.___....__._._~....__._..____....._.~..._.._..._.__......._.__...___._____._ ----_..._.....____~__.__....__..___---.._....W__~......___..________.~..._._...._.___.~__._.._..~_.._____~__.

CHAPTER ~

TABLE 1.1 WAP Protocol Stack

Abbreviation NameDescription ,

WAE Wireless Application Environment

Application layer, includes the micro-browser on the- device, WML

(the Wireless Markup Language), WMLScript (a client-side scripting

language);. telephony services; and a set. of .formats for commonly

used data (such as images, phone books, and calendars).

WSP Wireless Session Protocol

Session layer, provides HTTP 1,1 functionality, with basic session

state management, and a facility for reliable and unreliable data push

and pull.

WTp Wireless Transaction Protocol

Transaction layer, provides transport services (one way and two way);

and related technologies.

WTLS Wireless Transport Layer Security

Security layer, provides data security and privacy, authentication, as

well as protection against denial-of-service attacks.

WDP Wireless Datagram Protocol

General transport layer.

WAP is exciting, but for the most part, unless you are writing WAP servers or creating WAP

devices, the WAP protocol itself will not be of much interest to you.

Understanding Servers and Gateways
WAP devices connect to servers to retrieve and send information in much the same way as

~Veb browsers connect to HTTP servers. In fact, WAP devices can connect to both WAP and

HTTP servers (a behavior designed to eliminate. as many barriers to WAP adoption and accep-

i~ince as possible).

It you want to serve WAP content you can install a WAP server. This is a piece of software,

much like an HTTP server (and indeed, the two can usually run on the same machine). As seen

iu Ftgure 1.1, the WAP device makes a request from the WAP server which returns the

requested data to the device for processing.

<;;

1
c
z
0

~m
A

D ~'D~~
0
z
c~

Facebook's Exhibit No. 1004
Page 34

Getting Started

PART

~ --
1.User 2. Request is sent to

requests WAP server for ~

'~; WAP Internet processing

~~~~'" ~~ content

WAP Device 4 WAP WAP Server

device receives 
3. WAP server sends

and displays data 
requests data back to
device

FIGURE 1.~

~UAP devices request and receive data from WAP servers.

So if devices talk WAP (and not HTTP) how can they request data from HTTP servers? The

answer is that a WAP gateway sits in between the WAP device and HTTP server and acts as an

interpreter between them (as seen in Figure 1.2). The WAP gateway handles all data forward-

ing and filtering or conversion so that what the device gets back is just WAP, not HTTP at all.

1. User
requests
content 3. Request is sent to

from HTTP HTT'P server for
server processing

~ __~ i

g✓',
;,~V w Internet

~_ ~_ HTfP Server

WAP Device
6. WAP 4. HTTR server returns
device receives requested data
and displays data

2. Requested is routed to 5. WAP gateway

WAP gateway converts received HTTP
which forwards the data to WAP and then
request as an HTTP ~„~ forwards it to the device
request ~ ~ , that requested it

WAP Gateway

FIGURE 1.2

WAP devices can regcsest and receive ̀data from HTTP servers via WAP gateways.

More often than not, to write WAP applications you'll not need a WAP server or gateway. In

fact, you'll probably not need anything more than your current HTTP server. The next chapter,

"Introducing WML," covers configuring your Web server so that it serves WAP content.

Facebook's Exhibit No. 1004 
Page 35



Understanding WAP 
13

CHAPTER 1

NOTE -

-- - c

In the same U~ay tF~at HTTP servers cart be used to serve WAP content, many of the o

tools and developmentenvironmen~sand lan_yuages you use to develop Web applica- ~
D -~

Lions can also be ~_~sed to develop WAP applications. This includes Perl, ASP, ~ y

ColdFusi~n, Java, and mare, Appendix E, "Writing WML in Popular Development z

Languages," covers the basics of writing for WAP in many major platforms (complete ~

v~✓ith sample code for each}.

WAP Devices
WAP clients .are devices—for now phones, but in the future other wireless devices too. These

devices all'have two common characteristics:

• An integrated browser, called amicro-browser

A mechanism' for user input, which can range from a couple of buttons on simple models

to entire banks of buttons with roll bars and touch screens on higher-end (and future)

models

As you can imagine, with each device being different, the capabilities and features on each dif-

fers too. WAP is designed to be very device independent; the code you write for one device

should work on all devices. But there is a big difference between working and working as

intended.., Different devices implement different features in different ways, and that makes for a

very inconsistent development environment. As such, WAP developers must test the code they

write on as many devices as possible.

NOTE ~ -

HTtvt~. developers are often bothered by how little control they have ~^rhen it comes

to generating WAP content. Exact screen placement is impossible, as is guaranteed

consistent layout. This is nat a flaw in the spec; it is deliberate and by design, for it

allows for the widest variety of devices and capabilities. But it also means that devel-

opers have to be a little more flexible (and creative) when designing user interfiaces.

And they have to stop comparing WAP to the Web.

Table 1.21ists some of the more commonly available devices, and their primary features. Of

course, new devices are being developed all the time, so don't read this list as a definitive list

of what's available—it's not.

Facebook's Exhibit No. 1004 
Page 36



Getting Started

PART

TaB~E 1.2 Some Popular WAP Devices

Device Notes

Alcatel OneTouch Good text formatting and alignment, and sup-
ports local icon use. Features the Phone.com UP
WAP browser: Available in Europe.

Casio C303CA Good text formatting and alignment, and sup-
ports local icon use. Features the Phone.com UP
WAP browser. Available in Japan.

Denso C202DE Good text formatting and alignment, and sup-
ports local icon use. Features the Phone.com UP
WAP browser. Available in Japan.

Denso TouchPoint Good text formatting and alignment, and sup-
ports local icon use. Features the Phone.com UP
WAP browser. Available in the U.S.

Ericcson R280 Good text formatting and alignment, and sup-
ports local icon use. Features the Phone.com OF
WAP browser. Available in the U.S.

Ericcson R320s Features afive-line display, basic organizer func-
tionality, and good text formatting and alignment.
Small screen size.

Ericcson R380 Features a wide pressure-sensitive screen under
the keypad, and good text formatting and align-
ment. Also includes a complete organizer based
on the Psion 5 running EPOC 32.

Hitachi C201H and C302H Good text formatting and alignment, and sup-
ports local icon use. Features the Phone.com UP
WAP browser. Available in Japan.

Mitsubishi T250 and MobileAccess Quad mode phone. Good text formatting and
alignment, and supports local icon use. T9 text-
input software. Features the Phone.com UP WAP
browser. Available in the U.S.

Motorola 11000 plus Good text formatting and alignment, and sup-
ports local icon use. Features the Phone.com UP
WAP browser. Available in the U.S.

Motorola Timeport Very small form factor. Good text formatting and
alignment, and supports local icon use. Features
the Phone.com UP WAP browser. Available in
U.S.

Facebook's Exhibit No. 1004 
Page 37



Understanding WAP

CHAPTER 1

Device Notes

Motorola Timeport L7389 Very small form factor. Good text formatting and

alignment, and supports local icon use. Features

the Phone.com UP WAP browser. Available in

Europe.

NeoPoint 1000 Large screen with 11-line display. Good text for-

matting and alignment, and supports local icon

use. Features the Phone.com UP WAP browser.

Available in the U.S.

Nokia 6185 Good text formatting and alignment, and sup-

ports local icon use. Features the Phone.com UP

WAP browser. Available. in U.S.

Nokia 7110 Features a roll bar for menu selection, predictive

text input; and a large high-contrast screen:

Limited text formatting and alignment. Uses

Nokia's own WAP browser.

Qualcomm QCP-1960 and QCP-2760 Good text formatting and alignment, and sup-

ports local icon use. Features the Phone.com UP

WAP browser. Available in the U.S.

Samsung Duette and SCH 3500 Good text formatting and alignment, and sup-

ports local icon use. Features the Phone.com UP

WAP browser. Available in the U.S.

Samsung SGH-800 Good text formatting and alignment, and sup-

ports local icon use. Features the Phone.com UP

Vi~AP browser. Available in Europe.

Sanyo D301SA and TSO1 Good text formatting and alignment, and sup-

ports local icon use. Features the Phone.com UP

WAP browser. Available in Japan.

Sanyo SCP-4000 Backlit display and large directional control.

Good text formatting and alignment, and sup-

ports local icon use. Features the Phone.com UP

WAP browser. Available in the U.S.

Toshiba C301T and TTO1 Good text formatting and alignment, and sup-

ports local icon use. Features the Phone.com UP

WAP browser. Available in Japan.

11

C
z
v

~m

D~~az
0
z
c~

Obviously, owning every device out there is extremely difficult (if not impossible, as many

devices are only available in specific countries). Testing your code on every single availa
ble

device is a great idea; it's also a terribly impractical one.

Facebook's Exhibit No. 1004 
Page 38



Getting Started

PART

One partial workaround is the use of device emulators (like the one shown in Figure 1.3), soft-

ware programs that simulate WAP devices on your computer. Some of these even support the

use of skins (replaceable screens with different interfaces) so that multiple devices can be

tested with a single emulator.

FIGURE 'I.3

Device emulators are ideal for testing WML code..

NOTE - -- _ _ _ --

See Appendix C, "Using Devi -e Emulators," for a fist of emulators and hew to use

them (as well as where to obtain them}.

WAP and WML
WAP is a protocol, just like HTTP (and most developers will spend as much. time worrying

about WAP as they do HTTP—in other words, not much at all). The truth is, WAP is pretty

boring: It's a protocol, it works, and it facilitates data transfer.

Just as Web developers spend most of their time writing HTML, most of the action in WAP

development is not at the WAP level; it's at the.markup language used to create WAP applica-

tions. As WAP devices have special user interface requirements and restrictions, the use of

HTML is not an option. For example,

• WAP devices don't have pointing devices, so mouse-like interfaces. are impossible.

• WAP devices do not have full keyboards; they usually have simple phone keypads along

with some extra keys.

Facebook's Exhibit No. 1004 
Page 39



Understanding WAP 
--.----.----____.__.__ 17.__.__..__..__.__..~___.~__._.__.._.._.._.._..___._._.-,-------.......~._...__......_..___..__.__.__... ____.---- _____._.__........-----

CHAPTER ~

• WAP device screens are small. They can't support frames, complex tables, large graph-

ics, and sophisticated color and font control.

• WAP devices have no real multimedia, sound, or video support.
c
o

~~
Knowing all these limitations and restrictions, could you even consider writing applications in D ~

HTML? Obviously wireless devices have special needs, and so a special markup language was
.~ D
o

created for WAP—WML, the Wireless Markup Language. c

As an XML-based language loosely derived from HTML, WML is tag based and uses familiar

tag pairs and .attributes for all language features. VVML uses many of HTML's tags (<p>,

<table>, and <em> to name a few), but°WML is not as extensive as HTML, and many of the

tags that are included behave differently and have different attributes.

As WML is-tag based and based on HTML, it is easy to learn and use (although it is far

stricter in syntax and usage than is HTML). WML features support for

• Cards (WAP pages) and decks of cards (sets of WAP pages in a single file) containing

formatted text (covered in Chapter 3, "Writing for WAP in WML," and Chapter 4, "Card

Navigation")

• Images (in special formats, as will be discussed in Chapter 6, "Using Images")

• Data entry (discussed in Chapter 7, "Working with User Input")

~ WML is covered extensively in this book, starting with Chapter 2, "Introducing WML,"

and Chapter 3, "Writing for WAP in WML."

WML is complemented by a client-side scripting language called WMLScript (just like HTML

is complemented by client-side JavaScript). WMLScript is far simpler in scope than JavaScript,

but it does provide basic programmability that you can use to perform basic text and data

manipulation.

s WMLScript is covered in Chapter 9, "Using WMLScript."

To help understand all the pieces in the WAP puzzle and what they mean, Table 1.3 compares

WAP technology and features with their familiar Web counterparts.

TAs~e 1.3 Comparing WAP to the Web

Feature Web WAP

Transport HTTP WAP

Markup HTML WML

Scripting JavaScript WMLScript

Facebook's Exhibit No. 1004 
Page 40



Getting Started

PART

NOTE I _ __ _ _-- - - _ - -

For same reason, perhaps because it is easier to pronounce thin ~NML, people refer

to a!I wireless development as "V'JAP" (wV~en they are usually talking about WML).

When you hear WAP, remember that WAP is a transport, and what r7~ost developers

concern themselves with is WML (and WMLScript).

Summary
WAP is the de facto standard for wireless computing. Made up of data transport and supporting

protocols, along with specialized markup and scripting languages, WAP is a complete solution

for wireless development. In the next chapter you'll learn about WML, and what you need to

start writing code.

i
I'

Facebook's Exhibit No. 1004 
Page 41



Introducing WML

• What Is WML? 20

• Getting Started with WML 22

• Configuring Your Web Server 23

• Phones and Emulators 27

• Understanding WML Usage 3d

• WML Overview 36

C H A P T~_E~___.

Facebook's Exhibit No. 1004 
Page 42



Getting Started

PART

This chapter introduces Wireless Markup Language (WML) by discussing its origins, function-

ality, and similarity to other common programming languages you may already know. This

chapCer also helps you get started developing your own WML code by showing you how to

configure your Web server for WML content and how to view that content with several com-

mon devices and device emulators. Finally, we'll show you how to deternune what kinds of

applications are relevant to the special capabilities of WML, while covering. basic development

concepts, such as syntax and WML's particular card and deck structure.

What Is WML?
Wireless Markup Language (WML) is a markup language used for describing the structure of

documents to be delivered to wireless devices. WML is to wireless browsers as HTML is to a

browser on a desktop computer. WML was created to address the display, bandwidth, and

memory limitations of mobile and wireless devices, such as cellular phones and wireless hand-

held computers. Because it was designed to run on a variety of devices, WML assumes very

little about the device running the application and provides,much less control over output for-,

mats than you might be used to with HTML.

WML's Origins
In the early 1990s, Unwired Planet created HDML (Handheld Devzce Markup Language) to

serve as the development standard for wireless applications. By June 1997, Unwired Planet had

changed its name to Phone.com and, along with Nokia, Motorola, and Ericsson, launched the

WAP Forum—a nonprofit organization dedicated to the development and proliferation of a sin-

gle standard protocol for wireless applications. Using Phone.com's HDML as the basis for its

own standard markup language, the forum created and distributed WML—a language different

from, but in many respects similar to, HDML. The WAP Forum and detailed specifications for

WML can be found on the Web at http: //www.wapforum.org/.

NOTE

WML is similar to HTML, but Web developers w,~ill find V`JML less forgivinc and more

strict when it comes fio syntax.

Although WML will certainly look familiar to Web developers accustomed to HTML, the two

languages are really more like cousins than brothers. SGML (Standardized Generalized

Markup Language) can really be thought of as the father of both HTML and XML (Extensible

Markup Language). HTML is designed to handle a lot of objects, pictures, and other multime-

dia, which makes it too bulky for the bandwidth limitations of current mobile devices; there-

fore, HTML was rejected as the basis for WML, which needs a simple architecture that

Facebook's Exhibit No. 1004 
Page 43



Introducing WML

CHAPTER T

structures data to aid the parsing of a document. That need, and the desire for a language that

would survive the demands-and fluctuations of turbulent standardization discussions, was the

xeason that WML was based on XML. By using XML as a base, WML was designed to be a

lightweight protocol that would meet bandwidth limitations of existing mobile devices.

WML's Functionality
WML supports six key areas:

• Text presentation and layout—Although specific devices and WML browsers vary in

their output of WML code (very much like output differences between Netscape

Navigator and Internet Explorer), line breaks, text formatting, and alignment are all sup-

ported by WML.

• Images—Although WAP-compliant devices are not required to support images, WML

supports the Wireless Bitmap (WBMP) image format. and image, alignment on the screen.

Wireless Bitmap is a graphic format created by the WAP Forum which is optimized for

mobile rdevices.

For more on using images in WML, see Chapter 6, "Using Images."

• User input—WML supports choice lists, multilevel choice lists, text entry, and task con-

trols.

• Card and deck or~ani.zatzon—User interactions are divided into cards, and navigation

occurs between cards. Decks are related sets of cards which constitute a single file, like a

single HTML file. In HTML, viewing one page is akin to viewing one card in WML,

However, instead of each HTML page constituting one HTML file, multiple WML cards

constitute one WML deck, which is then saved as a single file.

• Navigation—WAP supports the standard Internet URL naming scheme and anchored

links, allowing navigation between cards in a deck, between decks, or between other

resources on the network.

• State and context management—To maximize network resources, WAP allows for vari-

ables to be passed .between WML files. Instead of sending a complete string, variables

can be sent and substituted at runtime. The user agent can cache both variables and

WML files,, minimizing cache hits and server requests. It is also possible to pas's vari-

ables between different cards in the same deck; this is an important way to minimize net-

work usage.

Similarity to HTML and XML

2

z

~o
~c
rn
z
c,

If you are already familiar with HTML, SGML, or XML, you should recognize WML syntax,

which is based on XML but is more formally defined than a general XML application.

Facebook's Exhibit No. 1004 
Page 44



Getting Started

PART

If you are accustomed to developing in HTML, several key differences in WML will take some

getting used to. Most fundamentally, the target screen for your application is severely limited

and yet variable. Current WAP-compliant devices have display screens that range from sub-

VGA graphics to text-only displays with four lines and a maximum of 32 characters per line.

Second, the multiplicity of devices running these applications makes it hard for developers to

know exactly how their application will appear to any given user. WML developers are not

dealing simply with two browsers, as HTML developers typically do, but with dozens and

dozens of devices—each with a unique screen and interface. WML also introduces new kinds

of functionality on the browser side. WML already provides for several complex actions that

would traditionally be coded into your application with a scripting language.

Finally, WML is less forgiving than HTML in several ways: Most obviously, it does not com-

pensate for incorrectly nested tags or uppercase usage.

Getting Started with WML
To begin writing WML, all you really need is a simple text editor such as Microsoft Notepad:..

However, a developer toolkit will get you up to speed more quickly and provide better famil-

iarity with the WAP environment. While these toolkits don't help you actually write WML,

they do provide tool's to view the WML you've written in a specific WAP-browser compatible

environment. Nokia, Motorola, Ericsson, and Phone.com all offer free developer tooll~its to test

their browser and device functionality, which require a quick registration at each of their Web

sites.

NOTE

Most companiesrequire some form of online developer registration before you can

download their SDK.

Developer toolkits do not provide shortcuts for writing WML; however, some WML editors are

beginning to appear on the market—either as extensions to existing HTML editors (such as

Allaire's HomeSite), or as independent WML-editing products, some of which are available on

the Internet as freeware, Using these products are'not required but may be helpful to you.

~ For more information on developer toolkits and their uses, see Appendix D, "Writing

WML in Popular Development Tools."

When you register with Phone.com's Developer Program, you can download the UP.SDK from

its Web site. The UP.SDK is a free kit that allows Web developers to create HDML and WML

applications. The SDK includes the UP.Simulator that simulates the performance of

Facebook's Exhibit No. 1004 
Page 45



Introducing WML

CHAPTER 2

Up.Browser-enabled devices. When enrolled at the Nokia WAP Developer Forum, you can

download the Nokia WAP Developer Toolkit, which comes with references on general WAP

issues, as well as the WML and WMLScript command syntax. It also calls for JRE (Java

Runtime Environment) v.1.2.2 or higher, which is available for free download as well.

The Nokia WAP SDK 2 includes a light WAP server, which enables you to read WML decks

off your local drive or any HTTP server. Also included is an emulator for the Nokia 7110

phone. The emulator reproduces not only the visual appearance of the 7110, but also the

bugs—useful for developers wanting to avoid them.

To download the Ericsson Service Development Kit, you need to register at Ericsson's

Developer's Zone. Ericsson's WapIDE SDK consists of three main components: a WAP

browser, an application designer, and a server toolset. Motorola's platform is called Mobile

Internet eXchange, or MIX for short. Its Mobile Application Development Kit is intended to

provide an integrated development environment for both voice and data applications.

Using one of~these SDKs is typically the quickest way to familiarize yourself with the develop-

ment challenges of the WAP environment and to develop successful wireless applications.

However, toolkits can be intended for creating applications for WAP devices in general, not

any one mobile device in particular. The applications you create with developer kit might not

look anything like the output on an actual WML browser in a mobile phone. To be absolutely

certain that the outputs fit with your intentions, you need to test the applications on an actual

WAP device, such as a mobile phone or an emulator (to be discussed later in this chapter).

Configuring Your Web Server
The easiest way to serve WML contents is to use an HTTP server. Unless your WAP site is

listed on a portal maintained by a mobile network provider, users will need to type the URL of

your site on their device manually—a complicated task with only a phone's buttons to interface

with. Although www is the de facto standard hostname for HTTP servers, wap seems to be

emerging as a comparable standard for servers containing WAP applications.

TiP

f~1ost WML pages use the naming convention of wap.sitenamehere. ccc~.

However, simply throwing your WAP applications up on a standard HTTP server will not

allow users to view content on their phones. The server must "tell" the WML browser that it is

about to receive a WML page and not an HTML page or some other kind of content. This

communication is done using MIME extensions that must be added to your server for WML

browsers to correctly read your content.

~~

z

~o
~°c
rn
z

Facebook's Exhibit No. 1004 
Page 46



Getting Started

PART

MIME Types for WML, WMLS, and HDML
MIME stands for Multipurpose Internet Mail Extension, which is a piece of header information

that was originally used in email to allow for proper formatting of non-ASCII messages over

the Internet. There are many predefined MIME types in common use, such as JPG graphics

files and HTML files. In addition to email programs,- Web browsers also support a variety of

MIME types. This permits the browser to display or output files in formats other than HTML.

MIME types common to Internet servers include

• "text/html" for HTML files

• "image/jpg" for JPG files

• "image/giP' for GIF files

Because these file types are so common, most Web servers are already configured to send the

correct MIME types. WAP, however, requires its own MIME types to recognize various file

content.. Because WAP is still emerging for widespread use, you will most likely have to con-

figure your own. server to run WAP applications. By adding these MIME types to your server,

different devices will be able to properly interpret and therefore display WAP content.

WAP Version 1.1 requires the five MIME types shown in Table 2.1 to serve WML,

WMLScript, and Wireless Bitmap images.

TABLE 2.1 File Types and Corresponding MIME Types

File
Extension Content Type MIME Type

wml WML source code textivnd.wap.wm].

wmis WMLScript source code text/vnd.wap.wmiscript

wbmp Wireless Bitmaps -image/vnd.wap.wbmp

wmlc Complied WML application/vnd.wap.wmlc

wmisc Complied WMLScript application/vnd.wap.wmiscriptc

Adding the MIME Types. to Various Servers
In the following sections, we will detail how to add MIME types to the Apache HTTP Server,

the Microsoft IIS Server-v4.0, the Microsoft IIS Server v3.0 and below, and Microsoft Personal

Web Server v4.0. For any additional servers, refer to your server's documentation.

Facebook's Exhibit No. 1004 
Page 47



The Apache HTTP Server
For versions of Apache older that 1.3.4, you should do the following:

1. Edit the s rm . c o nfi file.

2. Find the AddType section and add the following piece to the, file:

# MIME Types for WAP

AddType text/vnd.wap.wml .wml

AddType text /vnd.wap.wmiscript .wmis

AddType image/vnd.wap.wbmp .wmbp

AddType application/vnd.wap.wmlc .wmlc

AddType application/vnd.wap.wmiscriptc .wmisc

3. Save the file and restart the Apache HTTPd.

Introducing WML

CHAPTER 2

Apache recommends that new MIME types be added using the AddType directive rather than

changing the mime .types file, however, it is not a requirement and some administrators may

prefer to change the mime.types file directly.

If you are using Apache 1.3.4, the contents of the three server configuration files, you can

make these changes within a single file named httpd . conf.

The Microsoft IIS Server
To add MIME types to the MS IIS Server, follow the steps listed here:

1. On the server console, open the Management console or Internet Service Manager Tool.

2. On the Management console you can define the MIME types to be valid for the entire

server or valid only for separate directories.

3. To add a new MIME type to a specific directory, right-click the desired directory and

select Properties.

4. Select the HTTP headers tab.

5. Click the File Types button near the lower-right corner.

6. Select New Type and the following field values:

Associated Extension:.wml

Content Type (MIME): text/vnd.wap.wml

7. Click the OK button.

8. Repeat steps 6 through 7 for each additional MIME type.

9. Reboot your system if instructed to do so.

2

z

~o
~c
rn
z
c,

Facebook's Exhibit No. 1004 
Page 48



Getting Started

PART

NOTE _ —_ _ -- -_ _______ _ - --
__ _ --- -~

To see all the MIME types currently defined for the server, select the Action drop-

down ~7~?nu from the rain console windov~~ and select Properties and then File Types.

This is also an easier way to add global MIME type mappings.

Microsoft Personal Web Server v4.0
To add MIME types to the MS Personal Web Server v. 4.0, follow the steps listed here:

7 . Use the MetaEdit tool in the Microsoft IIS Resource Kit.

2. Launch MetaEdit.

3. Open /MIMEMAP under /LM.

4. Select MimeMap.

5. Using the pop-up dialog box, add any of the following values to the MimeMap list:

wml,text/vnd.wap.wml

wmis,text/vnd.wap.wmiscript

wbmp,image/vnd.wap.wbmp .wmbp

wmlc,application/vnd.wap.wmlc

wmisc,applicationlvnd.wap.wmiscriptc

hdml,text/x-hdml

6. Click the OK button.

7. Reboot your system if instructed to do so.

IIS v3.0 or Below, or Personal Web Server v1.0
To configure the MIME type for HDML and WML files in the Windows Registry, do the fol-

lowing:

1. Run the regedit utility (REGEDIT. EXE).

2. Open the registry key:

HKEY LOCAL MACHINE\SYSTEM\CurrentControlSet\Services\
r►InetInfo\Parameters\MimeMap

Facebook's Exhibit No. 1004 
Page 49



Introducing WML
__~------- __, .__-, ------..._ .. _ 

~_~CHAPTER Z

3. Add new String Values with the following names:

text / vnd . wap . wml, wml„5

textivnd.wap.wmiscript,wmis„ 5

image/vnd.wap.wbmp,wmbp,,5

application/vnd.wap.wmlc,wmlc „ 5

application/vnd.wap.wmiscriptc,wmisc „ 5 Z

text/x-hdml,hdml „ 5 Z

~a

NOTE _ _ __ —- S°crn
z

For all new string values types you ad~i, the string value should be left blan'~.

4. Reboot your system.

Phones and Emulators
When it comes time to test your applications, you can. use either a phone or an emul

ator that

simulates the phone's behavior on your computer.

If your applications are intended for public use, you will want to test your applications o
n as

many WAP devices (or their emulators) as you can. Just as a Web developer should test
 HTML

documents on various browsers and computers, you should test WML documents on as 
many

devices and browsers as possible, Because of the variety of manufacturers, the differenc
es

between the output on two WML browsers will be much greater than the differences be
tween

the output for two HTML browsers.

Phones
Phone output displays vary depending on their physical capabilities and the browser the

y are

running. As shown in Figures-2.1 through 2.5, many phones have different screens and distinct

user interfaces.

Facebook's Exhibit No. 1004 
Page 50



Getting Started

PART

FIGURE 2.~

Common WAP phone.

FIGURE Z.Z

Ger2eric phone.

Facebook's Exhibit No. 1004 
Page 51



Introducing WML

CHAPTER 2

FIGURE 2.4

Samsung phone.

FIGURE 2,5

Motorola phone.

For more about the features and differences between various devices and micr
o-

browsers, see Appendix C, "Using Device Emulators."

Emulators
Emulators are designed to imitate the specific behavior and functionality of mobile de

vices.

Emulatars can be used simply to browse WAP sites with your desktop computer and c
an be

especially useful when network coverage is unreliable or if the devices are too exp
ensive for

your personal testing use. Some emulators are provided by device manufacturers, and 
very

closely (and in some cases exactly) replicate the behavior of a phone. Other types 
of emulators

that are not provided by device manufacturers can show you what your WML code
 looks like

nn your computer, but not in relation to any particular phone or device.

2

z

~o
~o
c

rn
z
c

Facebook's Exhibit No. 1004 
Page 52



Getting Started

PART

CAUTION -

Some "emulators" are really just WML-t~-HTML conversion tools and do not replicate
the behavior of any particular device. These browsers are better suited for WM~ suif-
ing than they ire for. testing reel-woric~ anp(ications.

Understanding WML Usage
End users of your WML code have several needs that are unique to wireless application devel-
opnnent. To develop truly usable applications in WML, an understanding of how these applica-
tions are used in the real world is essential.

To develop a great application, you should keep in mind several fundamental things. First and
foremost, a great mobile application will' be highly usable. Because of the display and interface
limitations on most phones and PDAs, users have. a more difficult time determining the context
of the application and their options..Clarity and brevity are critical in writing text and titles for
WML applications to ensure ease-of-use. Furthermore, your application should require mini-
mal text entry for the user. On many phones with as few as 15 buttons, text entry is highly
tedious and anything you can do to minimize that burden for your user is beneficial. ,

CAUTION

Avoid long URLs for your files. Long URLs increase download time and might cause
tf~e application to reach a download limit, thereby preventing the user from access
inch a page.

Mobile Users
The Wireless Application Protocol was designed to service needs of mobile users that were not
served by previous attempts at mobile computing. These users need specific information that is
easily accessible with a multifunctional device that meets most of their needs. When you
examine mobile devices that have been on the U.S. market for the last five years (including
laptops, rugged computers, or wearable computers), they all present problems to everyday
users, consumers, and mobile office workers that are solved by WAP and WAP-compliant
devices.

What problems with the old devices make WAP-compliant devices so appealing?

Facebook's Exhibit No. 1004 
Page 53



----- _ __
Introducing WML 31

CHAPTER Z, ,_ ___

• Size and bulk—The older devices are bulky and designed to fulfill a few tasks
 you would

normally do sitting at a desk.

• Power supply—A powerful and large device such as a laptop can race thro
ugh a battery;

therefore, heavy battery packs are necessary.

• Durability—Because of the size of the device, they are prone to fall and ge
t bumped or

damaged in transit.

WAP-compliant devices have been designed to alleviate these issues for users
 to whom they

present a barrier. The devices (most typically phones or PDAs) are small and l
ightweight,

require a reasonable power supply, and are sufficiently rugged to handle th
e environmental 2

demands mobile usage requires. Because WML uses low bandwidth and powe
r, it is ideally

suited to deliver mobile applications to users. With that in mind, how can y
ou design your

applications to not only meet but exceed your users' needs? 
~ o
~c
rn

Imagining Your User 
~,

Depending on what kind of application you are building, your users and their 
needs will vary.

The best .mobile applications serve users' needs based on their priorities—n
ot the developer's.

How can you find out what those priorities are? While big companies migh
t be able to conduct

focus groups and do research to discover these priorities, individuals developi
ng WAP applica-

tions on their own have two courses. One, gain experience as a user and us
e a phone or emula-

tor to surf existing WAP sites, discovering what works and what doesn't from
 the user's

perspective. Two, use your imagination to create a rounded picture of your
 users to identify

their needs and create a truly relevant mobile application.

For example, instead of developing your coffee-shop locator application for 
"generic con-

sumer," develop it with several potential users in mind:

"Mr. Rich Bean"—He commutes to work, has a mobile phone for his business an
d uses

it to check his stock quotes. He's got an expensive corporate phone with al
l the features.

He never turns his phone off, except on weekends.

"Sue Burban"—A mother of two who juggles her family's schedule in thei
r SUV, Sue

has an inexpensive phone and has it on only while she's shuttling her kids bac
k and forth

in the car. Because she's always on the go, Sue likes to use drive-thru s
ervices as much

as possible.

"Phil DeMugg"—A college student whose parents gave him amedium-c
lass phone. He's

mostly interested in going to the local coffee shop between classes to study an
d meet up

with friends. Phil doesn't have a car and stays near campus most of the tim
e.

By keeping specific user needs in mind, the coffee-shop locator can be built 
around their

needs. Maybe for Sue, you can build in a search or sorting component for 
coffee shops that

have drive-thru windows. Maybe Rich would like to know which coffee shops 
have special

Facebook's Exhibit No. 1004 
Page 54



P 32 Getting Started

__, PART

offers on his route to work. Perhaps Phil would want to know at which campus coffee shop his

friends are hanging out or where he can get the cheapest grande mocha.

With more realistic and specific user profiles, you can develop your applications around the

kinds of lifestyles and routines your users have; making your applications much more usable.

~TiP ------_ - - _ ___ _ --
___

Classify the activities end users will use based on need, likely use, and optional or

,,
occasiot~af use. Use this classification to prioritize your application's navigational flow.

Relevant Applications
WML answers most of the usability questions of. previous mobile-computing solutions, but

WAP makes some assumptions to answer them. Small screen sizes solve several problems, but

(;' present a new one: limited displays for your application. Relevant W1VIL applications solve this

by succinctly providing critical data through superior navigation and sorting. Alternatively;'

applications that provide lots of content for browsing will prove tedious for the end user and

taxing for the phone's bandwidth, rendering the application all but useless.

In another example, WML's limited offline memory presents a challenge to creating'a relevant

application. For the majority of existing applications, we assume that you will always have

access to the digital cellular network. In Europe and parts of Asia, this assumption is entirely

valid. In the United States, some suburban areas and most rural areas lack coverage at present

and, therefore, constant connectivity cannot be assumed. Applications in the United States,

therefore, must be targeted geographically to be relevant and designed to handle instances

where the user will be cut off from the network during usage. This may mean that your appli-

cations will need to provide a mechanism for reentering the application at the. p~oia~t at which it

was cut oFf.

To address this issue when developing WML applications, it is important to consider the con-

text as well as the usage of the application. For example, an application requiring constant con-

nectivity in Montana' would be problematic because of the offline data storage limitations

WML presents in poor coverage areas. However, equipping a company's entire sales force with

a sales-tracking application and mobile Intranet for a company in Minneapolis or New York

would be a much better target application as guaranteed data rates, and connectivity will most

certainly exist. Although this problem is expected to be alleviated over time as network cover-

age increases, you must currently work around. it when deploying an application for public

usage.

Facebook's Exhibit No. 1004 
Page 55



Introducing WML

CHAPTER Z

CAUTION

Make sure that coverage for wireless data exists in your targe~ area before deploying
your application.

What makes an application a good target for a mobile application? There are four basic ques-

tions to ask yourself:

• Does the user need real-time access to important data?

• Can the data be presented in an intuitive way onto a device that has screen limitations?

• Can a small amount of data be transmitted to serve the users' needs?

• Is the user going to have excellent cellular data coverage?

Each question seeks to fit the application into an important mobile model.

TiP _ _ - -- ---- _ - - -

WAP sites built strictly for browsing are a poor target for a mobile application.
'Brochureware"-style sites-common to the World Wide Web—have much less rele-
vance as WAPsites:Makesure your application has a functionthat a mobileuser
might need.

The basis of the Wireless Processing Model in Figure 2.6 is that there is a specific user who

needs to access specific information.sThat information will be manipulated so it can be deliv-

ered on a small device with limited interface and small screen size. The key to delivering a rel-

evant mobile application is delivering "golden nuggets" of information. What is "golden"

depends entirely on the user and context. If a user is looking for a single fact or statistic in an

article, it is always better to streamline the transmission and receipts by delivering only that

"golden nugget" because of network bandwidth limitations.

After data is processed, the data is then sent to the user. In this particular model the transmis-

sion must also contain device requirements.

Device Functionality
Although it's possible that future mobile devices will be designed with better .displays and

interfaces, most phones currently on the market have limited interfaces. For example, the

NeoPoint ].000 has an extraordinarily robust screen compared to other existing WAP phones. It

boasts 11 lines of vertical text with 16 characters across the screen in its minimum-sized font,

whereas most others support only four to five lines of vertical text.

2

z

~o
~°
rn
z
c~

Facebook's Exhibit No. 1004 
Page 56



Getting Started_,
PART

~~~ bd4
I Information Process Transport ~ _user

a~a
FIGURE 2.6

The Wireless Processing Model.

Ti P _ __

Screen sizes can vary v~~~idely. Make your assumptions based on the sr~~aller screens,

v,~hich hold only four to flue lines of text, to make sure all users can use your applica-

', tior. easily.

Although the NeoPoint has a generous display, it offers a keypad that is still rather awkward to

use. For example, to type the letter l you would have to push the "5" button on the keypad

three times. Additionally, most phones offer only two buttons to navigate menus. One normally

functions as a Select button, which leaves one button to interact with on menus. The NeoPoint

is a good example of the specific limitations of devices and the lack of output control that

WML gives you; all other devices on the market have specific limitations and features that

must be dealt with.

Limited data entry is one of the reasons your applications must have an easy-to-use and intu-

itive interface. Data entry is tedious, and for that reason you must try to limit the. amount of

data entry required in your applications.

CAUTION

Avoid too much text entry. More than the most ~~inimaltext entry requirements will

frustrate your users. _~~

Any data entry task converted into a choice list or dynamic entry is a better course for your

application. For example, Figures 2.7 and 2.8 show two different strategies for answering the

question "What is your favorite fruit?"

The style in Figure 2.7 uses manual data entry, whereas Figure 2.8 shows adrop-down menu

to solve the problem. In this case, our favorite fruit is an apple. In a test we conducted using

manual data entry, it took on average about 15 seconds (and nine button presses) to enter the

Facebook's Exhibit No. 1004
Page 57

Introducing WML

CHAPTER Z

needed data. Remember, that test was conducted with individuals highly accustomed to the

data-entry format of WAP phones. For new users it will certainly take longer and cause greater

frustration. Using the style shown in Figure 2.8, we needed only two button presses, taking

about three seconds total, to answer the question.

2

z

~~0
~°c
rn

r

FIGURE 2.7

Data entry styles—manual data entry.

FIGURE Z.H

Data entry styles—dynamic data entry.

CAUTION

When designing WML applications, use check boxes and radio buttons ~~henever pos-

sible and avoid the temptation of asking the user to input raw data. Also, where text

fields are necessary, have the application prefill the text fields Urith default responses.

Facebook's Exhibit No. 1004
Page 58

36
Getting Started

_~~ PART

WML can be extraordinarily powerful when you are writing applications that connect people.

Let's. examine how WML can help .transform -the typically frustrating experience. of contacting

a customer-service call center into an easy and quick experience.. How many of us can tell

stories of being lost in a touch-tone jungle? Well, that's because 80% of the information we

consciously remember is perceived visually. That's just one reason audio phone trees are so

frustrating. WML not only has a visual screen but the power to dial your phone for you, allow-

ing for some interesting possibilities to arise. Imagine if you could punch the call center up on

your WAP phone using WML and then visually view the. menu choices. When you reach the

end of the menu choices, your phone would dial the customer service representative and allow

~,, any information you entered on your WML screen to instantly appear on the customer service

rep's computer screen to better serve you and save everyone's time!

I'
TiP ---- --

WML devices have multiple functions. The most powerful applications ~fiill use

them all!

WAP devices are powerful multifunction devices. The call-center example demonstrates one

way these features can be exploited to enhance your applications. The key to developing strong

applications is to identify the application's goals and; at; the same time, negotiate the device's

limitations. Assuming these concepts' are well understood, WML is a powerful and easy lan-

guage that will allow you to easily deploy applications in a mobile environment.

WML Overview
In the next section, we discuss the concepts behind WML and the syntax rules governing

WML, and we introduce the most unique aspect of WML-its "card" and "deck" navigational

structure.

Concepts ,,.
Since WML uses an XML vocabulary, it would be useful to understand some basic principles

of XML (Extensible Markup Language), atag-based system used for defining, validating, and

sharing document formats. Although they are very similar, WML differs from X1VIL in the fol-

lowing ways:

• WML's white-space handling rules are not as elaborate as XML's.

• WML relies on well formed expressions.

• WML has abuilt-in method for handing international characters.

Facebook's Exhibit No. 1004
Page 59

Introducing WML

CHAPTER Z

rf you are already familiar with the requirements of XML, you might find some portions of the

section below repetitive. However, you may want to read through it anyway as the section cov-

ers issues specific to WML which are not generically part of XML.

Syntax Rules
WML is like a strict grammar teacher. You will be punished if you do not strictly adhere to the

rules set before you. In the next section, we will show you how to be successful in meeting

WML's demands to build a working WML application.

Character :Sets
WAP, as a protocol, has already found international acceptance. As such, certain international

characters -are supported, and characters such as tildes (~) and ampersands (&) need to be visi-

ble to users.

By default; WML pages use. the ISO-10646 character set. In fact, if we were being syntaeti-

cally perfect i~ writing our WML code, we would always state this specifically by including in

the XML definition at the start of every deck:

<?xml version="1.0" encoding="iso-10646"?>

The ISO-10646 character set is the computer industry's fancy name far the Unicode character

set. This should give you all the basic international characters, but if you need to support a dif-

ferent ISO standard character set, you can adjust this header.

Much like HTML, WML has some reserved characters. For example to print a > in HTML,

you would actually escape-code the character and put > in the HTML code. This holds true

for WAP as well. In WML, certain character references are widely supported: These are shown

in Table 2.2.

TABLE Z.2 Reserved Characters in WML

Character WML Abbreviation

" "

& &

` &apos

< <

> >

Space

~:

F~>

z-~
~o
~°
rn
z
~,

Facebook's Exhibit No. 1004
Page 60

Getting Started

PART

Additional characters are also supported through standard escape coding. For example, the

word cafe would be written as café, where decimal character 233 in the ISO-10646 char-

acter set is the letter e.

For additional information, we recommend you take a look at the Character Entity Reference

Chart available online at the World Wide Web Consortium's Web site at

http://www.w3.org/International/0-charset.html.

White Space
As mentioned earlier, WML differs from SGML quite significantly when it comes to handling

white space. In general, if a user were to transmit SGML, all the irrelevant characters would be

removed. This is not the case with WML. WML in most incarnations will transmit all the char-

acters in the WML file and then rely on the client device (be it a WAP browser, Web browser,

or another application) to display the information in the proper manner, removing irrelevant

white. spaces; otherwise, line breaks, tab characters, and regular spaces get passed to the appli-

cation.

TiP

Although white space is transmitted, be sure to use tabs to improve code readability

Programming Considerations
As we mentioned earlier, WML is syntactically oriented and relies on well-formed- code. This

means that as developers, we need to be concerned with our spacing of characters when we

write in WML. For example, in WML, you must space value pairs with a space, but you can-

not use white space between an attribute, the equals sign, and the attributes value.

<access
domain="dsn"
path="wapdir" J,.

The previous example is well-formed. The following example, however, would generate errors

because of the spaces surrounding the =symbols.

<access
domain = "dsn"
path = "wapdir"

Facebook's Exhibit No. 1004
Page 61

Introducing WML
-- _ ___

CHAPTER 2

Likewise, we cannot run the attributes elements together as below:

<access
domain="dsn"path="wapdir"

'Phis code would create an error.

WML does make special considerations for the quote characters. Under HTML, the standard

evolved ad hoc to correct common errors made by programmers. For example, under Internet

Explorer 5.0, the commands
2

<table width="100%">

and ?

<table width='100%'> ~ o
rn

have the same effect. This programming standard has held true for WML as well. In general, it

is preferred to use this syntax:

~p align="right">

But, it is acceptable to use this syntax:

<p align='right'>

Remember that WML is particular about white space, but at the same time, it is important to

adhere to standard coding conventions. For example:

<p>

</p>

E-mail $emName

Subject: <input type="text" name="subject"/>

Message: <input type="text" name="message"/>

This code adheres to standard coding conventions of indenting various nested levels. In this

case, we see the paragraph's contents are indented further, In WML, it is important that each

tag has a match and the nesting order is appropriate. In HTML, we could get by with syntax

like this:

<I>Hello World<JI>

However in WML, strict adherence to nesting levels is required and closing the bold tag before

the italics tag would generate an error. Therefore, the only way these commands could work is

through the syntax:

<i>Hello World</i>

Facebook's Exhibit No. 1004
Page 62

Getting Started

PART

Case Sensitivity
WML is like a grammar test. Any punctuation, any misspellings, and any case-sensitive mis-

takes will cause the compile to fail. This is particularly true when you consider start and end

tags. In HTML, a valid tag match might include <BODY> and </body>. However, in WML,

 and would indicate two different start and end tags.

Variables follow the same logic regarding case sensitivity.

Variablel
variablel
VARIABLEI

All the previous examples are different variables in WML, and each could have a discrete

value assigned to it.

Required Prologue
The WAF server and WML compilers need to have a manner by which they can reference the

XML specification. To do this, XML requires a prologue that defines the XML version and.. a

pointer to the XML definition or language being used. Most of the examples we refer to for the

remainder of this book will use the standard prologue:

<?xml version="1 .0"?>
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN" ,
"http://www.wapfiorum.org/DTD/wmll2.dtd">

In general, a WAP device will never see this prologue, as the server and compiler are the only

two devices that care about the definition of the XML format.

For the sake of brevity, the prologue will be left out of our code examples in this book with the

exceptions of the upcoming deck examples.

r:,.
WML Components
When developing for the Web, each HTML file constitutes one HTML page. Developing in

WML is slightly different. Because each page or screen is very small, it does not make as

much sense for each page to constitute a separate ale. WML pages—content viewed on sepa-

rate screens—are called cards and those cards are all placed within a deck of related pages

which constitute one single file.

Decks
When HTML is transmitted to a Web browser, we consider it to be an Internet document. A

deck is the simplest wireless document. It consists of the same basic elements you would

expect to see in an HTML document: prologue, WML tags <wml>, header tags <head>, and a

few other tags unique to WML. Each deck has a series of cards in it. Therefore, the goal of

Facebook's Exhibit No. 1004
Page 63

Introducing WML
--- __ _ __

CHAPTER z

VVML due to wireless limitations. is to keep decks small, and occasionally have a few decks in

a single WML application.

Cards
Inside each deck are one or more cards. The cards are the drivers of the application. Each card

defines how a particular screen looks, how. that screen functions, and what steps are taken

when the card is navigated. As such, a card can never be empty and must contain at least one

element. The information inside the elements derive either content or navigation instructions.

Summary
This chapter introduced Wireless Markup Language (WML) by discussing its origins, func- Z

tionality, and similarity to HTML and XML. Next, the chapter discussed how to configure ~ o

your Web server to serve WML content and how to view that content with several common ~ c

devices and device emulators. Finally, we showed you how to determine what kinds of applica-

tions are relevant to the special capabilities of WML, while covering basic development con-

cepts, such as syntax and the basics of WML's particular card and deck structure.

Facebook's Exhibit No. 1004
Page 64

Writing for WAP in WML

. ~~.,

• Creating Your First Card 44

• Building Decks of Cards 49

• Using Basic Navigation 53

Facebook's Exhibit No. 1004
Page 65

Getting Started

PART

There's no better way to learn a language than to actually start using it. In this cha
pter,, we'll

do just that. Having introduced the concepts of cards and the WML language, we'
ll now exper-

invent with creating cards. This chapter will not teach you everything you need to
know about

VVML; we'll dig into topics in great depth throughout the rest of this book. But th
is chapter

will get you up and running in no time at all.

Creating Your First Card
As you learned in the previous chapter, WAP pages are actually called cards, and

these cards

are constructed using WML. WML itself is a very simple language, even simpler than
HTML.

But unlike HTML, WML has very strict and rigidly enforced rules.

To get you started, let's look at a complete WML example—a basic card with simple
text. The

card will generate output as shown in Figure 3.1.

FIGURE 3.1

Device emulators are ideal for testing WML code. ~.

NOTE —__ _ — _ _ _

i':i I highly ~~ecommend that you try these examples for yourself as you tivork through

them. The simplest way to da this is be using one of the many available device emu-

fators or development environments. See Appendix C, "Using Device Emulators,"
for

more information on these.

If you do not have an emufafior, but do have a WAP enabled device (a phone), you

can deploy these pages to a WAP or Web server (the latter will require that you s
et

MIME types appropriately as was explained in Chapter Z, "Introducing ̀ ~/VP~1L").

Facebook's Exhibit No. 1004
Page 66

Writing for WAP in WML

CHAPTER 3

In HTML you could create this page by entering nothing. more than the output text. You can't
do that in WML. The minimum code WML code needed to generate this output is shown in
Listing 3.1.

LISTING 3.1 Creating Your First WML Page

<?xml version="1 .0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"

r►"http://www.wapforum.org/DTD/wmll2.dtd">

<wml>

<card>

<p>

Welcome to WAP and WML.

</p>

</card>

</wml>

A quick code walkthrough is in order. The first two lines of code are the XML declarations.
These specify document version and type and should be included in all WML files. (I used
WML version 1.2' here, if you write for 1.0 or L1 the <! DOCTYPE> will differ slightly.).

The entire document is enclosed within <wml> and </wml> tags. This is required, and every
WML page must have one set of matching <wml> tags. Cards (yes, cards plural—multiple
cards are allowed in a single file) must appeax in between these tags.

The card itself is defined with a <card> tag and is terminated with a </card> tag, and all card
contents"must be placed in between these tags. In this example I've entered a single„line of
text, but it is`enclosed within <p> and </p> tags. <p> is a paragraph designator, just like its
HTML counterpart. But unlike the HTML <p> tag, in WML this tag is required. Text cannot be
placed in a card directly;. paragraphs must lie placed in cards, and text goes inside of para-
graphs. Thus the following card code snippet would generate an error:

<card>

Welcome to WAP and WML.

</card>

CAUTION

~~
~v~
z z

~~
~°
r

Even though this has already been explained thoroughly, it is worth noting again;
WML is case sensitive (had vve used <P> instead of <E» are error v~~ou[d have been gen-
erated), and all tags require end tags (omitting the <; F>> tag v~~ould also have yener-
ated an error}.

Facebook's Exhibit No. 1004
Page 67

Getting Started

PART

M~~~~ -~,1 i

Many WML tags take optional attributes, and many of these attributes achieve differe
nt results

based on the device being used. One example of this is the <card> tag's title att
ribute which

is used to provide a card title that the device may choose to display (or ignore) as
it sees fit.

Listing 3.2 is a revised version of the welcome page we just created; the only- difference here is

the addition of the t it 1 e attribute.

LISTING 3.2 Displaying a Card Title

<?xml version="1 .0"?>
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN

~►"http:/lwww.wapforum.org/DTD/wm112.dtd">

<wml>

<card title="Welcome!">
<p>

Welcome to WAP and WML.
c/p>

</card>

</wmll

To demonstrate what I mean by different devices treating title differently, look at Figures 3
.2,

3.3, and 3.4. As you can see, the Nokia browser displays the title text centered and formatted

as a page title, the Ericsson browser displays it similarly but boxed for emphasis, and the

Phone.com browser does not display the text at all.

FIGURE 3.Z

Nokia's WAP browser is used only

in Nokia devices.

FIGURE 3.3

Ericsson's WAP browser is used

only in Ericsson devices.

FIGURE 3.4

Phone.eorrc's WAP browser is used

by devices created by many vendors

and is the most widely used browser

currently.

Facebook's Exhibit No. 1004
Page 68

Writing for WAP in WML

CHAPTER 3

NOTE

Unlike HTN1L, ~I~IML requires that all tag attribute values be enclosed vt~ithin quotes In

the previous exarnple, specifying title-V,'elcon~~e! (without the quotes] would have

generated an error.

Similarly, and again unlike HTML, WML does not allow spaces before or after the

equals sign bet~~veen an at~rihu~e and its value.

TiP

Always test your code in ~s many browsers and devices as possible. As you can see,

even simple code can generate very different output on different devices.

Using Basic Text Formatting
WAP browsers support only basic text formatting. There is no support for fonts and minimal 3

support for size and emphasis control. And unfortunately, even this. basic support tends to be cam. ~

implemented somewhat inconsistently on different devices. ~ ~

Text formatting is covered in detail in a later chapter, but let's look at a simple example. ~ c~i

Listing 3.3 contains the same welcome screen again, but this time the words WAP and WML ~ o

are displayed in bold text (as seen in Figure 3.5). r

LISTING 3.3 Text Formatting

<?xml version="1 .0"?>
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN
"~►"http://www.wapfiorum.orglDTD/wm112.dtd">

<wml>

<card title="Welcome!",
<p>

Welcome to WAP and WML.
</p>

</card>

<lwml>

Facebook's Exhibit No. 1004
Page 69

Getting Started

PART

FIGURE 3.5

Text formatting for example, displaying text in bold—is not available on all devices.

As you can see, the tag marks text to be displayed in bold (just like the HTIVIL tag).

For more information on text formatting, see Chapter 5, "Managing Output."

Using Basic Paragraph Formatting
WAP browsers support all the basic forms of paragraph formatting. You can justify text, insert

line breaks,' and even use tables. But again, unfortunately, some of the more advanced features

(such as justification and table use) tends to be implemented rather inconsistently. fortunately,

however, almost all browsers seem to support basic paragraph and line breaks.

Paragraph formatting is also covered in detail in a later chapter, but let's look at a simple

example. Listing 3.4 contains a modified welcome screen (shown in Figure 3.6).

LISTING 3.4 Formatting a Paragraph

<?xml version="1 .0"?> ~'

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN

"r►"http://www.wapfiorum.org/DTDlwmll2.dtd"> .

<wml> ,

<card title="Welcome!">
<p>

Welcome to WAP and WML.

This is easy, there is nothing to it.
</p>

</card>

</wml>

Facebook's Exhibit No. 1004
Page 70

Writing for WAP in WML

CHAPTER 3

FIGURE 3.6

WAP browsers automatically allow vertical scrolling when text will not fit in a display.

The
 tag inserts a line break. But unlike the HTML
 tag; this tag requires a matching

end tag (all WML tags must have matching end tags). For this reason
 is used. This is a

shortened version of
</br>, and this type of syntax is required for all tags that don't have

actual matching end tags.

Building Decks of Cards
Thus far, each WML file we have created has contained a single card. As I mentioned earlier

(and as was explained in Chapter 2), WML files can contain multiple cards—these files are

known as decks (as in a deck of cards).

Each card in a deck must be uniquely named (unique within that deck). Cards are named using

the <card> tag's id attribute, and. id values may contain text and numbers (but no special ehar-

acters).

When a deck is loaded the browser processes and stores all the contained cards and then deter-

mines which card to display:

• If a specific card id was requested and that id is present, that card is displayed.

• If no card id is specified, or the requested id does not exist, the first card in the deck is

displayed.

Listing 3.5 contains the code for a simple deck of three cards. A single pair of <wml> tags is

present, and all three <card> tag sets are enclosed within it.

~~
~~
zz
~~T
~o
r

t

Facebook's Exhibit No. 1004
Page 71

Getting Started

PART

LISTING 3.5 Displaying a Simple Deck

<?xml version="1 .0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM/1DTD WML 1.2//EN

"~►"http://www.wapforum.org/DTD/wmll2.dtd">

<wml>

<card id="cardl">

~ ~ gyp,

~ This is card 1.
</p>

</card>

~~ ~~_ ><card id card2~, j,. <p>

This is card 2.

</p>
</card>

<card id="card3">
~p>

This is card 3.
~~p~

</card>

</wml>

As you can see in Listing 3.5, each card is uniquely identified via the id attribute. So how do

you actually specify the id of the card to be displayed? Here WAP again borrows syntax from

HTML and uses the HTML bookmark character: the pound sign (#). If the following URL

pointed to WML file ;~

localhost/wap/deckl.wml

this URL would point to the card with the id of card2 within that deck:
,,:

localhost/wap/deckl.wml#card2

Figure 3.7 shows the card that would be displayed if no card id was specified, and Figure 3.8

shows the card that would be displayed if id was explicitly specified as card2.

~,,.
', NOTE ___ __ -- --

f Within a deck, Lards can be referred t~ simply as #id, so do refer to card2 in our

exar~tple from within eardl or card you could simply refer to #card2.

'I

Facebook's Exhibit No. 1004
Page 72

Writing for WAP in WML

CHAPTER 3

FIGURE 3.~ FIGURE 3.S

By default, the fzrst card 'in a deck is Specific cards in a deck cart be dis-

displayed. played by specifying that card's id.

~.AUTION — - -- —

Many device emulators cache requests that can cause older versions of pages to be

displayed. if you experience this, you ~ti~ill need to c{ear the cache using the options

provided by the emulator.

Why Use Decks
Decks of cards are extremely important in WAP application design. Consider the following

example:

• You provide a search screen that allows users to search for employees.

• When a search is performed the results are listed with minimal information (perhaps just

a name).

• Each result can be selected for detailed information about the employee (including phone

number and email address).

This is an example of the classic data drill-down user interface. Three types of cards being

used here: the initial search card and two types of results cards, one for the list and one for the

details.

~~

~~
z z

~~T
O,Z7

r

Obviously, the search card must be sent to the device before the search can be performed. But

after a search has yielded results, the user will likely drill down into multiple results to find the

desired information.

Facebook's Exhibit No. 1004
Page 73

Getting Started
52 -.---.___~.__~~___.__.._._____--------.___~___._..~---____~_.~..__----__._~_..___.---,-----._..__..._____.___._..._._._.__---__.._^_____

PART

A simple implementation .(one that would work like an HTML implementation) would work as

follows:

1. A results card is generated with the list of matches.

2. The user selects an entry from the list, and a request is sent back to the server for the

desired information which is then displayed.

3. To view another entry the user goes back to the list (which will be cached on the device)

and makes another selection, which in turn sends a request to the server. for the desired

information which is then displayed.

~~ ' 4. Step 3 is repeated as many times as needed, and each time a new request is sent to the
~~,,

server.

And while this is a workable solution, it is not an efficient one at all. Data is sent to devices in

packets, and sending partially full packets'takes as long as sending full packets. In other words,

there is no real performance penalty for sending too much information (or information that is

not needed yet in anticipation of it being needed).

So, a better way to handle the drill-down interface would be as follows:

1. A results deck. is generated, the first card in the deck contains a list of matches, and an

additional card is generated for every entry containing all the details for that entry.
i

'I '~ 2. The user selects an entry from the list, and the appropriate card is displayed (without

I needing a server request, as the card is already in the deck on the device).

3. To view another entry, the user goes back to the list (which will be cached on the device)

and makes another selection, which in turn displays another card in the deck (again wth-

out needing a server request).

4. Step 3 is repeated as many times as needed, without ever needing another request to the

server. '

The advantage of this interface is that it allows you to anticipate and respond to your user's

next requests. This results in a much faster and responsive application, and also eliminates

unnecessary bandwidth use. ~~

~~ Ti P _ - - - - ---

As v~.~ill be explained later in this 'nook, decks have maximum allowed sizes. But as

~~ long as the data being sent fits into the maximum size requirements, ~t takes just as

long to seed a deck of cards as it does to send a single. card. As such, there is no

downside to sending additional cards "just in case."

I li ,i

Facebook's Exhibit No. 1004
Page 74

Writing for WAP in WML
_-- --"~--- ~___.-_ ___ . __._._ ---

_CHAPTER 3

pigests
The UP.Link Server and browser (created by Phone.com) support a

 mechanism for grouping

mulriple decks (or a single deck and other entities) into a single unit called a digest. Digests

are designed to allow you to fully leverage the bandwidth and
 packet size used by the wireless

network so as to make your applications more responsive. The reason this works is that every

packet of data sent to the client has overhead, regardless of the size of the data being sent. As

digests allow the transmission of multiple entities at once much of the overhead that would

have been present for each entity can be eliminated.

As useful as digests are, they are not currently supported by any platform other tha
n

Phone.com's. For more information on digests see the Phone.com provided documentation.

Using Basic Navigation.

Just like pages on a Web site, cards in a WAP application require navigation capabilities to get

from card to card. Because WAP devices currently have no pointing mechanism (such as a

mouse or touch screen), all navigation is performed using keypad keys.

Two forms of navigation are supported: 3

• Anchors can be placed around text or images to make them selectable (similar to the ~ ~

HTML <a> tag), ~ ~-~

• All WAP devices have action keys (usually at least two of them) which can be pro- ~ ~

grammed as needed. ~ o

We'll now briefly look at each of these.

Navigation is covered extensively in Chapter 4, "Card Navigation."

Creating Links
WML links are very similar to their HTML counterparts. The text (or image) to be linked is

enclosed within <a> and tags, and the browser uses some indicator (usually underlining)

to indicate that it can be selected. The acCual selection mechanism varies from one device to

the next, although most devices allow the Accept button to be used for selection.

To demonstrate the use of links, Listing 3.6 contains an updated version of our'deck of cards.

LISTING 3.6 Using Links with a Simple Deck

<?xml version="1 .0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN

"~►"http://www.wapforum.org/DTD/wm112.dtd">

continues

Facebook's Exhibit No. 1004
Page 75

_.---

-_ _~S4 ~ Getting Started

PART

LisT~N~ 3.6 Continued

<wml>

<card id="index">
<p>

Card 1

' I'~ Card 2ii ,

Card 3

c/p>

<Icard>

<card id="cards">
<p>

This is card 1.
</p>

</card>

';>; <card id="card2">
<p>
This is card 2.
</p>

</card>

<card id="card3">
<p>

This is card 3.
</p>

</card>

</wml>

The original cards in this deck have not changed at all. The only change is the inclusion of the

following new card (which is now the first card in the deck):

<card id="index">
<p>

~'~ E Card 1

Card 2

Card 3

li
;,„
p ~~
~~ ;
III
i

Facebook's Exhibit No. 1004
Page 76

_.

Writing for WAP in WML

—_ —~
CHAPTER 3

</p>
</card>

`I'Yiis card lists the names of thr
ee cards, one per line (separated by a line break). Each card

name is a link created with <a> and
tags. The URL to link to is specified in the href

attribute, and in this example the link is to cards within the same
deck (using the syntax

explained earlier in this chapter).

The code in Listing 3.6 create a screen like the one
 shown in Figure 3.9.

Fi~uRe 3.9
Links can be used to make blocks of text or irrcages selectable.

Now any card can be displayed by selecting it from the list and pressing the device's Accept

button.

Using Actions
Actions are unique to WML and have no real HTML counterpart. Every WAP-enabled device

has task buttons, usually at least two, and usually directly beneath the display. On most devices

the left button is the accept button, and the right is the back button, but this is not always the

case. Regardless of the number of buttons and their position, one thing is certain: These but-

tons do exist, and you can control what they do.

Programming an action requires associating a URL with a button type, and this is done usin
g

the <do> tag. To demonstrate this, let's look at a simple example:

<do type="accept">
<go hrefi="/index.wml" />

<!do>

3

~~
zz
c~ c,

T

~o
r

Facebook's Exhibit No. 1004
Page 77

Getting Started

PART

<do> requires that a button type be specified; here we used the accept button. Between the

<do> and </do> tags comes the action to be performed, here we used a <go> tag to specify a

URL to go to. (There are other important details in using actions, as will be explained in

Chapter 4).

For now we'll update the deck example to provide a back button on each detail card page so

that you can easily get back to the first card (as seen in Figure 3.1). Listing 3:7 contains the

updated code.

FIGURE 3.10

All device action buttons can be programmed and labeled as needed.

LISTING 3.7 Creating an Action Button

<?xml version="1 .0"?>
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.21/EN

"~►"http://www.wapfiorum.org/DTD/wm112.dtd">

<wml>

<card id="index">
J,

<p>
Card 1

Card 2

Card 3

</p>

</card>

Facebook's Exhibit No. 1004
Page 78

_'

<card id="cardl">

<do type="options°.label="Back">

<prev />
</do>
<p>
This is card 1.
</p>

</card>

<card id="card2">

<do type="options" label="Back">

<prev />
</do>
<p>
This is card 2.
</p>

</card>

<card id=°card3">
<do type="options" label="Back">

<prev />
</do>
<p>
This is card 3.

</p>
</card>

</wml>

Writing for WAP in WML

CHAPTER 3

In this listing, each of the three detail cards has been updated to include the. following code:

<do type="options" label="Back">
<prev />

</do>

This code programs the options button (usually the right button) and also provides a label that

will be displayed above it (as seen in Figure 3.10). The action associated with this button is

<prev />, a WML tag that acts as a previous button and returns to the previous card. Using

this button it is now possible to go back to the card list from within each card.

Using Templates
One thing you'll notice in Listing 3.7 is that the action code was repeated for each and every

detail card in the deck. This is highly inefficient:

~~
z z

~~
~o
r

• Having to reenter the same code over and over is highly error prone because there is the

likelihood that one card will be missed or mistyped.

Facebook's Exhibit No. 1004
Page 79

Getting Started

PART

• Having the code in multiple places makes making updates more complex because there

is always the risk that one or more occurrences will be overlooked.

• All that extra code. increases the page size—not an efficient use of precious bandwidth.

To solve this problem, WML supports the use of template code, blocks of code specified at the

deck level which apply to all cards in a deck. Listing 3.8 contains an updated deck of cards;

this time the back button code is not specified in each card, but in a <template> block at the `'

top of the deck. Any code in between <template> and </template> will apply to all cards in

the deck as if it had been typed there directly,

LISTING 3.8 Using Templates

<?xml version="1 0"~>
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN

"r►"http://www.wapforum.org/DTD/wmll2.dtd">

<wml>

<template>
<do type="options" label="Back">

<prev />
</do>

</template>

<card id="index">
<p>

Card 1

Card 2

Card 3

</p>

</card>

<card id="cards">
<p>

This is card 1.
</p>

</card>

<card id="card2">
<p>

This is card 2.
</p>

Facebook's Exhibit No. 1004
Page 80

____~.
Writing for WAP in WML 59~

- ---.. ___—.
CHAPTER 3 _.._...~...

</card>

<card id="card3"><p~

This is card 3.
</p>

</card>

</wml>

There's only one problem with this code, and to see what I mean, look at Figure 3.1 l.. As you

can see, every card now has a back button, even the first card (the list of card names) which

should not have one. When using <template> code, every card in the deck is affected, and

sometimes too many cards.

~ A

Z Z

C ~
~O

r
z

FIGURE 3.11

Template code is applied to every card in a deck.

The solution here is to provide a card level override where needed: If the- same action is pro-

vided at both the deck and card level, the card code always takes precedence. This means that

we can use the <template> code to program the back button and then tell the browser to not

use that code for the first card. Listing 3.9 contains the updated code:

LISTING 3.9 Using Templates and Shadowing

<?xml version="1 .0"?>
<!DOCTYPE wml PUBLIC "-/IWAPFORUM/JDTD WML 1.2//EN

"~►"http://www.wapforum.org/DTD/wmll2.dtd">
<wml>

<template>

continues

Facebook's Exhibit No. 1004
Page 81

Getting Started

PART

LISTING 3.9 Continued

<do type="options" label="Back">

<prev />

</do>
</template>

<card id="index">

<do type="options">
<noop />

</do>
<p>

Card 1

Card 2

Card 3

</p>

</card>

<card id=°cards">
<p>

This is card 1.
</p>

</card>

<card id="card2">
<p>

This is card 2.
c/p>

</card> f

<card id="card3">
<p>

This is card 3. r,</p>

</card>

</wml>

The only difference here is the inclusion of the following code in the first card:

<do type="options">
<noop />

</do>

Facebook's Exhibit No. 1004
Page 82

i ;;,

Writing for WAP in WML

- ~ "~-~ CHAPTER 3

-~ ~~is <do> tag overrides <template> <do> tag and specifies no label. The action associated

~~ ith this button is now <noop />—or "no operation". This strange tag tells, the browser to do

nothing at all and is used for shadowing—turning off deck-level options for specific cards.

NOTE

Only actions of fihe same type of overridden. If yogi specified an options button at

the deck level and an aeeept button at the card level, bottl buttons would be clis-

played—the card level button would not override the deck level button as the types

are different.

S~ now you have a complete working (albeit somewhat boring) deck of cards. The first deck

lists the individual cards which can be selected for display, and each card but the top level card

leas a back button that is programmed using common-code.

summary
You've now experienced WML, and have discovered that creating content for WA.P browsers is

really quite easy. You learned that WAP pages are called cards, and groups of cards within a

single file are called decks. You also learned how to perform basic formatting and navigation,

topics that will now be explored in detail in the next two chapters.

3

A~
-v ~
Z 2

C ~

Facebook's Exhibit No. 1004
Page 83

;y;:
~,,
~:

~~~

r

°~H~~ ~~~~~~

• Using Images and Icons 128

• fm~ge Restrictions 133

• Using localsrc Images 135

• Using Images Efficiently 137

C._N_A~T E R ~~~~~~

Facebook's Exhibit No. 1004 
Page 84



ilq..

Creating WAP Applications
---

PAST II

One of the most compelling features of the Internet is the ability to convey messages'using

images. Images not only make a site more interesting, but they convey messages and informa_

tion much more efficiently than is possible with pure text. Graphics give your site a unique

look and feel, allow you to brand your site, and can bridge language barriers simply. Today on

the Web it is not unusual to encounter pages that are composed solely of single or multiple

images. Part of bringing the Internet onto wireless devices involves properly managing and

designing how images can and should be used on your site and in your applications.

Images can be used to enhance your site for WAP devices today, but there are some significant

restrictions on what is possible. Before we get any further, purge any notion of animated GIF

images, imagemaps, or color images from your mind. Although all of these can a}~d will be

supported in the future, today they are simply not possible. The only image format currently

defined by the WAP Forum is the WBMP (wireless bitmap) in a one-bit form. The possibility

of colar and animation is currently left open-ended. The other restriction that currently comes

into play is the maximum amount of data you can deliver in a single packet to a WAP device.

Today's phones do not reassemble packets, so you must fit your image within the device limits.

These values currently vary from as little as 1,367 bytes to as many as 8,000 bytes. This chap-

ter looks at what you can and can't do with images and WAP today.

Using Images and Icons
The only graphic file format that is currently supported by the WAP Forum is the wireless

bitmap (WBMP) format. It is simply none-bit bitmapped image, and its exact file format is

described in the WAE specification from the W~P Forum (http: / /www.wap-Forum. org). The

specification describes exactly how a WBMP file must be structured and is worth reading only

if you want to write an image creation tool yourself. Fortunately, several, tools are available on

the market that you can use to create WBMP images. These include online converters

(h tt p : / / we bcab . d e /woe . ht m), Photoshop plugins

(http: / /www. rcp. co. uk/distributed/Downloads), and command-line converters

(http: / /wap. infotiger.de/download. html). These URLs are simply some suggestions

where you can find WBMP tools; other do exist.

Converting a BMP image to a WBMP image is a fairly straightforward process:

• Create your image using a drawing tool you are comfortable with.

• Save the file as a one-bit BMP image.

• Use one of the converter tools to save as WBMP.

When you are starting with aone-bit image, the conversion process is quite straightforward.

When you are starting with a color image, sampling down to single bit is trickier. Consider the

photo in Figure 6.1.

Facebook's Exhibit No. 1004 
Page 85



>.. Using Images
129

—` ~^T 
_ . ___ _._. ~...._ __.._ ~._._ —__.~

CHAPTER C)

~~~,

.. , ,

Ew . f •.c~. it,~ ~e~p -
i `~

1

~~ ~ Nc_n ~d Ban He e Seam r~ro nr ti. r sir.; - C

~. :~'.re s ~~ ~ !4M1~col\uP~NR~111~.atidT. s\im+r,,_
_ _ _ _.. _ —

~ ~.'C. ...~},. ~

Gl
:z

~' ~

t ~~~~ m

~"' ~?

_;;.

1,'~''

~~ ~
.l

,

~r". ,

;; ~i~uRe 6.1
~' ; T{,(, Iir:l-color image will not display on a WAP device. It must be sampled correctly to produce a clean WBMP irreage.
~-

;:

., If the photo in Figure 6.1 is simply collapsed to a one-bit image without using any filtering, a

°higfi-contrast image will result.. This does not produce a very compelling graphic. If, however,

~., you use Paint Shop Pro (or another image-editing tool), decrease the number of colors to two

(black and white), and use an error-diffusion filter such as Floyd-Steinberg, a much more

de<<~iled image results. Figure 6.2 shows aone-bit vexsion of the image in Figure 6.1 created in

~,: eraccly the method described.
~~
~'> tlfter you create WBMP images, you might need to modify your Web server to deliver the cor-

~~ reef content type associated with them. The proper content type for WBMP images is

~. image/vnd.wap.wbmp.

The actual WML code to use images is simple, straightforward, and nearly identical to HTML:

<mg alt= text src= url localsrc= icon align= alignment
;.: height= n width= n vspace= n hspace= n />

Here is a complete description of each of the attributes of the WML element:

• alt=vdata (required)—This attribute specifies an alternative textual representation for

the image. This representation is used when the image cannot be displayed using any

other method (that is, the user agent, or device, does not support images or the image

contents cannot be found).

Facebook's Exhibit No. 1004
Page 86

"~.

~~
Creating WAP Applications

PART II

', `;::
~~

t`r

r

o~
~,

~~ ~
,,,

', 9 ~
i ~~

ti

4
~I
%'~ ~
C, f

FIGURE 6.2

This image was created by reducing the number of colors in Figure 6.1 to two using the Floyd-Steinberg error-diffu-

sion filter from within Paint Shop Pra

• src=HREF (required)—This. attribute specifies the URI for the image. If the browser sup-:;

ports images, it downloads the image from the specified URI and renders it when the text

is being displayed, If the resource specified cannot be found, or is in the incorrect for-

mat, the alt text is displayed.

• localsrc=vdata (optional)—This attribute specifies an alternative internal representation

for the image. This representation is used if it exists; otherwise, the image is downloaded

from the URI specified in the sre attribute. That is, any localsrc parameter specified

takes precedence over the image specified in the src parameter. When you want to use

either the localsrc image or alt text, specify the src=" ".

• vspace=length and hspace=length (both optional)—These attributes specify the amount

of space to be inserted above and below (vspace) and to the left and right (hspace) of

the image. The default value for this attribute is 0, indicating that no white space should

lie inserted. If length is specified as a percentage value, tlae space inserted is based on the

available horizontal or vertical space. These attributes are hints to the user agent and can

be ignored. There are no WAP browser on the market today which support these attrib-

utes.

• align=(top ~ middle ~ bottom) (optional)—This attribute specifies image alignment

within the text flow and with respect to the current insertion point. align has three pos~l-

ble values:

'~~'~J,~~

,! i ~ i

Facebook's Exhibit No. 1004
Page 87

Using Images

CHAPTER C

bottom Means that the bottom of the image should be vertically 6
aligned with the current baseline. This is the default value.

middle Means that the center of the image should be vertically aligned C
with the center of the current text line. zc,

top Means that the top of the image should be vertically aligned ~
with the top of the current text line. m

~'. height=length and width=length (both optional)—These attributes give user agents an
r;

i~l<<t of the size of an image or object so that they can reserve space for it and continue
~..

rer~aering the card while waiting for the image data. User agents can scale objects and

} images to match these values if appropriate. If length is specified as a percentage value,

s; the resulting size is-based on the available horizontal or vertical space, not on the natural~,
~~: size of the image. These attributes are a hint to the user agent and can be ignored
~,.
1~ ~rnage tag is generally used as follows:

src="rastaman.wbmp" alt="rasta"/>

~~ 6.1 shows how an image can be used in a yVML card:

TINE $.1 Using an Image in a WML Card

xml version="1 .0"?>
DOC7YPE wml PUBLIC "-/IWAPFORUM//DTD WML 1.2//EN"

°http:/Iwww.wapforum.org/DTD/wmll2.dtd">

<card title="A Single Image">
<p>

Look at Him:
:<i~nn src="../images/rastaguy.wbmp" alt="rastaguy"/>
-~~~;

<Icard>
;~7~~~m1>

:i~ting 6.1 shows a simple WML deck with a single card that displays a single image and
;ci~ne text on the card. Figure 6.3 shows how the code will render on a real WAP device.

~s~ǹ, a'localsrc -icon works very similarly to using an image. The advantage to using a
oca~sre icon is that the graphic does. not need to be retrieved from the origin server if it is
~<<~ilable locally, so is immediately available for display. The only caveat is that you must
no~v low to specify the localsrc value correctly, and the WAP Forum has not yet published
5t1naard list of icons. Currently, the only WAP browser shipping with localsrc images.
vailable is the UP.Browser from Phone.com. A wide range of icons are available on

Facebook's Exhibit No. 1004
Page 88

Creating WAY Applications

PART it

~ I~

I ~,

UP.Browser devices that support images. The complete list of these images can be found in

Appendix F, "Local Icons:' These localsrc icons can be referred to either by the number or

name that corresponds to them in the chart published by Phone.com. Listing 6.2 shows how a

localsrc icon can be used.

,~

FIGURE 6.3

A single WBMP image being rendered on a single card.

LISTING 6.2 Using a localsrc Icon

<?xml version="1 .0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUMI/DTD WML 1.2//EN"

"http://www.wapfiorum.org/DTD/wm112.dtd">.

<wml>

<card title="A Single Image">

<p>

The envelope icon is a localsrc

 Envelopel

</p>
</card>

</wml>

Notice that in Listing 6.2 the alt and src attributes for the tag are both null. This

ensures that if the localsre icon is not available nothing will render. This is a tactic that can

be used to present icons on the Phone.com Browser phones, while not adversely affecting the

way your data is rendered on other devices. Figure 6.4 shows how Listing 62 will display on '

both a UP.Browser phone and on a Nokia 7110.

Facebook's Exhibit No. 1004
Page 89

Using Images

CHAPTER 6

6

Z

D
G1
m

~oi
,..

Fi~uRE 6.4

!?ie envelopes icon will render on a Fhone.com browser but will be simply ignored on a Nokia 7110.

',' ~~. yc,u want to use an icon that does not exist as part of the localsrc list published by the WAP

R~o~vser vendor, you can still create and use your own icons. However, they will need to be

c,aded into the cache of the device the first time they are accessed.

CAUTION

No matter ho~v small the icon is, the. Nokia 7110 will always render it nn a line of its

`.~ own.

using images within a card is very straightforward, and can provide an improved feeling for

`; your site. Even if you are simply using a splash screen, users do find images "cool:'

t. Image Restrictions
Iu addition to the specified limits that are set by the WBMP specification from the WAP

Forum, other restrictions affect a developers ability to use images within a WML deck.

According to the WAP Forum, the tag can only be used within a paragraph of text. This

~lieans that it cannot be used as a soft key label or within a <option> element.

'` Tip

~- ~y using the Phone,com bTD, you can use i~~ages within an <o~ ~icn> statement on

?hone.com UP.Browser devices that su~~port images.

Facebook's Exhibit No. 1004
Page 90

Creating WAP Applications
134 ._..___~_—__._._.... .._ _._...__ __.w.__.._._ .._____..__~_.-------~._.._

" PART II

Aside from the limitations imposed by the WML DTD, some devices further restrict how

~' I images will render on the screen. Currently no devices respect the align attribute. The align

~ attribute of the <p> tag which- encloses the image can be used to align the graphic left, right, or

~~ , 'i center on the Phone.com WAP browser. However, The Nokia 7110 and Ericsson R320 will

i always center an image, regardless of the align property.

i The other major limitation of delivering images to a WAP phone is the size of the image. There

are no WAP devices on the market today`which support packet reassembly. This means that

"~' i your image must fit within a single packet to arrive at the device.

~; Not only are you constrained by the sheer number of bytes that;you can deliver in a single

i'~ packet (which varies from 1,461 bytes on the Nokia 7110 to 1,800 bytes on the Phone.com

~, WAP Browser, to 3,000 bytes on the Ericsson R320), but you are also limited by the physical

size of the screen. Furthermore, most of today's WAP devices only scroll vertically, noC hori-

zontally, so images will be cropped on the left, right, or both edges, depending on the device, i1'

they exceed the ma~mum pixel width for the phone. Widths of the display on WAP devices

i today vary, but in general, phones have a width of something near 40 pixels across. Phones
~.

„, with the UP.Browser will communicate the width of the screen to your application in an HTTP

'~' Header HTTP_X_UP_DEVCAP_SCREENPiXELS. When the UAProfile specification from the WAP

Forum is supported in real devices, screen pixel information will be delivered via that mecha-

~~ ~ nism.

,, CAUTION _~ — --

As stated earlier, animated images are not yet part of the specifications from the

WAP Forurn. Chapter 9, "Using WMLScript," provides an example of animation which

~,ses a series of images coupled with WMLScript, and a timer element. This is not a

I~'~ very efficient method of animation, but it does work.

(
` iil

~i
1I ,

I, Ti P __ ____

When you are using images on a card that also contains a timer element, be certain

'I~' that your timer waits fang enough for your image to load before advancing to the

~~ ~ next screen.

i
~I

Some WAP devices and WAP Gateways will perform on-the-fly conversion of some formats

~I '~ into the WBMP format specified by the WAP Forum, but other devices will not perform such <<

~ conversion. For example, the UP.Link WAP Gateway from Phone.com will convert aone-bit

I `~

j
i j ',

Facebook's Exhibit No. 1004
Page 91

h~

Using Images

CHAPTER G

3~,ip image into a WBMP image automatically, and the Mitsubishi Trium phone will convert a 6

'IIr' image into aone-bit WBMP image for display. However, it is unwise to rely on these

~;pes of conversions, and as a rule of thumb, on
ly WBMP images should be used. c

z

~erl~a~s the most common use of images on the Web today is as an imagemap, providing a ~'

r~1pl~ical interaction layer with a user. Today, due to limitations in the WAP specifications, and ~D

;o~v the user interface works on most WAP-enab
led devices, imagemaps are not currently pos-

bl~. Images can be used as a link within an anchor; however
, on some devices, only the alt

~~;t .will render when this is finished.

sing localsrc Images

~,t VVpP browser from Phone.com is currently the only browser on the market that ships with

~~ list of predefined 1ocalsrc icons. These can greatly improve the look and feel of your appli-

`~catiun, convey messages in a small amount of space, and, because they are stored in the local

ROtii on`devices with image support, they are displayed immediately and add no overhead.

Si~~~,e the Phone.com browser has been licensed by dozens of device manufacturers, there are a

significant number of phones on the street today which do contain support for the loealsrc

~'1c~~itS.

':Singe not all the icons are exactly the same width, there are three 1ocalsrc images that are

included among them that perform a placeholder action. These are "blankfull", "blankhalfi",

and ' blankquarter", and can be used to ensure that the icons and text in a choice list will line

up cleanly.

Luting 6.3 shows how the "blankquarter" and "blankhalf" icons can be used to present an

attractive menu of choices with icons.

LisnN~ 6.3 Using Placeholder Icons

<~xm1 version="1 .0"?>
<I~OCTYPE wml PUBLIC "-//PHONE.COM//DTD WML 1.1//EN"

"http://www.phone.com/dtd/wm111.dtd">

<card id="main"> '`i

ado type="options" label="Inbox" > ;'

<go href="device: status"/>
%do>

<p align="center">Phone.com Services
</p>

gip'align="left" mode="nowrap">

<select>
<option onpick="email.wml"><img src="" alt="°

Facebook's Exhibit No. 1004
Page 92

Creating WAP Applications

,,.i

j''

~.

~I j

,i'i

I+ ~ ~~~~

'I i, ,

,,,

',
~I

~~

~I1i

PART II

LISTING C.3 Continued

~►localsrc="envelope2"/>EMail</option>
<option onpick="euro2.wml">

►Content Services</option>
<option onpick="custs.wml">

r►
CustCare</option>

<option onpick="bookmarks.wml">

~►Bookmarks</option>
</select>

</p>

</card>
</wml>

The third option Listing 6.3 uses is the "headl " icon, which takes up only one-half the width

of the other three icons that are used. To ensure that the text associated with each option ren-

ders aligned, the "blankquarter" icon is used on either side of the "headl " icon. Using this

method instead of a single "blankhalf" icon has the effect of centering the "headl ", as shown

in Figure 6.5. But be warned, this may not work on all devices.

~~~~t~:.,,~
v _~,,.~~,...

-~

FIGURE G.5

localsrc images care be used within u list of options and cart be aligned properly. Notice that the Phone:com DTD rs

used in the code in Listing 6.3 to make this possible.

CAUTION

Rendering of images within an <option> does rely on the use of the Phone.com WN1L

DTD, but since only Phone.com devices currently can render ].ocalsre images, this

should not be an issue. i

Facebook's Exhibit No. 1004 
Page 93



Using Images

CHAPTER 6

`,Ttl~ ~,,e of 
localsrc images is a simple and inexpensive (in terms of overhead) way to liven

alp ~t,~ look and feel of your site. When the WAP Forum approves a list of standard icons, these

,t-;11 b~ suPP°fed by the Phone.com 
browser in addition to the existing icon list.

Sing Images Efficiently

;`pI, t~~day's networks, bandwidth is still limited, and users are going to have to wait as they

d~~~,~ irload images to their phones. Images cannot be interlaced to load progressively, and WAP

;br~~~~ sets today are not using the layout hints that can be included to hold the space on the card

`f~l~ Cllz image while it still loads. As a result, you should think about where, how, and why to

`ncl~~~~e images in your WML application before doing do.

Using a Splash Screen
`pile ~f the most popular uses of images in WAP applications today is as part of a splash

`~cr~~~n. This example uses timers, which we'll discuss in detail in Chapter 10, "Using Timers:'

Z h,: ~:ude for a splash screen card would look something like this:

<?xml version="1 .0"?>
<!DOG7YPE wml PUBLIC "-!/WAPFORUM//DTD WML 1.2//EN" 

"http://www•wapfiorum.org/DTD/wm112.dtd">

<' <wn~l>
<card name="splash" ontimer="#main">
<timer name="sp-timer" value="30"/>
<il~; type="accept° label="Next">
<go href="#main"/>
</do>
<p>
Welcome to Foo.com<br/>
~~img src="../images/foo.wbmp" alt=""/>
/p>

-</card>
~~~;,ml>

T`liis card displays for only three seconds, regardless of how long it takes for foo.wbmp to

' 1~~ad. It is possible that the user will never actually see the foo.wbmp image if the timer value

is coo short. If you are going to use a splash screen, be certain to test on real devices to get

sense for exactly how long it will take to load your images, so that users get to see the image

hut, at the same time, are not stuck on the screen for too long. Also, provide an action or
'' <<tchor which allows users to accelerate out of the splash screen if they want.

` ' the other problem with using a splash screen is that the splash card is now added to the his-
tc,~ ~ stack. When users navigate backward from the main card in the application, they will be

i p~~~~ented with the splash card again, and if they hesitate, the timer can reactivate, and it could

C

z

D
Gl
m

~,

Facebook's Exhibit No. 1004
Page 94

n'ry' ~

Creating WAP Applications

PART II

appear as if they are stuck in a loop. It is worth considering including a <onenterbackward>

element on a splash card to accelerate a user out of your application.

Limited Animation
Although there is no current support for an animated image format, it is simple to see that by

using a timer and a string of WBMP images, it is possible to create animation. Although yes,

this is possible, it is not recommended. Each frame in an animation you create using a timer

can be added to the history stack of the device, and a user might have a very difficult time

backing away from an animation. Animation also implies a trip to .the server for each of the

frames in the sequence until the frames start repeating. This can be costly for the user in terms

of both latency for the animation and airtime. If you do insist on using an animation sequence

in your application, please refer to the animate example in Chapter 9 which uses WMLScript `'

to avoid some of these problems.

Reusing Images with Cache
Just like with HTML, after an image has been loaded into the cache of the device, it can be

reused from the cache in multiple locations. The ability to reuse images within your applica-

tion can greatly enhance the interface of your application without resulting in a large perfor-

mance decrease. However, after an image is loaded into the cache of the device, getting it out

can be more difficult. Images are stored until the space in the cache is needed for other data.

There is no way to programmatically remove a single image from the cache of a device. You

can cause the cache to get flushed by including the newcontext="true" attribute on a card, but:

this has other, severe side effects and will cause all data to be removed from the cache.

Inline images
'~~ Since the Nokia 7110 and the Ericsson R320 will display images starting on a new line, with

the image centered in the screen, images cannot. be used inline. Images on these devices are

useful as splash screen images and graphical data representation. The Phone.com WAP browser

will render an image inline so graphics can be sprinkled more liberally through an application

as bullet point images, as part of data or however you want.

Multipart Messages
Another way to improve image delivery to WAP devices is by using a multipart message (cur-

rently only supported by Phone.com gateways). The multipart can include the WML deck and

any images that are referred to within the deck. The problem with this is the limit on maximum

packet size. The entire multipart must still fit within a single packet which can be 1,400 bytes

or fewer. Phone.com ships some convenience classes with the UP.SDK that allow you to build

' ll and deliver multipart messages also known as digests. When the WML content from a digest is

Facebook's Exhibit No. 1004
Page 95

:Using Images

CHAPTER F1

1~,.~d~d, the images are immediately available for display. The tradeofF here is that only after

~̀ ,~Iything has been received (the WML and the images) will data display on the device.

5ummarY
1'he WAP Forum specifies that If a WAP device supports display of graphical images, it must

stl~~po~ WBMP." So as new phones come out, they might support more advanced image for-

~<~l~~its, but today the starting point is the WBMP format, the only one with guaranteed support.

~, Tl,is is a one-bit bitmapped image. Several tools and plugins are on the market today to help

'you create images in the WBMP format.

~
-~ ~~i111~g images within WML is straightforward and very similar to how images are used in

' H~~ML. However, there are limitations on where images can be used, so exactly where on the

~~~reen an image will be rendered might vary from device to device.

~-~;' ,.~~ of press time, the WAP Forum does not have any support for animated images, color

im,iges, or imagemap functionality within the WAE specifications; however, device and WAP

t~i~~,~~~ser manufacturers will likely introduce these features very soon.

C

z

m

Facebook's Exhibit No. 1004 
Page 96



f ;; .

~,/reting for HTML and 'UVML

~:

,~,

Why Twa Languages? 314

• How to Write for Both Languages 318

• Database-Driven Applications 320

• Other Languages 331

Facebook's Exhibit No. 1004 
Page 97



314 ~ Advanced WAP Development_._.._m_____ _~ . ____
t...........____~._ PART III

Providing one URL for the users of your application is one thing, but actually being able to

deliver appropriate content for a variety of devices from that same URL is another issue all.

together. The holy grail of Web development is indeed the ability to "write once, display any_

.where," and while to some extent this may be a fantasy, some guidelines can help you get

closer~to that goal.

Just as there are several browsers out there that render HTML in different ways, not all WAP

browsers render the same WML content in the same way. This chapter will not tell you ho~~ t,,

deliver content to every client out there, but it will lay the framework that will allow you to

deliver content in a meaningful way to just about any device.

There are many books available that will provide you with all the guidelines, sample code,. a,~~!

suggestions that you could ever imagine for developing HTML applications. If that's what

you're interested in, you should go get another book. The focus of this chapter will not be hc~,=;

to write good or compelling HTML, but instead how you can build your site and/or data strGc-

tures so that you can readily deliver both HTML and WML from the same data store.

!t is worth natirrg that the concepts and ideas discussed here are useful beyond the

world of WAP. As nev✓ s~and~rds for data communication and presentation evolve, so
will the number of delivery types and transports you'll need to work with. By payir-~g

s~eciaf attention to creating reusable and portable data upfront you'll be ready fo-

future technologies as they start to appear.

The principle that must be involved is the same as that of CSS, DHTML, DOM, or XML,

depending on what you are most familiar with. It boils down to the process of abstracting the

presentation layer from the data. There are many HTML browsers out there with varying levels

of support for CSS in different formats. It will be some time before you can rely on all Web

browsers to understand XML/XSL, so until that happens, you will have to live with the fact

that everyone is going to have a different level of capability when they teach your site. How do

you serve them all? What do you serve theirs? Is it all relevant? You must ask yourself these

questions to build a successful site.

Why Two Languages?
First of all you must ask yourself, "Why bother writing WML at all? Can't I just use HTML

and a translator?" The answer is yes you can, but if you want to build areal-world, 
compellijlg

application, any translator is not going to get you far enough.

Consider, for example, Amazon.com. Figure 13.1 shows what its Web site looks like in 
Internet

Explorer.

Facebook's Exhibit No. 1004 
Page 98



~r~-,

~-

:.

r

F'
j;

Writing for HTML and WML

CHAPTER 13

s. _ ~ xf

r, _ ~.,

r~~, ~„_. i -~~.

~,- Mi~li~n~~rvan acom~ ~ <'

amaz~n.com. ,— `~ ~ "~"
rrzr ~i.nr ~_ r~,~ Y (~ e~~~(rou~,a} i~.o~.~ccouur~

~ I
l ~ 7 t If~.-... d wr - j

..x,35 ~ ~~''~ ...~L~_..,~". .. ._ ~ .. .._.. ._
-(a; liu. AirayJy v cis; tonics :~ yam_ rac,~i~~~~~nc~e t,u-ice.

i r a: h1nS~ffP~1 nrt, sports rat ar, PC baraali~s ~.~ .. - ....
IIot L9 SP ~~ — ° tVn~[sncwat—

household rt i is~F,,,,~~,~,,,,,~ --~-~--~ •.~'Jamazon.com~. - _.~,
&em E500 Brthday vrfshes do come Vue; FnCei our ~-~li h ! y ~ _,idy .~ r ~~cs nr,i ~i i

~~~i -+a+:ia9. cry in lc nee vrhats ~.

~?~i _ id ri yr ̀ nr YOU, '.

~~
ii ~~~II 'rlf.~1 ~1~V iiv l', 11",,~i Notii Rei¢nsec

1 To rrl i ~~tr, vzr ae cr a[er~ a =v-acialFIVE YEaRs ~~Fa~~~ r,~~ 1 ~: ~~„1„
_ ___ O(FAVGRITFS

sni pay}ceim:thfi:~myc_ist~mer

reviews, editors fa~•~raey, rn~::pecter. ~ ~~.- _

y, a '~ y~ ^~ _- treasures, decF d~s ou:tts, ~uiJ rooch Vh15 C -: -edv

nroks
', more Horc s to mmiy n:oit yaus of haE~y} sh~ppv e. , 0 C~ Crn 1~

i e h1115~ I - C3~in P I _E-S

H~'lt~l ,.~1`. qVD ~ Now Releases in [iaoks - ~.

.I.{n ~ "•l irk ~~~'.. ~Ir ._., -n

— ~ ~'
__ '_. _.

FIGURE 73.1

„~: rzon•com as viewed through Internet Explorer. There's lots of useful information here that a user can get to quickly

r, ;'simply.

F lure 13.2 shows what the Amazon,com site looks like when it comes through an

i 1"l'ML/WML Translator. Figure 13.3 shows a version written specifically for WML.

ea:~ , ~ t.
J~.,•t~ ~'•. ~~'1r

x,~abi s.T<S~~.r"R.r ~~~~,. J

.,,t

Fi~uRE 13.2
!'~-'rn an end-user perspective
'<<~~-~ of the Arnazon.com site.

~' v

?.-
rx~>= _ ,~

:~~ •:~.

t

~~~
~r-z

~ z ~'oa

Facebook's Exhibit No. 1004 
Page 99



Advanced WAP Development

PART III

F~~uRE 13.3
This is the ~lmazon.com site that is written explicitly for phones with a WAP browser in them. Notice how the first thin
that the user sees is the most frequently used feature of Amazon.com—Books.

Ok, so now we see that HTML translated to WML does not always go quite as well as you
might expect. Although it will get you something, the results can be far from optimal. Other
sites that do not rely on image maps or that have links defined in an order on the page that is
also meaningful may translate better. Also, if a user has experience with your HTML site, he
will be better able to navigate through it via translation. Take, for example, Yahoo.com (see
Figure 13.4). If I already know that I expect to end a Sports link on the site, and I am persis-
tent, Ican find it.

Fi~uRE 13.4
Navigating through Yahoo.com.

~~~ .,.~_ F.u<z~ _ ..

~. ...~:.

~ '?7

R :.. _ ,....,~,__.,~,:_„~,~~.,, ~__
1 ~ .• ii...

_~.~

!F~

t,~i_

_....____-.. ~l

I'm not trying to pick on Yahoo here, almost any site is going to perform this way through an
HTML translator. The first thing that the device picked up on in the first phone display is the
Search box at the top of Yahoo's page. If I skip this form, I start getting the anchors at the top

Facebook's Exhibit No. 1004
Page 100

Writing for HTML and WML

CHAPTER 13

,1 ,'fie page as seen in the next display. If I know
what the HTML Yahoo site looks like, I can

h~. persistent and choose More to get an
other page of links, as you can see in the third

 display,

,jj1,~ then choose stock quotes page (last dis
play), and I even left out a few cards for simpl

ic-

;~~:'s sake.

~,,, I found the information that I wa
s looking for, but how often am I going to be

willing to

~,,,i up with this? In the wireless version of Yahoo,
 the Sports link is presented on the first

p; Vie, and my sports choices are immedia
tely available. Two clicks and I'm in.

4 Rd;tru:c P.uok

5 Uircctoiy

t fill, __

7 VV~rlLcr

0 Nora

9 ~Snurts

5~,~ <<s
2 l~~sk Rlt]fU

1 1 oi:l l~.,U.

^ Hoekr S~

6 N.alor Snarls

oK ti'ahno

FIGURE ~I3.5

.Since Sports was option 9 on the main Yahoo! pa
ge, I had to scroll down to fired it. When I se

lect option 9, I am pre-

sentedwith ameaningful menu to choose fro
m.

Clearly, Yahoo! has done some considerable work
here to build a powerful wireless site that

works as a companion to its HTML site. When
 I access the content from my phone, I don't

 get

the banner ads, I don't get the extraneous links
, and I get direct access to the content that Y

want to see the most.

The preceding examples were all done through an
 HTML/WML Translator that was running a

t

a WAP gateway, not at the origin server. It is cer
tainly possible to build a more intelligent

translator, and anything that lives at your Web si
te (rather than at an outside gateway) is going

to provide you with a greater level of control.
However, this should address the issue of why

you should bother writing WML in the first place.

Users who access the Internet from their perso
nal computers by and large are dialing into an

ISP and are using somewhere between a 28.8k an
d a 56k modem. This represents atwo- to six-

fold increase over the 9600kbps and 14.4kbps
 speed that HTIvIL browsers had when they

became available to the general public in 1994
.and 1995. Five years later, we're still using

HTTP (l.l instead of 1.0) and we're still usin
g HTML, GIF, and JPG. When I'm delivering

graphical content to a Web browser, I'm still
going to use a compressed, optimized format

instead of something like a TIFF. The same prin
ciple will hold for the wireless environment.

13

~~~~z
~~ T
Z a

Facebook's Exhibit No. 1004 
Page 101



'Advanced WAP Development
............318 1._.._._~___. _ ......._._~_____._._ ___ _...._ .._____.___.__ ... ____ .___

PART III

As bandwidth and device capability increase, today's irmovations are not going to be thrc~~ ~l
away. They will be improved up on and extended.

To this end, the WAP Forum is working very closely with tale W3C in the definition of
XHTML, also known as HTML5.0. The specification for WML 2.0 will likely be part of tj~;,
XHTML Specifications. However, remember that we are still talking about the future, a~~ ~ ~~~

want an application today. Even after the standards are set and the WAP browsers are bui]t, ~,,
product cycle for getting new softwaxe into phones is something like 12 to 18 months, S~ f ,.,.~,~
if the browsers existed today, it would be another year until the phones hit the market. This ;;
one of the reasons why the new WAP phones today support the WAP 1.1 specifications, ~7}~i~h
were first proposed a year ago; the 12 specifications have since been approved.

IHow to Write for Both Languages
Hopefully, you are convinced that even if you have an existing, sophisticated HTML site, ~~r~,_
viding a WML interface to youz' content (rather than relying an translation) is a good idea, you
probably would not be reading this book if you didn't already think so anyway. So when yuu
start building the WML side of your application, there are some things to think about.

Phone Considerations
The WAP client is a phone first and foremost, and for your application to be compelling it
needs to take this fact into account. You can cause the phone to make a phone call, you can
deliver areal-time alert to some phones, and phones have numbered keypads, not keyboards,

How you present your data is significant. When you think about delivering; content to a phone,

think about how the phone is going to be used.

~-~ o
i ~ ~ r r_'-

Employ the code that allows users to generate a call from their phone as often as you
can. !F you`re presenting a phone number, wrap it [n ~a href=°wtai: / Iwplme;phone
number><(a> (replacing phone number with an actual number) so that fihe user can ~_~3i1

the number by selecting the link.

Consider the following:

• Unlike a PC keyboard with an Enter key and mouse navigation, the phone has one or

more soft keys to which acCions can be bound.

An HTML page gives the user the ability to choose from several possible actions with

Input/Submit fields, links, and buttons. How should these features be mapped on to a

WML card?

Facebook's Exhibit No. 1004 
Page 102



~ ̀ Writing for HTML and WML

~_ 
CHAPTER 'I3

. What is the most relevant information on a
 page that needs to be presented onto the

phone?

Clearly, everything on the HTML page is not going to work on a phone.

. What about frames?

Which frame should be sent to the phone?

Is it possible to get back and forth across the frame pages?

. What about banner ads? How would these work?

Nobody is going to advocate removing banner ads from your HTMI, pages (th
is may be

one of your current revenue sources), but with limited screen real estate yo
u should think

twice before using them.

~ • r ~ - ~

h~ ~p It Simple Stupid is one of the guidelines that HTML developers 
have a strong tendency

t,_, ,ivoid. There axe plenty of sites out there that are ultra slick and
 super confusing. The temp-

t~i~i ;n to employ all of the newest/latest technology can be t
oo much to resist at times, and

dC~~. elopers have the tendency to overlook the fact that th
eir user base may or may not have the

ability to handle this latest technology on their client. I'm not sugg
esting that you regress to

tf.~: days of Lynx and build atext-only site, but I do recomm
end that you consider the usability

ir,~plications of a clean, easily navigable site. find I can't say it often enough: J
ust as you

~,vould with your HTML code, test your code on as many browsers/platforms
/clients as you

p~~~sibly can. Don't just test it to see whether it breaks, test it for usability. C
an uneducated

(ahnut your site, not in general) users accomplish simple tasks? Do they
 get lost in your site?

~)n They get overwhelmed by your content or presentation?

are end users going to be driving while they use the browser (I hope not), or are 
they going to

~~ sitting in a coffee shop? Are they going to be waiting for a train? They're no
t likely to be at

~ ~l~~sk. They are going to use their phones to find specific information quickly, or po
ssibly

~hcy are going to want to kill some time and be entertained. Extra information that 
might

~nllance your HTML site wi111ikely clutter a WML site.

E:t.~ctly what data you present to users on an HTML page versus what you present 
them with

i~l ,a. WML page can and should vary. Take a stock application, for example. On an HT
ML

I?.l.;e, it would be simple, and would probably he a good idea, to display a chart sh
owing a

~~~~~k's performance over aday/week/month range along with any other data when yo
u present

~~ <tock quote. However, the phone may or may not be able to display such a chart.
 If it can, the

~~~~played image may not be large enough to be meaningful to the user.

13

~~
~~~
rz

~z ~
~a

A

Facebook's Exhibit No. 1004
Page 103

_~ ~

. __
Advanced WAP Development

320 -----_. _.._.___________ .. ~.__~__.______.. ___,___ ._ ...~.._._~__.__~___. _~ ~ .________ ~..~.. ---w-. .
...__..__~_~_.I PART III

One of the larger issues in dealing with the phone is the fact that users are not multitaskinb
when using the browser. When you sit at your desk and you're waiting for a Web page toloa,
it is not likely that you have the browser taking up the whole screen. Maybe you're loolc~~g ,it
different content in another browser window. Maybe you're reading your email, maybe yotl'~~.
proofreading a document, or maybe you're petting the cat. It all boils down to the fact that
you're willing to put up with some degree of latency because your attention can be drawn a~x;.~,r
to other things. When users are accessing content on their phone, they are staring at the pil~7i ,̀~
screen, waiting for a response. What may in quantitative terms be a short response time can
seem much longer because attention is focused directly and exclusively on the device. A~ ~~

second wait may be tolerable for an HTML page to load in a Web browser, but a 5 second ~~,~,;r
can seem like an eternity when using a WAP-enabled phone. Keep this in mind when you
decide what part of your site you are going to deliver to the user. Of course, what is acceptat,l,~~
varies from one application to the next, you'll have to use your judgment (and some real-wog 1~
user feedback) here.

Database-Driven Applications
The key to building a compelling application that can be accessed from both a WAP-enabled
phone and an HTML browser is synergy. Use the strengths of each environment to enhance t}ic
user experience, and tailor what you will deliver to the device. The beauty of the Web is its

ability to deliver dynamic data that is constantly changing and unique to each user as appropri-
ate. Tv this end, the information that you are going to present should live in a database. Ther,~

are many free, and not free, database choices out there on every platform with drivers for airy

language that you want to use. For the sake of simplicity (and space), I have chosen one data-

base and one language to present code in, but the underlying principles can be applied to anv

database or language.

Introduction to Employee Directory
Listing 13.1 is an example of an employee phone list that can be accessed from either an

HTML browser or a WAP bxowser from the same URL. Although in reality, there are really two

different applications here, they both provide an interface into the same data store, and updates

in one medium will propagate to the other. The phone book application is based on a simple

SQL database running in mSQL (from Hughes Technologies at http : / /www. hughes . com, au/)•

Database access is accomplished through the w3-msgl library that ships with mSQL. Although

the code used in this chapter is specific to mSQL, the queries and principles used can be

applied to any SQL database. Of course, similar code could be written in ASP, ColdFusion,

Perl, JSP, and many other languages (as will be seen in the final chapters of this book).

Facebook's Exhibit No. 1004
Page 104

Writing for HTML and WML

CHAPTER 13

'fhe
database that this application uses relies on one table named emp_details. The table has

y~x columns, emp_no, first name, last_n
ame, phone, email, and dept. The emp_no is a

~~;{~iential number that is unique and generated by the database for every row t
hat is added to

~e cable. The others are simply character val
ues.

The Application is accessed by the same URL from the PC browser or from
 the WAP browser.

This is done by using a script that exa
mines the value of the HTTP_ACCEPT'string and then re-

~jt~.~~r,S the client to the appropriate code.

~rsTiN~ 13.1 An Employee Phone List

~~jusr/local/bin/perl

~~~~ = $ENV{"HTTP_ACCEPT"};

qua = $ENV{"HTTP_USER_AGENT"};

print "Location: http://delphi.phone.com/Hughes/empList.wsgl\r\n\r\n";

}
e~s~{
print" Location: http://delphi.phone.com/Hughes/empList.msgl\r\n\r\n";

print '<html>

<head>
<p,~ETA HTTP-EQUIV=Refiresh CONTENT="0;

»t1RL=http://delphi.phone.com/Hughes/empList.msgl">

</head>
<body>
</body>

</html>

}3

HTML Entry Point
'Fhe entry point into this application is going to look slightly different between an HTML

browser and a WAP browser for several reasons. In an HTML browser, it is safe to assume

enough real estate and memory to simply display the entire phone list in a table when the user

requests it. This is a very simple page, which could certainly be enhanced with a corporate

banner at the top of the window and some navigation links along the left edge of the window.

However, these should be kept small and relatively inconspicuous, since the employee infor-

mation is what users are really interested in. This is shown in Figure 13.6.

13

_~~~
~~~
~~~
Z T

as

Facebook's Exhibit No. 1004 
Page 105



Fi~uRe 13.6
We can display all rows of the phone tree in the table since neither screen size nor maximum page size are constraints
on the HIIVIL browser.

The page in Figure 13.6 is generated by a simple query into the database that looks like this;

if (msglQuery($sock,"SELECT first_name, last name, phone, email,

r►emp_no, dept FROM emp_details ORDER BY last_name") < 0)

{

echo("Error $ERRMSG\n");

exit(1);

}

$res = msglStoreResult();

$row = msglFetchRow($res);

<table border>

<t r>

<th>First name</th><th>Last Name</th>

~►<th>Phone</th><th>Email</th><th>Department</th>
</tr>

<~
while (#$row > 0)
{

printfi("<fiorm action=edit_emp.msgl method=POST>

~►<tr><td>%s</td><td>%s</td><td>os</td><td><a hrefi=mailto:%s>%s</a></td>

~►<td>%s</td><td><input type=Submit name=edit value=Edit>

~►<input type=hidden name=emp_no value=%s</td></tr></fiorm>",

Facebook's Exhibit No. 1004 
Page 106



f

Writing for HTML and WML

CHAPTER 'I3

$row[0], $row[1], ~row[2], urlEncode($row[3]),

,~u,~lEncode($row[3]), $row[5], $row[4]);

$row = msglFetchRow($res);

msglFreeResult($res);

Ir eve temporarily ignore everything except for the SQL statement, we can see that the
 applica-

~;~,~1 simply asks for every field from each row of the database. Stepping out
 a bit further. we

an see that there is a level of error checking built in
 to the application so that we can return an

~fl~~r from the query if one is generated (rather than causing the browser to hang or re
turn an

~~feetively meaningless error type 500). The results of the query are stored in a local variable

Sres, and then one row at a time is pulled out of the results and stored in an array, $ro
w.

'lh~ HTML code that is used to wrap the results of the S
QL query presents each row of data in

;, table. The entire result is iterated over, and the elements from the array are extr
acted and pre-

s~nted in a table cell. Each email address is wrapped in an <a href="mailto: "> link, which

~vill allow users to invoke their email client directly from their PC browser. The last column of

the table contains an Edit button that will allow the user to update the record in the databa
se

<<his will be discussed later on in this chapter).
13

Phone Entry Point
i)ue to screen display limitations as well as the limit on the amount of information that can be

=t ~

delivered to a WAP phone at one time, the entry point of the application for the WAP phone is ~ ~ ~

;going to be simplified to just present the list of employee names. Figure 13.7 shows a screenful ~ ~ a

~~f the WAP presentation. a ~'

FPGURE 'I3.]

~i~en if the entire database tivere small enough to fit in a single deck, the table cannot be displayed in a meaningful

`t'~?Y, so each name in the list becomes a link of its own.

Facebook's Exhibit No. 1004 
Page 107



Advanced WAP Development
--

PART III

I~~ addition to the fact that only the names from the database are initially displayed because a~

memory limitations in WAP devices, we have to limit the number of records we can preset to
the user at one time. To allow access to the entire employee database, we need to keep trac]; a f

which names have been delivered. Since we are only going to present nine possible records

from the database in any given card, we can make the tenth item a More... link, which will pre.-
sent another screenful of data. To do this, we need a slightly more sophisticated select state-

ment for our SQL select:

if (msglQuery($sock,"SELECT first_name, last_name, phone, email,

wemp_no, dept FROM emp_details
WHERE last_name >_ '$last_name' ORDER BY last_name") < ~j

{
echo("Error $ERRMSG\n");
exit(1);

}
$res = msglStoreResultO;
$row = msglFetchRow($res);
echo("<select>");
$counter = 0;
while ((#$row > 0) && (counter < 9))
{

printfi("<option onpick=\"#card as\">~s, os</option>",

~►~row[4l,~row[1J~~row[0l),
$row = msglFetchRow($res);
$counter++;

if (#$row > 0){
$last = 1;
if (($counter o 9) _= 0){

$last = 0;
printfi("<option onpick=\"empList.wsgl?last_name=os\">

r►more...</option>",$row[1]);
echo("</select>
</p>
</card>");
}

}
}

echo("</select>
~~p~ .

$last = 0;
}

Facebook's Exhibit No. 1004 
Page 108



Writing for HTML and WML

CHAPTER 13

i,~

;,nice that in the SQL select statement we include a WHERE clau
se so that we can limit exactly

`.,rich records are going to be selected based on a value 
of last_name. When this select state-

I„~,it is first called, there is no value for last_name,
 so the query will retrieve records from the

~t,,; ~ of the alphabet. The entire result of the query is stored locally in 
a variable, $res, and

th~'~l read out one row
 at a time. A counter is used to keep track of how many rows have been

~~.-,~~, and when the ninth record is reached, a More... link is built, with a destin
ation of the

' ~~ r i;~t and the last name set as the value of th
e last name displayed. When a user then requests

~},i; iast link, the script is re-invoked, this time w
ith the 1.ast_name value assigned, ensuring

tF,~.~ the correct record set is retrieved.

<o:,tion onpick="empList.wsgl?last_name=Longsreth">more...</option>
</select>

~ t,~; application relies on this last name value, rather than the unique identifier of e
mp_no

f,~~_ause the value of emp_no is not going to be sequential according to the last_na
me. After

~itlrer the More... link is built or the end of the data has been reached, t
he card is closed off,

;,;~,I the script re-iterates back over the results, building the individual cards for
 each record that

:,, i l l display the data.

Onee a user selects one of the names in the list, the details associated with that 
user will be

di~p~layed on a card of its own. This is the only way to represent the data in auser-frie
ndly and

,J~~;aningful way. When the user selects one of the games, their details will be displaye
d in full

~ci a new card. Figure 13.8 shows the details for one of the employees o
n the list.

FIGURE 'I~.S

'ti yen the user selects one of the employee names, all of their details are displayed. The phone numbe
r is surrounded

h a wtai: / /wp/mc; so that the number is callabCe directly frorre the browser.

i uce we know that the user is going to be using this application from the phone, and it is a

~IYone book, it only makes sense to a11ow the user to be able to generate a ca11 from the results.

Clue UP.Browser from Phone.com will allow the user to select the link that displays the ph
one

13

~~~~—z

~~T
b ~

Facebook's Exhibit No. 1004
Page 109

Advanced WAP Development

PART III ~ ~ -

number, and automatically dial the number. Other devices may just present the user with a U~l,
Number feature that will drop the phone number into the phone's voice interface, and the L~s~,~
can then choose to make the call. In the future, as more of the WTAI (Wireless Telephony
Application Interface) specification from the WAP forum is implemented by devices, it will 1,~.
possible to present the user with an option to add the information to the local phone book on
his device, or maybe send a text message to the user.

Remember that in the HTML application, the email address is presented as a hyperlink wit1~ ;~
mailto: action that will allow the user to launch his email application directly from his
browser. Although there are WML-based email programs, there is no standard way to invoke
them at this time, so the email address in the WML application is not presented as an active
link.

HTML-Specific Features
The HTML application has some additional features beyond simply displaying the phone infor_
mation. It allows users to either edit an existing listing or add a new listing to the databa~~
These functions could be presented in the WML version of the application, but the entry of
data from the phone is often an arduous process and should be avoided whenever possible.
Providing an HTML interface into the data gives the user a much more usable way to mana~r
the information.

Adding an Employee to the Database
An employee may be added via the Add button at the bottom of the table, and brings up a sim-
ple HTML form page as shown in Figure 13.9.

The action on this form is to post all of the field values to a script, which will then create a

new row in the emp_details table in our database, generate an employee number for the

record, and insert the data.

ifi (msglQuery($sock, "select _seq from emp_details") < 0) {

fiatal("Query flailed $ERRMSG");
}

$res = msglStoreResult();

$row = msglFetchRow($res);

$sequence = (int)$row[0];
msglFreeResult($res);

/*
** Insert the record
*~

$q = "insert into emp_details values ($sequence, '$first_name',

'$last_name', '$dept', '$phone', '$email')";

Facebook's Exhibit No. 1004
Page 110

~~

Wuting for HTML and WML 327
__._ CHAPTER 'I3

if (msglQuery($sock, $q) < 0) {

fatal("Add employee failed $ERRMSG");

}
mSglClose($sock);

~.
r ~~ - ~i~ ~ nn htrcdl dd~tdd ~ -~- - _

:, .,w« ~.,.
~ ~ •:.

Add Employee Recarci

First Nams ~~ (Last Name

Ph~ne~Tumber~~;Email

Depattmcnt Seles_ _
.__..~

13

~
~ c' ! ~ . -f ~ ~ ~ "'~

rZ

~~ e 13.9
v 0

F uR
1;: ~ ; HTML form alCows a user to input the data. The action taken when the user pr

esses the Add Employee button will

~r~i;%anew record into the database.

1},e SELECT _seq statement will generate the new sequential number that can then
be used as

~.h~ emp_no value. This value, along with all of the data that was picked up in the PO
ST, is

inserted into a new row in the database. When the update is completed, the user is re
turned to

thy: employee list with the new record displayed in the appropriate alphabetical orde
r.

Editing an Existing Record
The other HTML-specific feature for the database is the ability to edit an existing record

. The

Edit button that is presented in the last column of each row will build an edit card for the

~~~iployee listed in that row, as you can see in Figure 13.10.

Facebook's Exhibit No. 1004 
Page 111



Advanced WAP Development

PART III ...._...__~_-_ _._

_ ~, r,_, ~~-, [~I
r :.J -1 'r ;a ~ - ~

,, .. _;

Edit Eriiployee Record

Erist23ame Yledim~r __ LasGName Bordeaux _ _~.

Phone 650 5 5 1592 'Email. oideauxCs~wapcorp.cn`'

FnstAlame Sales.... 'J

FIGURE ~ ~.'I Q

This HTML form allows a user to edit the data associated with a given employee. The fields in the form are autoniati-
cally filled in so the user only needs to cleange those that apply. Changes are committed to the database as soon as rlt
user presses the Edit button.

The edit sequence relies on the emp_no field in the database, which is stored in a hidden field

in the form. This ensures that only [he correct record is going to be updated.

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">

<html>

<HEAD><TITLE>Edit Employee Record</TITLE></HEAD>

<BODY>

<CENTER>

<H2>Edit Employee Record</H2>

<FORM ACTION=update_emp.msgl METHOD=POST>

<TABLE align=center>

<TR>

<form action=update_emp.msgl
<table>
<tr><td~First Name</td><td><input name=first name value=Vladimir></td>

<td>Last Name</td><td><input name=last name value=Bordeaux></td></tr>
<tr><td>Phone</fid><td><input name=phone value=650-555-1582></td>
<td>Email</td><td><input name=email value=vbordeaux@wapcorp.com></td></tr>

Facebook's Exhibit No. 1004 
Page 112



Writing for HTML and WML

CHAPTER 'I3

`t,~>First Name</td><td><select name=de
pt value=sales>

<OPTION VALUE=sales>Sales

<OPTION VALUE=dev>Development

<OPTION VALUE=admin>Administration

<OPTION VALUE=cs>Customer Support

,~~pu~ type=hidden name=emp_no value=113>

~~table>

~l,~put type="submit" name="Edit" value="Edit">

</ Porm>

< uody>

'~' <rhtml>

Tile script that receives the post behaves very much 
like the script that adds a new employee to

~~;,~ database (this edit form should have looked familiax), ho
wever instead of perForming an

r~,sERT, it will UPDATE the record that is associated with the emp_no.

$emp_no = (int) ~emp_no;

if (msglQuery($sock,"UPDATE emp_details

SET fiirst_name = '$fi irst_name', last name = '$last_name',

phone = '$phone', email = '$email', dept = '$dept'

WHERE emp_no = $emp_no") < 0)

{
echo("Error $ERRMSG~n");

ex it(1);

}
msglClose($sock);

Tlie int in the very first line of this code, the $emp_no value that came in with the 
postdata, is

~~ut to an int so it can be effectively used in the SQL query. It must be cas
t this way, other-

~~. i,e it will be represezlted as a string, and there will be a type mismatch result from
 the SQL

~t~,~ement. The UPDATE is otherwise very simple and straightforward.

:1 ~ ain, there is nn technical limitation to prevent these add and edit functions from being
 pre-

,~ »ted on the phone. It is just not done here for space reasons, and also to underscore t
he point

~h<~t data entry is simpler and cleaner from an HTML interface.

Phone-Specific functionality
=>i ice the phone cannot display all of the records at the same time on the initial screen,

 it is

~~~,portant to include a search capability for the database. This prevents users from having 
to

~; ~oll through many screens of results before finding the employee they are looking
for. This

~~ ,~ture is not really needed for the HTML application since all records are displayed on
 the

~.~me page, and users can use the Control-F find function from their HTML browser to
search

i ~ ~ ~' an employee.

13

_~
~~

~~z
~r~
r v .~
~o
~ A

Facebook's Exhibit No. 1004
Page 113

Advanced WAP Development

PART III

If you look back to Figure 13.7, you will notice the Find label bound to the options soft key
This action will bring up a end deck so the user can choose to search for a employee based

first name or last name. The searches are exclusive, meaning that they cannot search for ~~.~~
and last name at the same time.

Fi~uRe 13.11
The WML application needs to allow the user to search for an employee based on first or last name. The user selecr,r
wl2at he wants to search by, and a SQL query as generated.

The first or last name that is entered is then delivered on the query string to a script that

queries the database for matching records. If a match is found, only the first match is returned,

and if there is no match, a No Match card is returned instead. In addition to the matching

record (or no results), an "all" action is bound to the options key. This will present the user

with the employee listing, starting at the top of the alphabet. Following is the code for the

script that runs the query and returns the results:

if (#$fiirst_name >0) {

if (msglQuery($sock,"SELECT first_name, last_name, phone, email,

wemp_no FROM emp_details
WMERE fiirst_name LIKE ' o$first_name%"') < 0)

{

echo("Error $ERRMSG\n");

exit(1);

}}

else {

if (msglQuery($sock,°SELECT first_name, last name, phone, email,

~►emp_no FROM emp_details
WHERE last_name LIKE ' o$last_name%"') < 0)

{
echo("Error $ERRMSG\n");

exit(1);
}}

Facebook's Exhibit No. 1004
Page 114

~`' Writing for HTML and W1VIL 4
'`. _....... _......._...... ._ ~. ,.... _...._ 331__

~, CHAPTER 13 ~___~~

~''

fires = msglStpreResultO;

$row = msglFetchRow($res);

~.f (#draw > 0){
printf("%s %s
<a href=~"wtai://wp/mc;%s\"

rti~le=\"call\~~~%s<la>
%s
",

$row[0], $row[1], $row[2],$row(2], urlEncode($row[3]));

}
else{
echo("$first_name $last_name Not Found!");}
echo("</p>

</card>

': Tile script relies on the definition of the first_nam
e variable from the HTTP request to decide

f ~h~; SQL query should match first or last name. This code could be enhanced to return multi-

r~e matches if they exist, but for simplicity's sake, it will only return one row of data.

gpplication Conclusions
2;1e F,ro.ployee Database application is just one supple possibility that can he used to present

ih~ same data to vastly different clients. The code that is used to perform this task is
 similar '~ 3

across the HTML and WML versions, but the key considerations of how much data to display

,it once, how to display it in a meaningful way, and how to take advantage of client-specific
~ ~

features are taken to heart. ~ ~ ~+
~r'~

~th~r Languages
r 2 .~

A stated at the beginning of the chapter, the WAP Forum is on a road to convergence with the

ti'.'3C, and the specifications for W1VIL 2.0 is currently planned to be inline with XHTML (the

XVIL version of HTML). Until this happens, it is worth noting that today WML is indeed an

t~1L application. As XML browsers begin to permeate the market, developers can begin to

move away from writing HTML and simply use XML along with Extensible Stylesheet

L;mbuage (XSL).

`.14L tags within a document describe what the elements of the document are, rather than what

~he~~ look like, The XSL does the job of describing how a given element should be displayed

based on the device that is rendering the element. Take for example our eznployee database.

~'.~ing XML, we could use tags such as <~-address> and <phone-num> to mark up the email

a;1d~~esses and phone numbers in the data that we present. The XSL used to build the HTML

',~rsion of the application would then automatically wrap the email address in the mailto

~mchor, and the XSL for the W/AP phones would automatically build the wtai: / /wp/mc; link

~uound the phone number so that it could be automatically called.

Facebook's Exhibit No. 1004
Page 115

Advanced WAP Development
__ _ __

I I PART III _

There are volumes on XML and XSL, and it is beyond the scope of this one chapter to ehpl~n

how XML and XSL work together to transform data as appropriate to a "requesting client,

However, it is worth looking at the Cocoon project from http:/ /xml. apache. org/cocoon.

This project (which is currently under way) provides a way to accomplish exactly what is,,{;l_

cussed in this chapter, including employing the HTTP headers that are delivered by a device

request to ensure that the correct XSL information is used for a given device. This allows c„Il;

tent to be repurposed appropriately, allowing the support of a wide range of device and user

agents.

Summary
This chapter has taken a quick look at what it means to deliver the same content to an HTI~IL

browser as well as a WAP browser. The key message is that while HTML can be delivered to <i

phone through a translator, taking the time to write a WML interface into an application is w~~

worth the effort in terms of both usability and functionality. Although WML and HTML are o,~

the road to convergence with the forthcoming XHTML specification from the W3C, it will. still

be some time before the specifications become reality. In preparing yourself for that time, end

even in preparing yourself to build a scalable Web application, content and data should be

abstracted from the presentation of that content. The simplest and most effective way to du th

is to store your data in a database.

Any programming language can be used to provide access to the same content base to any

client. The key is sticking with what you know and what you are familiar with. It looks as

though XML/XSL will play a huge role in content delivery to a wide variety of clients in tl~e

future. Abstracting your presentation from your content now will get you a long way toward

the future.

Facebook's Exhibit No. 1004
Page 116

E.Commerce

``~._ `,

CHAPTER ,'~~
~,.1

1

i

i
t

~r E,

„. _.t ,:.

t~,. r _
4. i

• E-Commerce Application Overview 430

• E-Commerce Application Watkthrough 430

• Complete Code Listings 451

Facebook's Exhibit No. 1004
Page 117

Sample Applications
430 ___ _. _....._... _. _....._.. ~ ...~._..._ _ _...... _.._..._..._ ..._ ._....... .. ~_.,. _........~~.._ _~._.~....___. _

~_ PART IV

E-Commerce Application Overview

For this fourth and final sample application, we are going to take an in-depth look at how ~_

commerce might work with a WAP device. In this example, we will revisit our fictitious sto~~e,

Burgerworld.com—the one stop shop for hungry computer professionals, which sells burgers,

fries, and computers. (A great basiness model, if you ask us!)

While shopping with a mobile device may be unfamiliar to many people, the Internet has

already carved out models for electronic shopping that consumers have grown accustomed to

and even expect. The backbone of an e-commerce shopping experience is the virtual shopping

cart. The cart we'll create in this example represents a session that you might use to track a

user's login process through a content management system.

At this point, we would like to note that this application provides the basic functionality of an

e-commerce application, to demonstrate the fundamental techniques involved in designing a

WML interface that operates with adata-driven backend for e-commerce. This example does

not cover security or credit-card validation and therefore would not be recommended for real-

world deployment without those components.

This sample application will be more technologically challenging than our previous ones. We

will be coding this example in JSP, using TOMCAT or JRun servers.

NnrG~

Java Server Pages (JSP) is a scripting capability for Web pages that ~ Ilows Ja~~~a as well

as a few special tags to be embedded into a Wef~ file (H7ML~XML, and so on}. ASP/A.SP

facilitate dynamic Web-page delivery to client applications.

E-Commerce Application Walkthrough
We'll begin by conducting astep-by-step walkthrough of the code contained in this applica-

tion. If you'd like to see any of the sections we'll discuss here in their complete context, please

reference the end of the chapter, where all of the code listings are given in their entirety.

Keeping Track of the Data
In this application, we use several kinds of data, and each time we need to access one, we are

interfacing into a database using JDBC to a data source called "shop." This database will
drive

our WAP application. It includes the product catalog, shopping cart storage, and ordering
infor-

mation. Refer to Chapter 17, "Scheduling," for database setup parameters.

`._

Facebook's Exhibit No. 1004
Page 118

I'i1e database itself has five tables. The first one is really our session management. In this

xample, there is a login screen that needs to be processed. For this application, the login page

~~;ill serve as our session manager. When a user reaches the login. j sp page (see Listing 18.1),

file application will query a table called ears to determine what shopping cart a user will have

;~~cess to. You can see this table in Figure 18.1. From this point on, we pass this cart identifica-

ii~n with the user to make sure we can track his session.

'D ~

Value t~ ,r„~j j

~ 2-,..;ART (

i u

FIGURE ~H.~

e vars table contains shopping cart identiftcation information.

1 second table, called Items, is at the core of our application, It is shown in Figure 18.2. In

his table we have a particular item, stock keeping units (SKUs—which are unique product

~iumbers used in inventory tracking) for an item, a category, and pricing information. In a more

.;omplete application, this table might have inventory information or other fulfillment informa- ~ 8

iron,
m

C -
,..

~_
-~ —~ o

I<om Catoyory~_ I~an~ Name ! Itui~(_rsi liani Sl~IJ _Item Sl~.ip~liy'~ Item ID

Computers A" -°' ~ x'22,01' 00 ~~F21 ~~, i iu ~ ~ ~

' Cgt7lputsYS ~PDri i I .,..° 9 50 ""~~ _ J L'U c ~

~' Ccm~^uters J_PDPB ~ $3 00 ~ 19295 $275 r~r~ 3 ~
.

soda Mountain Deev ~ $200 T4~45~ X60 01 d
__

oda,. T Up ~ ~_
_
~2 00 75687d5__,

_ _ ~
$0 01 '

~~_
5

Suda Sprite I ~2D0 8454590 $001 i 6

~ r ~ Buda ~_. ~ Dr Pepper ~ 122A358_ _ _ ~0 0~ -a ~ g0 0~ ~! ~~ fduloNumbe 1

FIGURE '~H.z

the ztems table contains pricing, category, and SKU information on various products.

i 1'he ShoppingCart_Items table stores all the data we need for cart management. In this table,

f sae are tracking a shopping cart ID, which will be unique for each user session; the items in a

particular cart (based upon Ttem_I~ numbers from the Items table); and quantities. You can see

j v✓hat this table looks like in Figure 18.3.

Finally, the last two tables contain our data for a completed order. When a user "checks out"

and then enters his order information, the completed order information is entered into the

orders table, seen in Figure 18.4, and corresponding entries for the ordered items are

deposited into the Orders_Products table, seen in Figure 18.5.

Facebook's Exhibit No. 1004
Page 119

~_

Sample Applications

PART IV

~~,;
~~~ tihop~:ing( ,i~ID ~trm ~Oi.

I—
a lily —_Sli ,ii L~~n~~ lli

`i — —_ — --- _

1B'. ? ........ 2 ... ..............._3

18! 5 2i 4

19 2 6
~n d

,..
2 ...............,

~
...._

D. 01 AutoNumber

Fi~uR~ 18.3
The shoppingcart_ztems table contains shopping cart ID numbers, iterres, and quantities.

~;
"~e~niaiue +~dd~ess ('h n~ '. Cr rtd~~.rl Ord~~ll~

t
~' 

~ 
-- _ b5-1~it •null 

_ 
_20
0

FIGURE 1 H.4

Tl~e Orders table contains user information for a complete order, such as address, phone number, and order ID

number

_-_ 
I

~1~dt~ID U irl6 li inl~.id ~~ 0 i v ihl

r _ Gu< < l 2

D. 
_ 
~, (NutoM1lumber) 

_..D

FIGURE 1H.5

The orders_Products table contains the confirrreed list of products the customer ordered.

Preparing the Header, Dada Source, and Session ID
Now that we have discussed the data model, let's start walking through the heart of this exam-

ple with login . j sp, from Listing 18.1. We are now coding in JSP, so our header information

needs to change a little bit because of the response type. Therefore, the header for each JSP file.

will contain the standard XML directive, but additionally include the following line:

<°o response.setContentType("text/vnd.wap.wml"); %>

This instructs the server that the mime-type will be text/vnd.wap.wml, which is the accepted

WML directive.

After we have established that, we prime our database engine, and query the database for a

variable named CART from the ears table. The goal here is to select a unique cart ID that we

can establish for the user.

Facebook's Exhibit No. 1004 
Page 120



f ~

E-Commerce

CHAPTER ') H

ò@ page import="java.sgl.* >

<%
Connection dbConn = null;

int CartID=-1;

ResultSet get_cart = null;

try
{

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

dbConn = DriverManager.getConnection(

"jdbc:odbc:shop"

);
Statement userStmt = dbConn.createStatement();

get_cart = userStmt.executeQuery(

"SELECT VALUE firom Vars WHERE Name='CART•••

)~

ifi (get_cart.nextO) {

CartTD = get_cart.getInt("Value");
userStmt.executeUpdate(

"UPDATE Vars SET [Value]=[Value]+1 WHERE Name='CART "'

)~
}

else
{
CartID=1;
userStmt.executeUpdate(
"INSERT INTO Vars(Name, [Value]) SELECT 'CART' AS EXPR1, 2 as EXPR2"

);
}

}
catch(Exception e)
{

out.println("Exception!!!");
out.println(e.getMessage());

return;
}

o,0

:~

m
n
O

m

n
m

In the preceding code sample, we made provisions for error checking to ensure that the Vars

table contains the correct entry if you are installing this application for the first time. When the

code is executed, the server will first query the table fora value, and if a value is found, it will

Facebook's Exhibit No. 1004 
Page 121



Sample Applications

PaRr IV

then increment the value by executing an update statement that sets the [valued _ [valued ~.

1. If the value is not found, we insert the variables into the ears table and set the CartID=1 to
prime the session variable.

~ i r --

When doing session management, two options exisfi for WAP devices: a caakie or a

session variable. We chose a session variable because some of our tests yielded errors

when we used cookies.

NOTE

The database we used for our implemenfiation was a Microsoft Access database. As a

result, the Column value requires brackets because it is a reserved word. If you have

ported this example into a different database, those brackets may be unnecessary

and could cause an error.

After we complete the session variable as illustrated above, we can construct our WAP deck.

Creating a Login that Tracks the User
In this application, our login , j sp file will serve as a welcome. We give a quick advertisement

and then give the user an option to go to the next card, but pass our unique CartID in the ur1

parameters. We have now begun to track our user!

This card would be a great candidate far a timer. For the sake of simplicity, we chose

to eli►-ninate the timer, but you could create one of your own, For more information
on timers, see Chapter 10, "Using Timers."

The following code snippet from Listing 18.1 shows the first WML card of the application.

<wml>
<card id="Welcome" title="Welcome">
<p>

<b>Burgerworld.com</b>
Burgers, Fries, Soda, and Computers... to go<br!>

<a href="main.jsp?CartID=<~=CartID~>">Enter</a>

Facebook's Exhibit No. 1004 
Page 122



E-Commerce }

CHAP?ER 18

</p>

</card>

<(~vm1>
i

~Uhen the user selects the hyperlink labeled Enter, he will navigate to the main. j sp file, pass- 3

;iii his CartI~ value to that deck. You can see what this looks like in Figure 18.6. }

18
FIGURE ~ H.G

Tie Burgerworld login screen shows the first card, where we start to keep track of our user's ID. m

n
0

Dynamieally Generating Product Catalogs rn
stow that the user has logged in, it is time to present him with the product catalog. In our case, m

~.ve are going to dynamically generate a deck for item categories and the cards within those

"ategories as well.

l'he application will select all of the categories from the database and present them as main

menu choices. Then, under each category, the application will construct a card that will serve

.is the submenu. In this example, the submenus only go one level deep; a category can only

"ontain items and cannot contain another category.

Co accomplish this, we are going to need a few different database queries. At the top level, we

will query the database for the DISTINCT item_category information from the Items table.

Chis will form the main menu as seen in the following code sample, taken from Listing 18.2, '

<o
Connection dbConn =null;

ResultSet get_cat =null;

ResultSet get_products =null;

boolean isMore = fialse;

Facebook's Exhibit No. 1004 
Page 123



Sample Applications
___

PART IV

// get a connection to the database

try
{

// instantiate the db driver
Class.fiorName("sun.jdbc.odbc.JdbcOdbcDriver");

// setup the connection
dbConn = DriverManager.getConnection(

"jdbc:odbc:shop"

);

// create a statement on the connection

Statement userStmt = dbConn.createStatement();

// issue the SQL statements
get_cat = userStmt.executeQuery(

"SELECT Distinct Item_Category from Items"

);

}
cafich(Exception e)
{

out.println("Exception!!!");
out.println(e.getMessage());
return;
// assume no error conditions, fior now

}

o~0

Dynamically y~nerating a catalog promotes a very scalable architecture for the appli-

catian. If ~s~e were to add a ne~,v category of items to the table, the category would

appear on our WAP device when the user looker at the category card. Moreover, if

we ciynamica(ly change the item information ire any U~ay, the entire menu wil! restruc-

ture itself.

Facebook's Exhibit No. 1004 
Page 124



E-Commerce

CHAPTER 1 H

CAUTION

The method used above does present Borne scalability issues. If the site is a higher-

volurr~e site, the application should take advantage of cached-queries or WAP

browser cache management by expiring pages or sending cap ne notifications in

order to minimize database load,

vow that we have the main query, called get_cat, which contains all of the unique categories,

we can construct the main menu by cycling through the list of unique categories as shown in

i:he following code sample taken from Listing 18.2. You can see what this card looks like in

~~igure 18.7.

:wm 1>
<card id="MainMenu" title="Menu">

<p>

Burgerworld.com<br/>
~o0

try •~ 8
{

while (get_cat.next()) m
{ n

String Category = ~
get_cat.getString("Item_Category"); ~

m
o> '7

<a href="#<%=Category%>"><%= Category %></a><br/> m
<~0

}
}

catch(SQLException e)
{

}
%>
</p>

</card>

NOTE
i__

You'll notice in the preceding code thafi afl links are going to a local reference called

Category. The card with id Category will be dynamically generated with the remain-

der of the code.

Facebook's Exhibit No. 1004 
Page 125



Sample Applications

PART IV

FIGURE ~H.7

The menu, listing Computers and Soda, has been dynamically generated from the data source.

Believe it or not, that was probably the easy part. Now, we'll repeat the preceding step, and

dynamically generate product cards in the process. To do this, we will repeat the exact s~.~

query for the distinct categories, but then create a card for each one with an ID called

Category as seen in the following code sample, taken from Listing 18.2.

<o
ResultSet get_catcard =null;

ResultSet get_Items =null;

try
{

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

dbConn = DriverManager.getConnection(

"jdbc:odbc:shop"

);
Statement userStmt = dbConn.createStatement();

get_catcard = userStmt.executeQuery(

"SELECT Distinct Item_Category from Items"

);
}

catch (Exception e)
{

out.println("Exception!!!");

out.println(e.getMessage());

return;

}

The query get_catcard generates a list of items in a particular category. It does this by retrie~~-

ing items from the Items table whose category matches the one currently in use. The query

keeps looping through the different categories, generating sublists of products, until all of the

Facebook's Exhibit No. 1004 
Page 126



E-Commerce

CHAPTER ~H

categories in the table have been queried. Assume the query get_catcard is looking at the cat-

~;gory Sodas. It will retrieve all of the products in the items table that are categorized as sodas.

Once the query has retrieved all of the soda products, it stops, goes back, and looks for the

next category. When the application finds the Burgers category, it will reinitiate the

get_catcard query, finding all the different burger products in the items table. All of those

burger products will go into a sublist, which will link each product name to another location

~~here the'user can learn more about the product. You can see how we did this in the following

code sample, taken from Listing 18.2.

try
{

while (get_catcard.next())
{

String CardCategory =get_catcard.getString("Item_Category");

try
{
Class.fiorName("sun.jdbc.odbc.JdbcOdbcDriver");

dbConn = DriverManager.getConnection(
"jdbc:odbc:shop"

)~
Statement userStmt dbConn.crea~eStatement();

get_Ttems = userStmt.executeQuery(
"SELECT * FROM Items WHERE Item_Category= "'

`►+ CardCategory + "'"
~i

catch(Exception e)
{

out.println("Exception!!!");
out.println(e.getMessage());
return;

}

o,0

The next set of code is a little more difficult to understand. Keep in mind that in the code exe-

cution cycle, we are looping through distinct categories at this point.

Now, we are going to dynamically generate a card. The important thing to note is that the card

ID corresponds to the CardCategory, Since the main menu links are linking to a particular cat-

egory, we will dynamically generate cards by using the distinct category names as the card

IDs, as seen in the following code sample. The card for the category Computers can be seen in

Figure 18.8.

18

m
P1
0

m

n
m

Facebook's Exhibit No. 1004 
Page 127



Sample Applications

PaRr IV

<card id="<%= CardCategory %>" title="Order <o= CardCategoryo>">

<p>

<b><%= CardCategory %></b><br/>
<%0

while (get_Items.next())
{

o,0
<a href="orderproduct.jsp?CartID=<o=request.getParameter

~►("CartID")%>&amp;ItemID=<%=get_Items.getString("Item_ID")%>">
~►<%=get_Items.getString("Item_Name")%></a><br/>
< o } o>

<~p>

</card>
<° }0

}
catch (SQLException e)
{
}

o~0
</wml>

FIGURE ~ 8.S

The computers category's subrnenu is displayed on this dynamically generated card.

CAU710N~---- __ _ — --

{n the preceding example, we are dynamically generating an entire WAP deck. This

methodology does have its risks. Et we are not careful, the deck could grow fia a size

that exceeds a device`s ability to publish it, and slow down the application. If the vir-

tual store had many more items, ifi might make more sense to p«blish the main menu

deck as a single main menu card anc{ then have each card be dynamic but self-

contained.

Facebook's Exhibit No. 1004 
Page 128



E-Commerce

CHAPTER 1 F3

S we move on to the ordering stage of the application, we need to give the application some

eans by which to track an order's components. One other important thing to note in the pre-

;ding code sample is that we are tracking items by their unique Item ID. This will become

ren more apparent and critical when we order a product.

NOTE

When writing an e-commerce application, keeping items unique is essential from a

business fulfillmenfi perspective, but also functional from an application development

perspective. Passing around complete item names cou{d make it difficult to keep

track of a long list of products.

ach product in the previous example contained a link to another WML deck called

~derproduct . j sp. We could have again added this card to the main. j sp deck, but because of

ze limitations and presentation issues, we elected to make it another deck altogether.

When creating dynamic WML decks, it is occasionally necessary to separate decks n

based upon your database queries. In general, if a page is drilling down into a spe- ~

cific item's detail, it is not a good idea to put it in the same deck that has basic infor- ~

mation due to query restrictions.
m

showing and Storing Dynamic Product Information _,.
:: t• .

►ur next deck, orderproduct . j sp, is designed to provide the user with details about a partic-
lar product. In this deck we will show all of the relevant information about a particular prod-

et, and then allow the user to enter a quantity. This deck is entered via the main . j sp deck,

There a user selects a category and a product. When the user arrives at the orderproduct . j sp

eck, he will have passed the Item_ID for the product he wants from the Items table as a URL

ariable named Itemlo.

o start this deck off, we are going to do a SELECT *query against the Items table to retrieve

11 of the item information for the selected item, as shown in the code sample below, taken

rom Listing 18.3.

0
Connection dbConn =null;
ResultSet get_Item =null;

Facebook's Exhibit No. 1004 
Page 129



~ ~ Sample Applications
442 _.______._.__.. .............__...,__.~_

..._._._._....__. _... PART IV

// get a connection to the database

try
{

// instantiate the db driver

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

// setup the connection

dbConn = DriverManager.getConnection(

"jdbc:odbc:shop"

)~

// create a statement on the connection

Statement userStmt = dbConn.createStatementO;

// issue the SQL statements

get_Item = userStmt.executeQuery(

"SELECT * from Items where Item ID="

r► + request.getParameter("ItemlD")
)~

}
catch(Exception e)

{
out.println("Exception!!!");

out.println(e.getMessage());
return;

}

%>

After we complete our query, we will display the data and ask the user to enter a quan~it;~ : ~ ~r

the item. Additionally, we have established a soft key called Order that will pass along the

CartlD parameters and ItemTD parameter via a form using the standard postfield method.

This is shown in the following code sample and in Figures 18.9 and 18.10.

<wml>
<card id="OrderIt" title="Order Product">

<do type="accept" label="Order">

<go href="addtocart.jsp">

<postfield name="Quantity" value="$Quantity"/>

<postfield name=°CartID" value="<%= request.getParameter

<postfield name="ItemID" value="<o= request.getParameter

</gp>

</do>
<p>

<o try

~ 
~

Facebook's Exhibit No. 1004 
Page 130



r

E-Commerce

CHAPTER 'I H

{
ifi (get_Item.nextO)

{

ti
<b><%= get_Item.getString("item_Name")o></b><br/>

Cost <%= get_Item.getString("Item_Cost")o><br/>

SKU #<%= get_Item.getString("Item_SKU")o><br/>

Quantity <input type="text" name="Quantity" format="N*"/>

}
}

catch (Exception e)

{
}

~:>
</p>

</card>

:: ml>

FIGURE ~$.9
!~~i~~ card shows the user a dynamically generated list of products in the computer category.

TiP __

B~ using the -~orn;a~~="N*" in the <input> tag for the quantity, we are forcing the user

to enter at (east one number before the form can he submitted. Therefore, this serves

a, an excellent way to verify data. When there is no data entered, the device will not

offer the user the Order soft fcey. As soon as he enters a number, the WAP device wilt

present him with the Order soft key as the data has been validated into the N*

format.

Facebook's Exhibit No. 1004 
Page 131



►^-

Sample Applications .

PART IV

FIGURE 1H.10

Thrs card asks what quantity of the item the user would like to purchase.

Now that the user has entered a quantity as well as verified that he is ordering the correct prod-

uct, we need to send this data to a deck that will place the item in his cart. As you saw earlier,

when the user enters a quantity and presses the Order soft key, we navigate to a deck called

addtocart . j sp. The addtoeart . j sp file takes the item identification number and cart identifi-

cation number, and places it into the Shoppingcart_Items table. This is the table where we

store the ordered products until the user checks out.

L 
~ ~~ ~--

WAP is like any other Internet connection method; a user could theareticaffy shut off

his WAP device at any point and "cancel° his session. Therefore, it's always a good

idea to store data at multip{e staees of the ordering process, in case a user aborts his

session using aHan-traditional e>:it strategy. It should further be Hated that the stor-

age of certain data may, in some countries, run counter to data protection legislation.

You should ensure that your applications comply with the appropriate legislation far

the region where it wil{ be deployed.

The following code example, from Listing 18.3, shows how the application places product

information into the user's shopping cart.

<%0
Connection dbConn =null;

ResultSet get_Item =null;

// get a connection to the database

try

{

Facebook's Exhibit No. 1004 
Page 132



E-Commerce

CHAPTER 'I H

// instantiate the db driver

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

// setup the connection

dbConn = DriverManager.getConnection(

"jdbc:odbc:shop"

);

/( create a statement on the connection

Statement userStmt = dbConn.createStatement()
;

// issue the SQL statements

userStmt.executeUpdate(

"INSERT INTO ShoppingCart_Items(ShoppingCartI
D, Item, Quantity)

»SELECT + request.getParameter("CartiD") + ~~ AS EXPR1, +

~request.getParameter("ItemID") + as EXPR2, "

~.+ request.getParameter("Quantity")

);

catch(Exception e)

{
out.println("Exception!!!");

out.println(e.getMessage());

return;
/! assume no error conditions, for now

}

~'o>

Creating a "Checkout" Proeedure

'the user has now logged in and has an active cart, has chosen 
a category, picked an item, and

entered a quantity. Now, we must offer him a choice to conti
nue shopping or to check out and

purchase the items currently stored in his shopping cart. Since w
e are tracking the user session

via a CartID, we just need to pass the CartiD back to the main.
 j sp page to allow the user to

continue shopping. If he would rather check out, we then need to 
route him to the

checkout . j sp deck. The following code sample, taken from
 Listing 18.3, does this. You can

gee what this card looks like in Figure 18.11.

<wml>

<card id="OrderIt" title="Order Product">

<p>

<b>The item is in your cart!</b><br/>

<a href="main.jsp?CartID=<a=request.getPara
meter

~►(°CartID")o>">Shop More</a>

m
n
0

m

n
m

Facebook's Exhibit No. 1004 
Page 133



__ ~~r

Sample Applications 
___~.____V__.._~._._......_...____._ _ _ _._.~..._,......_.___
PART IV

<a href="checkout.jsp?CartID=<o=request.getParameter
~►("Cart ID")%>">Check Out</a>

</p>

</card>

</wml>

FIGURE ~ 5.11

This card confirms the order and offers the user the option to continue shopping or move on to fanaC checkout.

The checkout , j sp deck is designed to allow a user to verify his order and enter his order
information, address information, and credit card data. The page then takes the user to the final
deck, called finishorder, j sp. The following section, taken from Listing 18.3, executes a
simple query against the database to retrieve the items that are in a cart and then displays the
data in an intuitive format.

<o
Connection dbConn =null;
ResultSet getCart =null;

// get a connection to the database
try
{

// instantiate the db driver
Class.fiorName("sun.jdbc.odbc.JdbcOdbcDriver");

// setup the connection
dbConn = DriverManager.getConnection(

"jdbc:odbc:shop"

)~

Facebook's Exhibit No. 1004 
Page 134



~...
E-Commerce

~._.____v _~ .. _. . _ ___~_~-______ ~ ________~ ____.. _..._ ~ .M._.. __..__ _~_ _ . _.._...._ ___...__.. . __.____. ___._ 447
CHAPTER ~H

// create a statement on the connection

Statement userStmt = dbConn.createStatementO;

// issue the SQL statements

getCart = userStmt.executeQuery(

"SELECT * FROM ShoppingCart_Items INNER JOIN Items ON ShoppingCart

.► Items.Item=Ttems,Item_ID WHERE ShoppingCartID=" + 

.►request.getParameter("CartID")

);

}

catch(Exception e)

{

out.println("Exception!!!");

out.println(e.getMessageO);

return;

}

Dui

18
<wml>

<card id="Checkout" title=°Checkout"> ~

<p> n

<b>Your order:</b><brJ>
a
~

<o try

m
n

{

m

while (getCart.nextO)

{
o~a

<%=getCart.getString("Quantity")%> .

~►<%= getCart.getString("Item_Name")%><br/>
<~

}

}

catch (Exception e)

{

}

%>

<a href="#add">Continue</a>

</p>

</card>

Facebook's Exhibit No. 1004 
Page 135



Sample Applications

PART IV

<card id="add" title="Add an appointment">
<do type="accept" label="Add">
<go hrefi="fiinishorder.jsp">

<postfield name="address" value="$Address"/>
<postfield name="creditcard" value="$CreditCard"/>

<postfiield name="CartID" value="<%= request.getParameter("CartID")o>~~~,

</ga>
</do>

<p>
<b>Order Information</b><br/>

'Address: <input type="text" name="Address"/>

Credit Card: <input type="text" name="CreditCard" />

</p>
</card>

</wml>

You can see the order verification that occurred in the preceding code sample in Figure 18.12.

The address entry field is shown in Figure 18.13 and the credit card number entry field is

shown in Figure 18.14.

Fi~uRE 18.12
This card confirms with the user which products he is about to buy.

As noted earlier, this application does not simulate any credit card verification; but such verifi-

cation would be required in areal-world application.

The f i n i s h o r d e r. j s p deck is really more of a functional deck in terms of data marshalling

than any of our past ones. Since we are using the ShoppingCart_Items table as an order stag-

~~ ink zone, the user has now confirmed his order and we need to send that order to our perma-

nent order tables, called Orders and Order_Items.

Facebook's Exhibit No. 1004 
Page 136



E-Commerce

CHAPTER 1H

FIGURE 1H.~3

T{ors curd allows the user to enter his address, which is stored in the orders table.

i

1~

rn

b

rn
nm

FIGURE 'I $.14

b'crollircg down on the sauce card, users can enter their credit card information, which is also stored in the orders

ruble.

As we mentioned, the Order's table will hold all of the order information: name, credit card,

and address. In the following code, we execute two SQL statements. The first creates the new

order, and the second copies the cart's contents from the ShoppingCart_ztems table to the new

table called order Items.

<o

Connection dbConn = null;

// get a connection to the database
try
{

Facebook's Exhibit No. 1004 
Page 137



Sample Applications

PART IV

// instantiate the db driver
C1ass.forName("sun.jdbc.odbc.JdbcOdbcDriver");

// setup the connection
dbConn = DriverManager.getConnection(

"jdbc;odbc:shop"

);

// create a statement on the connection
Statement userStmt = dbConn.createStatement();

// issue the SQL statements

userStmt.executeUpdate(

"INSERT INTO Orders(Username, Address, Phone, CreditCard,

wOrderID) SELECT 'WEB' as EXPR1, "' + request.getParameter("Address") +

~+ "' AS EXPR2, '555-1212' as EXPR3, "' + request.getParamefier("CreditCard")

r► + "' as expr4, + request.getParameter("Cart2D") + as expr5"

)~

userStmt.executeUpdate(

"INSERT INTO Orders_Produats(OrderTD, ItemID, Quantity)

`► SELECT Shoppi~gCartID, Item, Quantity FROM ShoppingCart_Items WHERE
~► 5hoppingCart2D=" + request.getParameter("CartID")

)~

}

catch(Exception e)
{

out.println("Exception!!!");

out.println(e.getMessageO);

return;
// assume no error conditions, fior now

}

o~0

Finally, we thank the user for his order, and offer him the option to continue to shop. You can

see what this card looks like in Figure 15.15.

<wml>
<card id="Notifiy" title="NotifyUser">

<p>

<b>Thanks for your order!</b><br/>
<a hrefi="login.jsp">Place a new order</a>

</p>

</card>

</wml>

Facebook's Exhibit No. 1004 
Page 138



/.

E-Commerce

CHAPTER 'IH

FIGURE 'IH.15

li~is card thanks the user for his order, and offers him the option of placing a new order.

Complete Code Listings
Now that we've see how the code works and how to build shopping-cart functionality with

WAP, you can reference the complete code listings in the following section. The code listings

can also be found on the CD-ROM that accompanies this book.

login.~sp

LISTING 15.1 The login. jsp File Creates the Login Page

<?xml version="1.0" encoding="UTF-8"?>

<lDOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN" 

"http://www.wapforum.org/DTDIwm112.dtd">

<% response.setContentType("text/vnd.wap.wml"); %>

<o@ page import="java.sgl.*, javax.servlet.http.Cookie" %>

<a

Connection dbConn =null;

int CartLD=-1;

ResultSet get_cart = null;

try
{

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

dbConn = DriverManager.getConnection(

"jdbc:odbc:shop"

);
Statement userStmt = dbConn.createStatement();

ii

EF

1
~'j

~#

18

rn

Q

~,

Facebook's Exhibit No. 1004 
Page 139



Sample Applications

PART IV

LISTING 1H.1 Continued

get_cart = userStmt.executeQuery(

"SELECT VALUE from Vars WNERE Name='CA
RT "'

);

if (get_cart.next()) {

CartID = get_cart.getInt("Value");

userStmt.executeUpdate(

"UPDATE Vars SET [Value]=[Value]+1 WHE
RE Name='CART "'

)~
}

else
{

CartID=1;

userStmt.executeUpdate(

"INSERT INTO Vars(Name, [Value]) SELEC
T 'CART' AS EXPR1, 2 as EXPR2"

);

}

}
catch(Exception e)

{

}

o~a

out.println("Exception!!!");

out.println(e.getMessage());

return;
// assume no error conditions, for now

<wml>
<card id="Welcome" title="Welcome">

<p>

<b>Burgerworld.com</b>

Burgers, Fries, Soda, and Computers... to 
go<br/>

<a href="main.jsp?CartID=<o=CartI~o>">Enter<
/a>

~~p~

</card>

</wml>

Facebook's Exhibit No. 1004 
Page 140



E-Commerce

CHAPTER 'I S

gain . j sp

,tST~NG 18.2 The main. jsp File Drives Dynam ic Catalog Content to the User

~ response.setContentType("text/vnd.wap.wml"); %>

?xml version="7.0" encoding="UTF-8"?>

~i~~lDOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1,2//EN" 

`h~tp://www.wapforum.org/DTD/wmll2.dtd">

~@ page import="java.sgl.*, javax.servlet.http.Cookie" %>

0
Connection dbConn = null;

ResultSet get_cat = null;

ResultSet get_products = null;

boolean isMore =false;

/J get a connection to the database

try
{

// instantiate the db driver

Class.fiorName("sun.jdbc.odbc.JdbcOdbcDriver");

// setup the connection

dbConn = DriverManager,getConnection(

"jdbc:odbc:shop"

);

// create a statement on the connection

Statement userStmt = dbConn.createStatement();

// issue the SQL statements

get_cat = userStmt.executeQuery(

"SELECT Distinct Item_Category from Items"

);

}

catch(Exception e)

{

out.println("Exception!!!"};

out.println(e.getMessage());

return;

// assume no error conditions, for now

}

m
n
0

m
nm

-, ~.

Facebook's Exhibit No. 1004 
Page 141



I Sample Applications
454 !.......... _ . __...... ..... .. _..~........ ~...... _...._

_____~.,I PART IV

LISTING 18.2 Continued
o,
o

<wml>
<card id="MainMenu" title="Menu">

<p>

Burgerworld.com<br/>
<°0

try
{

while (get_cat.next())
{
String Category = get_cat.getString

r►("Item_Category");
%>
<a hrefi="#<%=Category%>"><%= Category %></a><br/>
<o

}
}

catch(SQLException e)
{
}

~>
</p>

</card>

<o
ResultSet get_catcard =null;
ResultSet get_Items =null;
try
{

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
dbConn = DriverManager.getConnection(

"jdbc:odbc:shop"

);
Statement userStmt = dbConn.createStatementO;
get_catcard = userStmt.executeQuery(

"SELECT Distinct Item_Category from Items"

)s

}

catch(Exception e)
{
out.println("Exception!!!");
out.println(e.getMessage());

return;

Facebook's Exhibit No. 1004 
Page 142



Y' ~-Commerce
~.

~ CHAPTER 18

}

try
{

while (get_catcard.next())
{
String CardCategory =get_catcard.getString("Item_Category");

try
{
Class.fiorName("sun.jdbc.odbc.JdbcOdbcDriver");

dbConn = DriverManager.getConnection(

"jdbc:odbc:shop"

);
Statement userStmt = dbConn.createStatement();

get_Items = userStmt.executeQuery(

"SELECT * FROM Items WHERE Ttem_Category='°

.+ CardCategory + ""'

)~
}
catch(Exception e)
{

out.prinfiln("Exception!!!");
out.println(e.getMessage());
return;

}

w~>

<card id="<~= CardCafiegory ~>" title="Order <~_

4CardCategory~s>"~
<p>

<b><~= CardCategory ~s></b><br/>
<~

while (get_Items.next())
{

-;>

<a href="orderproduct,jsp?CartID=<~=request.getParameter("CartID")
-►~>&amp;ItemID=<~=get_Items,getString("Item_ID")~>"><~=get_Items.getString

', -►("Item_Name")~><!a><br/>
,:~ } ~>

</p>

</card>
<~ }

}
catch (SQLException e)

{

455 ~
_ __ ___~

18

m

0

m

m

Facebook's Exhibit No. 1004 
Page 143



Sample Applications

PART IV

L~sTiN~ 18.2 Continued

}
~>0

</wml>

orderproduct.jsp

LISTING 'IEi.3 The orderproduct. j sp File Allows the User to Verify the Item and Specify
a Quantity

<o response. setContentType("text/vnd.wap.wml"); °o,

<?xml version="1 .0" encoding="UTF-8"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN" 

"http://www.wapfiorum.org/DTD/wmll2.dtd">

<%@ page import="java.sgl.*, javax.servlet.http.Cookie" o>

~o0

Connection dbConn = null;

ResultSet get_Item = null;

/1 get a connection to the database

t ~~y

// instantiate the db driver
Class.fiorName("sun.jdbc.odbc.JdbcOdbcDriver");

!/ setup the connection

dbConn = DriverManager.getConnection(

"jdbc:odbc:shop"

);

(/ create a statement on the connection

Statement userStmt = dbConn.createStatementO;

// issue the SQL statements

get_Item = userStmt.executeQuery(

"SELECT * from Items where Item ID=" +

~►request.getParameter("ItemID")
);

}

catch(Exception e)

{

Facebook's Exhibit No. 1004 
Page 144



~ E-Commer~ 8
_...... 4

CHAPTER ~._____~
~'

out.println("Exception!!!");
out.println(e.getMessage());

return;
// assume no error conditions, fior now

}

.J~

<~.vm 1>
<card id="OrderIt" title="Order Product">

<do type="accept" label="Order">

<go hrefi="addtocart.jsp">

<postfiield name="Quantity" value="$Quantity"/>

<postfield name="CartID" value="<%=

.►request.getParameter("CartID")%>"/>
<postfiield name="ItemID" value=°<%=

~►request.getParameter("ItemID")%>"/>
</ga>

c/do>
<p>

-- try 18~. o
{

i~F (get_Item.next()) m
{ ~a

;> ~
<b><o= get_Item.getString("Ttem_Name")%></b><brl> ~m
Cost <%= get_Item.getString("Item_Cost")%><br/> m

SKU #<o= get_Item.getString("Item_SKU")%><br/>

Quantity <input type="text" name="Quantity" fiormat="N*"/>

<~ }0
}
catch (Exception e)
{
}

%>

</p>
</card>

</wml>

Facebook's Exhibit No. 1004 
Page 145



~~

Sample Applications

PART IV

addtocart.jsp

L~sT~NG 1$.4 The addtocart. jsp File Adds the Selected Item to the User's Cart and

Prompts for "Checkout"

<% response. setContentType("text/vnd.wap.wml"); °o>
<?xml version="1 .0" encoding="UTF-8"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN" 

"http://www.wapfiorum.org/DTD/wmll2.dtd">

<%@ page import="java.sgl.*, javax.servlet.http.Cookie" o>

<°0

Connection dbConn = null;

ResultSet get_Item = null;

/1 get a connection to the database

t ry
{

// instantiate the db driver
Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

!/ setup the connection
dbCann = DriverManager.getConnection(

"jdbc:odbc:shop"

);

// create a statement an the connection

Statement userStmt = dbConn.createStafiement();

// issue fihe SQL statements

userStmt.executeUpdate(
"INSERT INTO ShoppingCart_Items(ShoppingCartID, Item, Quantity)

~► SELECT + request.getParameter("CartID") + AS EXPR1, "

~► + request.getParameter("ItemID") + as EXPR2, + request.getParameter

4►(••Quantity•• )
)6

}

catch(Exception e)
{

out.println("Exception!!!");

out.println(e.getMessageO~;

return;
// assume no error conditions, for now

}

Facebook's Exhibit No. 1004 
Page 146



r

__ 

__~

~ Commerce 
459...... _.... .

CHAPTER 1S __ _

~~

<Nllll L ~

<card id="OrderIt" title="Order Product">
<p>

<b>The item is in your cart!</b><br/>

<a href="main.jsp?Cart ID=<%=request.getParameter

..;°Cart ID")%>">Shop More</a>

<a href="checkout.jsp?CartID=<%=request.getParameter

w~~~CartID")%>">Check Out</a>

</p>
</card>

< wml>

checkout.jsp

LISTING 'I S.5 The checkout. jsp File Lists All Ordered Items and Allows the User to Enter ,18

His Shipping and Ordering Data

:'. response. setContentType("text/vnd.wap.wml"); %> 1̂

?<ml version="1.0" encoding="UTF-8"?> p

~:DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN" ~

http://www.wapforum.org/DTD1wm112,dtd"> ~

<'~@ page import="java.sgl.*, javax.servlet.http.Cookie" %> m

<°s
Connection dbConn = nu11;

ResultSet getCart = null; t, ,.~.

// get a connection to the database

try
{

// instantiate the db driver
Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

// setup the connection

dbConn = DriverManager.getConnection(

"jdbc:odbc:shop°

);

// create a statement on the connection

Statement userStmt = dbConn.createStatement();

Facebook's Exhibit No. 1004 
Page 147



Sample Applications
460 ~ ... ......_... . ~ _......... __ _.._.....

~___~_~. PART N

LisTiN~ 18.5 Continued

// issue the SQL statements

getCart = userStmt.executeQuery(

"SELECT * FROM ShoppingCart_Items INNER JOIN Items

~►ON ShoppingCart_Items.Item=Items.Item_ID WHERE ShoppingCartID="
~►+ request.getParameter("CartID")

);

}

catch(Exception e)

{

out.println("Exception!!!");

out.println(e.getMessage());

return;
// assume no error conditions, fior now
}

~>0

<wml>

<card id="Checkout" title=°Checkout">
<p>

<b>Your order:<1b><br!>

<° try0
{

while (getCart.next())
{

o,0
<%=getCart.get5tring("Quantity")%>

~►<%= getCart.getString("Item_Name")%><br/>
<a

}
}
catch (Exception e)
{
}

~>0
<a hrefi="#add">Continue</a>

</p>
</card>

<card id="add" title="Add an appointment">

Facebook's Exhibit No. 1004 
Page 148



E-Commerce

CHAPTER 'IH ~____~~

<do type="accept" label="Add">
<go href="finishorder.jsp">
<postfield name="address" value="$Address"/>
<postfield name="creditcard" value="$CreditCard"/>
<postfield name="CartID" value="<~= request.getParameter("CartID")~>"/>

</go>

</do>

<p>
<b>Order Infiormation</b><br/>
Address: <input type="text" name="Address"/>

Credit Card: <input type="text" name="CreditCard" />
</p>

<(card>

</wml>

finishorder.jsp

LISTING 18.6 The finishorder. j sp File Completes the User's Order and Adds It to the

order Database Table

<o response.setContentType("text/vnd.wap.wml"); %>

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN" 
"http://www.wapforum.org/DTD/wmll2.dtd">

<o@ page import="java.sgl.*, javax.servlet.http.Cookie" ~>

<~

Connection dbConn = null;

// get a connection to the database
try
{

// instantiate the db driver
Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

// setup the connection
dbConn = DriverManager.getConnection(

"jdbc:odbc:shop"

);

rn
r1
a

m
nM

// create a statement on the connection

Statement userStmt = dbConn.createStatement();

Facebook's Exhibit No. 1004 
Page 149



r

Sample Applications

PART IV

LISTING 18.6 Continued

// issue the SQL statements

userStmt.executeUpdate(
"INSERT INTO Orders(Username, Address, Phone, CreditCard,

~►OrderID) SELECT 'WEB' as EXPR1, "' + request.getParameter("Address")
~►+ "' AS EXPR2, '555-1212' as EXPR3, "' + request.getParameter("CreditCard")
~►+ "' as expr4, + request.getParameter("CartID") + as expr5"

)~

userStmt.executeUpdate(

"INSERT INTO Orders_Products(OrderID, ItemID, Quantity)

~► SELECT ShoppingCartID, Item, Quantity FROM ShoppingCart_Items

►WHERE ShoppingCartID=" + request.getParameter("CartID")

);

}

catch(Exception e)

{

out.println("Exception!!!");

out.println(e.getMessageO);

return;
// assume no error conditions, fior now

}

oy0

<wml>

<card id="Notifiy" title="NotifyUser">

<p>

<b>Thanks for your order!<1b><br/>

<a hrefi="login.jsp">Place a new order</a>

</p>

</card>

</wml>

Summary
E-commerce is a highly practical and exciting application for mobile users. For this fourth and

final sample application, we showed you a complex example of how an e-commerce applica-

tion might work using JSP and WAP. We showed you what kinds of data we needed to store in

the data source, and how the set of tables we created were used throughout the application.

Facebook's Exhibit No. 1004 
Page 150



't~? E-Commerce a~~
CHAPTER 'I S

N~~t, we showed you how to keep track of the user's shopping session with a specific User ID

that ~'as passed throughout the application. Once 
that was established, we dynamically gener-

at~d categories and product lists, so that the application would be scalable and able to adapt to

~tlanging products and additional categories. To keep track of the users' selections, we created

a familiar "shopping cart," which held items until they were ready for purchase. Finally, we

cleated a way for the user to purchase those items by collecting purchase information and stor-

iilg that data with the product data in a separate table.

Although this e-commerce application was fairly straightforward, we built it in such a way that

:l.lditional products or categories could, at any time, be added to the data source without

i~~.~uiring any changes to the code shown here. This kind of scalability will be critical for other

kinds of e-commerce applications, because products and pricing can change at a moment's

notice.

~VAP is a powerful way to interface with mobile devices. When joined with a more dynamic

technology, like JSP, the fiill potential of WAP can be realized in all kinds of applications, such

as e-commerce. It is then that we can bring any kind of data to anyone, anywhere, using WAP.

m
n
0

rn

n

Facebook's Exhibit No. 1004 
Page 151




