
ServiceNow, Inc.'s Exhibit 1007001

Using java in Service-Oriented Architectures 

O'REIILLY® David A. Chappell & Tyler jewell 



ServiceNow, Inc.'s Exhibit 1007002

Java ™ Web Services 
by David A. Chappell and Tyler jewell 

Copyright© 2002 O'Reilly & Associates, Inc. All rights reserved. 
Printed in the United States of America. 

Published by O'Reilly & Associates, Inc., 1005 Gravenstein Highway North , Sebastopol, CA 
95472. 

O'Reilly & Associates books may be purchased for educational, business, or sales promotional 
use. Online editions are also available for most titles (safari.oreilly.com). For more information 
contact our corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com. 

Editor: 

Production Editor: 

Cover Designer: 

Interior Designer: 

Printing History: 

March 2002: 

Mike Loukides 

Ann Schirmer 

Emma Colby 

Melanie Wang 

First Edition. 

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered 
trademarks of O'Reilly&: Associates, Inc. Java™ and all Java-based trademarks and logos are 
trademarks or registered trademarks of Sun Microsystems, Inc. , in the United States and other 
counties. O'Reilly & Associates, Inc. is independent of Sun Microsystems. Many of the 
designations used by manufacturers and sellers to distinguish their products are claimed as 
trademarks. Where those designations appear in this !book, and O'Reilly & Associates, Inc. was 
aware of a trademark claim, the designations have been printed in caps or initial caps. The 
association between the image of a European ibex and] ava web services is a trademark of O'Reilly 
& Associates, Inc. 

While every precaution has been taken in the preparation of this book, the publisher and author 
assume no responsibility for errors or omissions, or for damages resulting from the use of the 
information contained herein. 

ISBN: 0-596-00269-6 

[M] [11/02] 



ServiceNow, Inc.'s Exhibit 1007003

Table of Contents 

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . vii 

1. Welcome to Web Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 1 
What Are Web Services? 

Web Services Adoption Factors 

Web Services in a J2EE E!Jvironment 

What This Book Discusses 

1 
7 

10 

11 

2. Inside the Composite Computing Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 
Service-Oriented Architecture 14 

The P2P Model 23 

3. SOAP: The Cornerstone of lnteroperability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 
Simple 25 

Object 26 

Access 
Protocol 

Anatomy of a SOAP Message 

Sending and Receiving SOAP Messages 

The Apache SOAP Routing Service 

SOAP with Attachments 

27 

27 

28 
32 

45 

49 

4. SOAP-RPC, SOAP-Faults, and Misunderstandings . . . . . . . . . . . . . . . . . . . . . . . 54 
SOAP-RPC 54 

Error Handling with SOAP Faults 63 
SOAP Intermediaries and Actors 69 

v 



ServiceNow, Inc.'s Exhibit 1007004

5. Web Services Description Language ... . ....... . ................. . .... 72 
Introduction to WSDL 73 

Anatomy of a WSDL Document 74 

Best Practices, Makes Perfect 96 

Where Is All the Java? 96 

6. UDDI: Universal Description, Discovery, and Integration ................ 98 
UDDI Overview 

UDDI Specifications and Java-Based APis 

Programming UDDI 

Using WSDL Definitions with UDDI 

99 

102 

104 

137 

7. JAX-RPC and JAXM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 
Java API for XML Messaging QAXM) 

JAX-RPC 

SOAPElement API 

JAX-RPC Client Invocation Models 

141 

160 

165 

166 

8. J2EE and Web Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 
The SOAP-J2EE Way 

The Java Web Service QWS) Standard 

173 

188 

9. Web Services lnteroperability ............ .. ........................ 191 
The Concept of lnteroperability 191 

The Good, Bad, and Ugly of Interoperability 191 

Potential lnteroperability Issues 205 

SOAPBuilders lnteroperability 207 

Other lnteroperability Resources 

Resources 

230 

233 

10. Web Services Security ................................ . ........ . ... 236 
Incorporating Security Within XML 23 7 

XML Digital Signatures 238 

XML Encryption 243 

SOAP Security Extensions 250 

Further Reading 252 

Appendix: Credits ......................... . ....................... . .... 253 

Index ........ . ............................... . ........................ 255 

vi I Table of Contents 



ServiceNow, Inc.'s Exhibit 1007005

CHAPTER 1 

Welcome to Web Services 

The promise of web services is to enable a distributed environment in which any 
number of applications, or application components, can intemperate seamlessly 
among and between organizations in a platform-neutral, language-neutral fashion. 
This interoperation brings heterogeneity to the world of distributed computing once 
and for all. 

This book defines the fundamentals of a web service. It explores the core technolo­
gies that enable web services to intemperate with one another. In addition, it 
describes the distributed computing model that the core web service technologies 
enable and how it fits into the bigger picture of integration and deployment within 
the J2EE platform. It also discusses interoperability between the J2EE platform and 
other platforms such as . NET. 

What Are Web Services? 
A web service is a piece of business logic, located somewhere on the Internet, that is 
accessible through standard-based Internet protocols such as HTTP or SMTP. Using 
a web service could be as simple as logging into a site or as complex as facilitating a 
multi-organization business negotiation. 

Given this definition, several technologies used in recent years could have been clas­
sified as web service technology, but were not. These technologies include win32 
technologies, J2EE, CORBA, and CGI scripting. The major difference between these 
technologies and the new breed of technology that are labeled as web services is their 
standardization.. This new breed of technology is based on standardized XML (as 
opposed to a proprietary binary standard) and supported globally by most major 
technology firms. XML provides a language-neutral way for representing data, and 
the global corporate support ensures that every major new software technology will 
have a web services strategy within the next couple years. When combined, the soft­
ware integration and interoperability possibilities for software programs leveraging 
the web services model are staggering. 

1 



ServiceNow, Inc.'s Exhibit 1007006

A web service has special behavioral characteristics: 

XML-based 
By using XML as the data representation layer for all web services protocols and 
technologies that are created, these technologies can be interoperable at their 
core level. As a data transport, XML eliminates any networking, operating sys­
tem, or platform binding that a protocol has. 

Loosely coupled 
A consumer of a web service is not tied to that web service directly; the web ser­
vice interface can change over time without compromising the client's ability to 

interact with the service. A tightly coupled system implies that the client and 
server logic are closely tied to one another, implying that if one interface 
changes, the other must also be updated. Adopting a loosely coupled architec­
ture tends to make software systems more manageable and allows simpler inte­
gration between different systems. 

Coarse-grained 
Object-oriented technologies such as Java expose their services through individ­
ual methods. An individual method is too fine an operation to provide any use­
ful capability at a corporate level. Building a Java program from scratch requires 
the creation of several fine-grained methods that are then composed into a 
coarse-grained service that is consumed by either a client or another service. 
Businesses and the interfaces that they expose should be coarse-grained. Web 
services technology provides a natural way of defining coarse-grained services 
that access the right amount of business logic. 

Ability to be synchronous or asynchronous 
Synchronicity refers to the binding of the client to the execution of the service. In 
synchronous invocations, the client blocks and waits for the service to complete 
its operation before continuing. Asynchronous operations allow a client to 

invoke a service and then execute other functions. Asynchronous clients retrieve 
their result at a later point in time, while synchronous clients receive their result 
when the service has completed. Asynchronous capability is a key factor in 
enabling loosely coupled systems. 

Supports Remote Procedure Calls (RPCs) 
Web services allow clients to invoke procedures, functions, andl methods on 
remote objects using an XML-based protocol. Remote procedures expose input 
and output parameters that a web service must support. Component develop­
ment through Enterprise JavaBeans (EJBs) and .NET Components has increas­
ingly become a part of architectures and enterprise deployments over the past 
couple of years. Both technologies are distributed and accessible through a vari­
ety of RPC mechanisms. A web service supports RPC by providing services of its 
own, equivalent to those of a traditional component, or by translating incoming 
invocations into an invocation of an EJB or a .NET component. 

2 I Chapter 1: Welcome to Web Services 



ServiceNow, Inc.'s Exhibit 1007007

Suppor~docurnentexchange 

One of the key advantages of XML is its generic way of representing not only 
data, but also complex documents. These documents can be simple, such as 
when representing a current address, or they can be complex, representing an 
entire book or RFQ. Web services support the transparent exchange of docu­
ments to facilitate business integration. 

The Major Web Services Technologies 
Several technologies have been introduced under the web service rubric and many 
more will be introduced in coming years. In fact, the web service paradigm has 
grown so quickly that several competing technologies are attempting to provide the 
same capability. However, the web service vision of seamless worldwide business 
integration is not be feasible unless the core technologies are supported by every 
major software company in the world. 

Over the past two years, three primary technologies have emerged as worldwide 
standards that make up the core of today's web services technology. These technolo­
gies are: 

Simple Object Access Protocol (SON') 
SOAP provides a standard packaging structure for transporting XML docu­
ments over a variety of standard Internet technologies, including SMTP, HTTP, 
and FTP. It also defines encoding and binding standards for encoding non-XML 
RPC invocations in XML for transport. SOAP provides a simple structure for 
doing RPC: document exchange. By having a standard transport mechanism, 
heterogeneous clients and servers can suddenly become interoperable .. NET cli­
ents can invoke E]Bs exposed through SOAP, and java clients can invoke .NET 
Components exposed through SOAP. 

Web Service Description Language (WSDL) 
WSDL is an XML technology that describes the interface of a web service in a 
standardized way. WSDL standardizes how a web service represents the input 
and output parameters of an invocation externally, the function's structure, the 
nature of the invocation (in only, in/out, etc.), and the service's protocol bind­
ing. WSDL allows disparate clients to automatically understand how to interact 
with a web service. 

Universal Description, Discovery, and Integration (UDDI) 
UDDI provides a worldwide registry of web services for advertisement, discov­
ery, and integration purposes. Business analysts and technologists use UDDI to 
discover available web services by searching for names, identifiers, categories, or 
the specifications implemented by the web service. UDDI provides a structure 
for representing businesses, business relationships, web services, specification 
metadata, and web service access points. 

What Are Web Services? I 3 



ServiceNow, Inc.'s Exhibit 1007008

Individually, any one of these technologies is only evolutionary. Each provides a 
standard for the next step in the advancement of web services, their description, or 
their discovery. However, one of the big promises of web services is seamless, auto­
matic business integration: a piece of software will discover, access, integrate, and 
invoke new services from unknown companies dynamically without the need for 
human intervention. Dynamic integration of this nature requires the combined 
involvement of SOAP, WSDL, and UDDI to provide a dynamic, standard infrastruc­
ture for enabling the dynamic business of tomorrow. Combined, these technologies 
are revolutionary because they are the first standard technologies to offer the prom­
ise of a dynamic business. In the past, technologies provided features equivalent to 

SOAP, WSDL, and UDDI in other languages, but they weren't supported by every 
major corporation and did not have a core language as flexible as XML. 

Figure 1-1 provides a diagram that demonstrates the relationship between these three 
technologies. 

-- ... ------ ------
Application '. 

--~ : ,--··---··--------------
SOAP processor 

~ 

SOAP J HTTP request 
dient t~: ""i-~~:..,.·=====-~Hn;;;P;:res=po=n~.se~-

' I 
' 

' ' 

Figure 1-1. Simple web service interaction 

Discrete 
business 

logic 

Service 
'------~---- ----------~' 

The relationship between these pieces (SOAP, WSDL, and UDDI) can be described as 
follows: an application acting in the role of a web services client needs to locate 
another application or a piece of business logic located somewhere on the network. 
The client queries a UDDI registry for the service either by name, category, identifier,, 
or specification supported. Once located, the client obtains information about the 
location of a WSDL document from the UDDI registry. The WSDL document con­
tains information about how to contact the web service and the format of request mes­
sages in XML schema. The client creates a SOAP message in accordance with the XML 
schema found in the WSDL and sends a request to the host (where the service is). 

Service-Oriented Architecture in a Web Services Ecosystem 
The web services model lends itself well to a highly distributed, service-oriented 
architecture (SOA). A web service may communicate with a handful of standalone 
processes and functions or participate in a complicated, orchestrated business pro­
cess. A web service can be published, located, and invoked within the enterprise, or 
anywhere on the Web. 

4 I Chapter 1: Welcome to Web Services 



ServiceNow, Inc.'s Exhibit 1007009

As illustrated in Figure 1-2, a service might be simple and discrete, such as an inter­
national currency conversion service. It may also be a whole suite of applications rep­
resenting an entire business function, such as an auto insurance claims processor. At 
the mass-consumer market, web services may provide something like a restaurant 
finder application for a handheld device that knows who and where you are. It could 
also take the form of an application that participates in an exchange between a busi­
ness entity and its suppliers. 

.. --- ... -- -.. ---- -... 
Application ' 

' I 
I 

' 

SOAP processor 

~ Discrete 
business 

logic 

'~---- _____ s_e_~i_c! ________ _ 
.,------------------~--- ... ' 

SOAP li:±:==j=: ;;::::::==:=:~==~-
; client f:T : One-way 

SOAP processor 
I 
I 
I 

~'-------- ~--- ___ ., 

:f 

Application 

Application 

Service 
' - -- ---------- -- - -- ~--- -' 

Figure 1-2. Discrete components in a web services architecture 

Whether a service is implemented as a fine-grained component performing a dis­
crete operation or as an application suite exposing an entire business function, each 
can be considered a self-contained, self-describing, modular unit that participates in 
a larger ecosystem .. As illustrated in Figure 1-3, a web service can access and encap­
sulate other web services to perform its function. For example, a portal such as www. 
boston.com may have a restaurant finder application that is exposed as a web ser­
vice. The restaurant finder service may in tum access Mapquest as a web service in 
order to get directions. 

Eventually, these small ecosystems can all be combined into a larger, more compli­
cated, orchestrated business macrocosm. 

A service-oriented architecture may be intended for use across the public Internet, or 
built strictly for private use within a single business or among a finite set of estab­
lished business parmers. 

Practical Applications for Web Services 
Because of the cross-platform interoperability promised by SOAP and web services, 
we can provide practical business solutions to problems that, until now, have only 
been a dream of distributed-computing proponents. 

What Are Web Services? I 5 



ServiceNow, Inc.'s Exhibit 1007010

I 

I 

' 

, 

I 
\ 

Application :'-~,-..=:::::::::::::::::::::::::: =,=:::::::::::::::::::: ::: .. ~ ',, 
I I I \ t 
I I I 

.,._ -- .. --... --- - ---

·---f •' 
....._----r------'--1 --{ SOAP processor 

,___..:.:;Response : : 

!~ 
' ' 

t .,._ - - - - - - - - - - - - .. 

: : Application 

SOAP 
dlent 

Discrete 
business 

logic 

Service 
--------------------

~ Application 

Application 

Service 

' \ 

I 

. . 
, I 

--------------------~ I 

'---------------------------------------------------' 
, Service 
~------------------------------------------------------i 

Figure 1-3. Web services within a larger ecosystem 

It's easy to see the use for simple, discrete web services such as a currency conver­
sion service that converts dollars to Euros or a natural language translation service 
that converts English to French. Today, web sites such as www.xmethods.com are 
dedicated to hosting simple web services 

This scenario becomes more exciting when we see real companies using web services 
to automate and streamline their business processes. Let's use the concept of a Busi­
ness-to-Consumer (B2C) portal. Web-based portals, such as those used by the traver 
industry, often combine the offerings of multiple companies' products and services 
and present them with a unified look and feel to the consumer accessing the portal. 
It's difficult to integrate the backend systems of each business to provide the adver­
tised portal services reliably and quickly. 

Web services technology is already being used in the integration between Dollar Rent 
A Car Systems, Inc. and Southwest Airlines Co. Dollar uses the Microsoft SOAP 
Toolkit to integrate its online booking system with Southwest Airlines Co.'s site. 
Dollar's booking system runs on a Sun Solaris server, and Southwest's site runs on a 
Compaq Open VMS server. The net result (no pun intended) is that a person book­
ing a flight on Southwest Airline's web site can reserve a car from Dollar without 
leaving the airline's site. The resulting savings for Dollar are a lower cost per transac­
tion. If the booking is done online through Southwest and other airline sites, the cost 
per transaction is about $1.00. When booking through traditional travel agent net­
works, this cost can be up to $5.00 per transaction. 

The healthcare industry provides many more scenerios in which web services can be 
put to use effectively. A doctor carrying a handheld device can access your records, 
health history, and your preferred pharmacy using a web service. The doctor can also 
write you an electronic prescription and send it directly to your preferred pharmacy 

6 I Chapter 1: Welcome to Web Services 



ServiceNow, Inc.'s Exhibit 1007011

via another web service. If all pharmacies in the world standardized a communica­
tion protocol for accepting prescriptions, the doctor could write you a subscription 
for any pharmacy that you selected. The pharmacy would be able to fulfill the pre­
scription immediately and have it prepared for you when you arrive or couriered to 
your residence. 

This model can be extended further. If the interfaces used between doctors and phar­
macies are standardized using web services, a portal broker could act as an interme­
diary between doctors and pharmacies providing routing information for requests 
and better meet the needs of individual consumers. For example, a patient may regis­
ter with an intermediary and specify that he wants to use generic drugs instead of 
expensive brand names. An intermediary can intercept the pharmaceutical web ser­
vice request and transform the request into a similar one for the generic drug equiva­
lent. The intermediary exposes web services to doctors and pharmacies (in both 
directions) and can handle issues such as security, privacy, and nonrepudiation. 

Web Services Adoption Factors 
Web services are new technologies and require a paradigm shift. The adoption of 
web services is directly impacted by the adoption of the paradigm of web services 
development. · 

A paradigm shift can happen quickly in a large wave, when suddenly the whole 
world is doing something differently, and no one notices how and when it happened 
until after the fact. An example of such a shift is the World Wide Web phenomenon 
that began around 1995. The combination of HTML, HTTP, and the CGI program­
ming model is not the most efficient way to accomplish the services offered by these 
technologies, yet the CGI model gained widespread grassroots acceptance because it 
was simple and easy to adopt. 

The acceptance of CGI started the wave. To become a lasting paradigm shift, the 
model of web-based business needed broader acceptance among corporate IT and 
industry leaders. This acceptance was encouraged by continuing standards develop­
ment within W3C and IETF and through continuing technology innovations such as 
ISAPI, NSAPI, Java Servlets, and application servers. Eventually, high-level architec­
tures and infrastructures such as .NET and J2EE were created to hold everything 
together. 

Unlike the initial adoption of the Web, which was driven by grass-roots demand, the 
adoption of web services will be driven downward by corporations. It's still a para­
digm shift, but it's likely to move more slowly. The adoption of the fax machine pro­
vides a good analogy. Because fax machines were initially large expensive devices, 
they were adopted first by large businesses as a way to communicate between their 
offices. As more companies bought fax machines, they became important for 
business-to-business communications. Today, fax machines are nearly ubiquitous-

Web Services Adoption Factors I 7 



ServiceNow, Inc.'s Exhibit 1007012

you can fax in your pizza order. We expect to see the same trend in web services. 
They will be used first for internal business communications before they become part 
of everyday life. In all cases, though-the rapid adoption of the Web, the slower 
adoption of the fax machine, and the current adoption of web services-the same 
factor has enabled the paradigm shift. That factor is a standards communications 
mechanism. Whether the standard be the phone line and FAX protocols, the TCP liP 
stack and HTTP (together with the phone line and modem protocols), or the web 
service protocols, standards have been, and continue to be., the key factor in enabling 
the acceptance of new technologies. 

Industry Drivers 
Many tangible drivers make web services technology attractive, both from a business 
and a technical perspective. Classic Enterprise Application Integration (EAI) prob­
lems require applications to integrate and interoperate. Even within a particular busi­
ness unit, there exist islands of IT infrastructure. For example, a Customer 
Relationship Management ( CRM) system may have no knowledge of how to com­
municate with anything outside of its own application suite. It may need to commu­
nicate with a third-party Sales Order system so it can know about new customers as 
soon as they place their first order. 

Corporate acquisitions and mergers are also an issue. Entire parallel business appli­
cation infrasltructures have to be synchronized or merged. Business partners such as 
suppliers and buyers need to collaborate across corporate boundaries. 

These EAI and B2B problems exist in abundance and are increasing exponentially. 
Every new deployed system becomes a legacy system, and any future integration with 
that system is an EAI or B2B problem. As the growth of integration problems and 
projects accelerates over the next couple of years, the standards-based approach that 
web services offer makes adopting web services technology an attractive option for 
companies that need to cost-effectively accomplish seamless system integration. 

lessons learned from Recent History 
Some industry analysts claim that the web service model is causing a paradigm shift 
that will change the way distributed computing is done forever. Others say that this 
model is just a fad that will go away soon. Currently, web services is still very much 
in the hype phase. Drawing parallels to other new technologies can teach us impor­
tant lessons. 

Other distributed-computing models have had an opportunity to gamer universal 
acceptance and adoption, yet they have not. While these models offer great techni­
cal advantages for solving real problems, none have achieved the massive wide­
spread adoption that their proponents had hoped for. This is largely due to their 
proprietary nature and the inevitable vendor lock-in. Though COM/DCOM had a 
widespread following, it could not permeate an enterprise because it was limited to 

8 I Chapter 1: Welcome to Web Services 



ServiceNow, Inc.'s Exhibit 1007013

Microsoft platforms. CORBA was controlled by the OMG, a neutral standards body. 
However, software availability was a problem. There were really only two robust 
vendor implementations: Iona and Visigenic. 

Forcing middleware infrastructure down the throats of other departments and busi­
ness partners is nolt easy. Both CORBA and DCOM required that a piece of the ven­
dor-supplied middleware be installed at every node of the system. You can't always 
force a business partner to install a piece of your software at their site for them to be 
able to participate in business transactions with your systems. Even within the four 
walls of an organization, agreeing upon and rolling out an enterprise-wide middle­
ware solution is a huge, concerted effort. CORBA implementations eventually 
achieved cross-vendor interoperability, but by then it was too late; the wave had 
already passed. 

Crossing corporate boundaries in a secure, reliable fashion is key. If you go back only 
as far as 1996 to 1997, you would have seen every trade magazine talking about a 
world of distributed COREA objects happily floating around on the Internet, discov­
ering one another dynamically and communicating through firewalls. Standards were 
proposed for firewall communications, and IIOP was going to be adopted by all 
major firewall vendors as a recognizable protocol. It just never happened-partly 
due to the aforementioned adoption problems and partly due to widespread adop­
tion and general acceptance of HTTP as a firewall-friendly protocol. 

Why Web Services, and Why Now? 
What is so different about web services, and why are they poised for success, whereas 
other preceding technologies have failed to achieve widespread adoption? The answer 
lies in the challenge that every organization faces today: to create a homogeneous 
environment while still leveraging its core abilities and existing applications. IT needs 
a simple, platform-neutral way of communicating between applications. 

For starters, XML is ideal for representing data. IT developers have had exposure to 
XML for a few years and they understand what it's good for. Even though the aver­
age IT developer hasn't yet become a walking XML parser, by now most developers 
understand the concepts behind XML and how it can be used. 

Also, the base technologies of SOAP, WSDL, and UDDI are not themselves very excit­
ing; they are just new dressings for the same old distributed-computing model. What 
draws people to them is the promise of what they enable. Finally, we have a platform­
neutral communication protocol that provides interoperability and platform indepen­
dence. A bidirectional conversation may occur between a Biztalk server and a set of 
hand-rolled Perl scripts. The Perl scripts may be simultaneously involved in a conver­
sation with a set of applications held together by a J2EE-based application server or a 
message-oriented middleware (MOM) infrastructure. The minimum requirement is 
that each participant in the multiparty collaboration knows how to construct and 
deconstruct SOAP messages and how to send and receive HTTP transmissions. 

Web Services Adoption Factors I 9 



ServiceNow, Inc.'s Exhibit 1007014

The heavy involvement of the Microsoft camp and the J2EE camp in web services is 
good for everyone. It's advantage is not about .NET versus J2EE or .NET versus 
SunONE; it's about the fact that you no longer have to let that debate or choice get 
in the way of achieving interoperability across the enterprise. The programming lan­
guages and associated infrastructure of each respective camp will continue to coexist 
and will remain "camps" for a long time. 

low barrier to entry means grass-roots adoption 

The widespread adoption of web services can be predicted by drawing parallels to 
the CGI phenomenon discussed earlier. 

Similar conditions exist today. The straightforward approach that SOAP takes­
XML messages sent over HTTP-means that anyone can grab Apache SOAP and 
start exchanging data with the application owned by the guy down the hall. There 
isn't any overly complex, mysterious alchemy involving a strategic architecture group 
that takes two years to figure out. A corporate-wide infrastructure adoption shift 
doesn't need to occur for a company to start working and benefiting from web ser­
vices; companies can be selective about how and where they adopt these technolo­
gies to get the best return on their investment. 

Web Services in a J2EE Environment 
A common thread found throughout various web services specifications is the regu­
lar reference to web services "platforms" and "providers." A web services platform is 
an environment used to host one or more web services. It includes one or more 
SOAP servers, zero or more UDDI business registries, the security and transaction 
services used by the web services hosted on it, and other infrastructure provisions. A 
web services provider is generally considered a vendor-supplied piece of rniddleware 
infrastructure, such as an ORB, an application server, or a MOM. The provider may 
fully supply a platform, or it may deliver some base J2EE functionality plus some 
web service add-ons. 

Web services are a new approach for exposing and advertising enterprise services 
that are hosted on a platform. These platform services still have a variety of enter­
prise requirements, such as security, transactions, pooling, clustering, and batch pro­
cessing. Web services do not provide these infrastructure capabilities, but expose the 
services that do. J2EE and .NET still play an important role in the enterprise as plat­
form definitions: they define the behavior of core capabilities that every software pro­
gram needs internally. Web services, however, offer a standard way to expose the 
services deployed onto a platform. 

An important question is, "What is being web service enabled?" If the answer is the 
business systems that run the enterprise, then the role of J2EE in the whole web ser­
vices picture becomes abundantly clear. The core requirements of a web service 
enabled ecosystem are the same as they have always been-scalability, reliability, 

10 I Chapter 1: Welcome to Web Services 



ServiceNow, Inc.'s Exhibit 1007015

security, etc. Web services provide new ways of wrapping things at the edge of the 
enterprise, but if you poke your head through the web services hype, the require­
ments for holding together your core systems don't change that much. The imple­
mention of the web services backbone should still be based on the J2EE architecture. 
Web services and J2EE come together at multiple points. The use of each J2EE com­
ponent depends on the application's requirements, just as it did prior to the advent 
of web services. If the nature of the web service is for lightweight, quick-and-dirty 
processing, then use a web container and implement the web service directly as a 
JSP. If the solution requires a distributed component model, then use EJB. If the 
solution requires a highly distributed, highly reliable, loosely coupled environment, 
then use JMS. Naturally, any of these combinations is allowed and encouraged, as 
illustrated in Figure 1-4. 

' 
' 

' ' ' I 
I 

' I 
I 

I 

' I 

I 

Regional business units 

~------- - - ---- - -- - - - -- --
Business partners 

Catalog 

Quotes 

I Catalog 

I Quotes 

Firewall Firewall 

Figure 1-4. SOA based on a]2EE backbone 

What This Book Discusses 

,,------------------------------------- , 
: Headquarters 

Web container 

EJB 

This is a book on Java and web services. It is for developers who need to develop cli­
ent- or server-side programs that either use web services or are exposed as web ser­
vices. Web services are built on XML and have specifications that focus on the XML 
nature of the technology. These specifications do not discuss how these technologies 
might be bound to a particular programming language such as Java. As a result, a 
plethora of industry technologies that facilitate Java/web service integration have 
been proposed. · 

What This Book Discusses I 11 



ServiceNow, Inc.'s Exhibit 1007016

This book introduces the basics of SOAP, WSDL, and UDDI, and then discusses 
some of the different Java technologies available for using each of these platforms 
within a Java program. The technologies we've chosen range from open source initia­
tives, such as the Apache project, to big-ticket commercial packages. One reason for 
touching on so many differ,ent packages is that the web services story is still develop­
ing; a number of important standards are still in flux, and vendors are providing their 
own solutions to these problems. Of course, this book looks at the standards efforts 
designed to consolidate and standardize how Java programs interface with web ser­
vices. Most notably, this book discusses Java/XML technologies, such as JAXR, JAX­
RPC, and JAXM, and how they can be used in a web services environment. 

These standards are still works in progress; their status may be clarified by the time 
we write a second edition. In the meantime, we thought it was important (and even 
critical) to show you how things look. Just be aware that changes are certain between 
now and the time when these standards are finalized and actual products are released. 

Additionally, for developers who are producing J2EE applications, this book dis­
cusses different technologies that are being proposed to web service-enable standard 
J2EE applications. This book discusses how a web service fa~ade can integrate with a 
J2EE infrastructure. It also introduces some of the standards efforts proposed for 
solidifying this work. 

This book also discusses the points that developers need to understand to make their 
web services secure and interoperable with other web services. It provides an in­
depth look at web service interoperability across multiple platforms, including the 
topic of .NET. 

12 I Chapter 1: Welcome to Web Services 




