
ACM f.\PR 1

SIG PLAN
A Monthly Publication of the

Special Interest Group on

Programming Languages

CONTENTS:

NOTICES
VOLUME 30 NUMBER 3 MARCH 1995

Proceedings

ACM

SIGPLAN Workshop on
Intermediate

Representations
(IR'95)

San Francisco, CA
January 22, 1995

Facebook Inc.'s Exhibit 1007001

The Association for Computing Machinery
1515 Broadway

New York, N.Y. 10036

Copyright © 1995 by the Association for Computing Machinery, Inc. Copying without fee
is permitted provided that the copies are not made or distributed for direct commercial
advantage,and credit to the source is given. Abstracting with credit is permitted. For other
copying of articles that carry a code at the bottom of the first page, copying is permitted
provided that the per-copy fee indicated in the code is paid through the Copyright Clearance
Center, 222 Rosewood Drive, Danvers, MA 01923. For permission to republish write to:
Director of Publications, Association for Computing Machinery. To copy otherwise or
republish, requires a fee and/or specific permission.

ACM ISBN: 0-89791-754-5

Additional copies may be ordered prepaid from:

ACM Order Department
P.O. Box 12114
Church Street Station
New York, N.Y. 10257

Phone: 1-800-342-6626
(U.S.A. and Canada)
1-212-626-0500
(All other countries)
Fax: 1-212-944-1318
E-mail: acmhelp@acm.org

acm _ europe@acm.org (in Europe)

ACM Order Number: 557951

Printed in the U.S.A.

ii

Facebook Inc.'s Exhibit 1007002

ACM SIGPLAN Workshop on

Intermediate Representations (IR '95)
22 January 1995, San Francisco, California, USA

Incremental Computation of Dominator Trees
Vugranam C. Sreedhar, Guang R. Gao {McGill University), and Yong-jong Lee {IBM
Software Solutions Division} 1

A Correspondence Between Continuation Passing Style and Static Single Assignment Form
Richard A. Kelsey (NEC Research Institute) ... 13

GURRR: A Global Unified Resource Requirements Representation
David A. Berson, Rajiv Gupta, and Mary Lou Soffa {University of Pittsburgh) 23

A Simple Graph-Based Intermediate Representation
Cliff Click {Hewlett-Packard Laboratories) and Michael Paleczny (Rice University) 35

Optimizing Sparse Representations for Dataflow Analysis
Erik Ruf {Microsoft Research} . .. 50

Sparse Functional Stores for Imperative Programs
Bjarne Steensgaard {Microsoft Research} . .. 62

XIL and YIL: The Intermediate Languages of TOBEY
Kevin O'Brien, Kathryn M. O'Brien, Martin Hopkins (IBM T.J. Watson Laboratory},
Arvin Shepherd, and Ron Unrau (IBM Canada, Toronto Laboratory) 71

GC: The Data-Flow Graph Format of Synchronous Programming
Pascal Aubry and Thierry Gautier (IRISA/INRIA) .. 83

Rationalized Three Instruction Machine
Sachin V. Chitriis, Manoranjan Satpathy, and Sundeep Oberoi {Indian Institute of
Technology, Bombay) 94

Verification of ANDF Components

Frederic Broustaut, Christian Fabre, Franr;ois de Ferriere, Eric Ivanov (Open Software
Foundation Research Institute), and Mauro Fiorentini {Etnoteam) 103

Java Intermediate Bytecodes
James Gosling (Sun Microsystems Laboratories) 111

Clarity MCode: A Retargetable Intermediate Representation for Compilation
Brian T. Lewis (Sun Microsystems Laboratories), L. Peter Deutsch {Alladin Enterprises),
and Theodore C. Goldstein {Sun Microsystems Laboratories} 119

Author Index

Pascal Aubry 83 Thierry Gautier 83 Kathryn M. O'Brien 71
David A. Berson 23 Theodore C. Goldstein 119 Kevin O'Brien 71
Frederic Broustaut 103 James Gosling 111 Michael Paleczny 35
Sachin V. Chitnis 94 Rajiv Gupta 23 Erik Ruf 50
Cliff Click 35 Martin Hopkins 71 Manoranjan Satpathy 94
L. Peter Deutsch 119 Eric Ivanov 103 Arvin Shepherd 71
Christian Fabre 103 Richard A. Kelsey 13 Mary Lou Soffa 23
Frarn;ois de Ferriere 103 Yong-fong Lee 1 Vugranam C. Sreedhar 1
Mauro Fiorentini 103 Brian T. Lewis 119 Bjarne Steensgaard 62
Guang R. Gao 1 Sundeep Oberoi 94 Ron Unrau 71

m

Facebook Inc.'s Exhibit 1007003

Introduction

IR '95, 1/95,
San Francisco, California, USA
Copyright © 1995 ACM

Permission to copy without
fee all or part of this material
is granted provided that the
copies are not made or dis
tributed for direct commercial
advantage, the ACM copy
right notice and the title of the
publication and its date
appear, and notice is given
that copying is by permission
of the Association for Com
puting Machinery. To copy
otherwise, or to republish,
requires a fee and/or specific
permission.

Java Intermediate Bytecodes

ACM SIGPLAN Workshop on
Intermediate Representations

(IR '95)

James Gosling <jag@eng.sun.com>
Sun Microsystems Laboratories

Javaf is a programming language loosely related to C++. Java
originated in a project to produce a software development
environment for small distributed embedded systems. Programs
needed to be small, fast, "safe" and portable. These needs led to a
design that is rather different from standard practice. In particular,
the form of compiled programs is machine independent bytecodes.
But we needed to manipulate programs is ways usually associated
with higher level, more abstract intermediate representations. This
lets us build systems that are safer, less fragile, more portable, and
yet show little performance penalty while still being simple.

The project that produced Java started in 1991. Its goal was to produce a
software environment for small distributed embedded systems. The
requirements imposed on this system were based on the need to cope with
heterogeneous networks and to build long-lived reliable systems. In
particular, it was necessary for compiled software to be shipped around the
network and executed on whatever CPU it landed on. Once the code gets to
the client CPU, the code needs to adapt to whatever versions of the classes it
uses that happen to be there, and the receiving system has to have a
reasonable amount of faith that the code is safe to run. All while being as fast
and small as possible.

Originally, we intended to be politically correct and just use C++. But a
number of serious problems arose as a consequence of the requirements on
the system. Many of the problems could be addressed with some compiler
technology, in particular, by using a different intermediate representation for
compiled programs. This paper covers our solutions to these problems.

The solution we chose was to compile to a byte coded machine independent
instruction set that bears a certain resemblance to things like the UCSD Pascal
P-Codes[Bowles78]. While compact and amenable to interpretation, such a

t. Java used to be known as "Oak" when it was just an internal project.

@ 1995 ACM 0-89791-754-5/95/0001. .. $3.50

111

Facebook Inc.'s Exhibit 1007004

A Code Sample

representation is, in general, unsuitable for higher level, more abstract,
manipulation. We applied a number of twists: there is an unusual amount of
type information, there are restrictions on the use of the operand stack, and
there is a heavy reliance on symbolic references and on-the-fly code
rewriting.

To give you a taste of what compiled code
looks like, consider this source fragment:

It compiles to:

aload_O Load this
class vector { get field #10 Load this.arr

astore_l Store in la int arr[];
int sum() { iconst_O

istore_2
aload_l
array length
istore_3

Store O in S
Load la

Type information

int la[] = arr;
int S = O;
for (int i=la.length; --i>=O;)

S += la[i];
return S; A: iinc 3 -1

iload_3
iflt B
iload_2
aload_l
iload_3
iaload
iadd
istore_2
goto A

B: iload_2
ireturn

Get its length
Store in i
Subtract I from i
Load i
Exit loop if< 0
LoadS
Load la
Load i
Loadla[i]
add in S
store to S
do it again
LoadS
Return it

This example is pretty straightforward. One of the slightly odd things about it
is that there is somewhat more type information than is strictly necessary.
This type information is often encoded in the opcode. For example, there are
both aload and iload opcodes whose implementations are identical, except
that one is used to load a pointer, the other is used to load an integer.
Similarly, the getfield opcode has a symbol table reference. There is type
information in the symbol table.

In most stack based instruction sets, you can do pretty much anything with the
stack and local variables. In the Java bytecode there is an important
restriction: conceptually, at any point in the program each slot in the stack and
each local variable has a type. This collection of type information is called the
type state of the execution frame. The important property is that this type can
be determined statically by induction. As you read through a block of
instructions, each instruction pops and pushes values of particular types.
Instruction definitions are required to have the following inductive property:

Given only the type state before the execution of the instruction, the type
state afterwards is determined.

Given a straight-line block of code, starting with a known stack state, the type
state of each slot in the stack is known. For example:

iload_l
iconst 5

Load integer variable, stack type state=!
Load integer constant, stack type state=Il

112

Facebook Inc.'s Exhibit 1007005

Checkable

iadd Add two integers producing an integer, stack type state=!

A number of stack based codes, like Smalltalk [Goldberg83] and PostScript
[Adobe85] do not have this property. For example the definition of the
PostScript add operator explicitly states "If both operands are integers and the
result is within integer range, the result is an integer, otherwise the result is a
real". In many situations, this dynamic type behavior is considered to be an
advantage, but in our situation, it is not. The most important ingredient in a
simple implementation is a simple specification.

In conjunction with this we require that:

When there are two execution paths into the same point, they must arrive
there with exactly the same type state.

This means, for example, that bytecode generators cannot write loops that
iterate through arrays, loading each element of the array onto the stack,
effectively copying the array onto the stack. Why? Because the flow path into
the top of the loop will have a different type state than the branch back to the
top.

Since all paths to a point are required to arrive with the same type state, then
the type state from any incoming path can be used to do further
manipulations.

These restrictions have a number of important consequences.

The most important consequence is that there are a number of properties that
can be checked statically. The simplest is operand stack overflow and
underflow: the length of the stack portion of the type state is the depth that the
operand stack will have when that chunk of code is executed. For interpreters
that are willing to trust the compiler that generated the bytecode, the
interpreter can skip doing stack checks on each bytecode execution. In other
situations, like PostScript, stacks have to be checked. In our case, we couldn't
afford to have every bytecode check the stack depth as it executes, but on the
other hand we couldn't afford to trust that loaded code came from a correct
compiler.

113

Facebook Inc.'s Exhibit 1007006

Fragile superclasses

The last phase of the bytecode loader is the verifier. It traverses the byte
codes, constructs the type state information, and verifies the types of the
parameters to all the opcodes.

Compile-Time Run-Time

Interpreter

t
Sourc~Compiler---1-.-... Bytecodes-+--a Linker........_Verifier

t
(move through
the network or
a file system)

' Code generator

The verifier acts as a sort of gatekeeper: imported code is not allowed to
execute by any means until after it has passed the verifier's tests. Once the
verifier is done, a number of important properties are known:

• There are no operand stack overflows or underflows.
• The types of the parameters of all opcodes are known to always be cor

rect.
• No illegal data conversions are done, like converting integers to pointers.
• Object field accesses are known to be legal (i.e. private/public/ ... are

rechecked by the verifier).

Knowing these properties makes the interpreter much faster: it doesn't have to
check anything. There are no operand type checks and no stack overflow
checks. The interpreter can do this without compromising reliability.

These properties also provide a foundation for the security of the system:
pointers can be treated essentially as capabilities: Applications cannot forge
them, they cannot get around them, and all the access restrictions are
enforced. So in higher level software, you can trust that a private variable
really is private, that no evil piece of application code is doing some magic
with casts to extract a credit card number from the billing software.

One of the big problems with using C++ in a commercial situation is
sometimes called the fragile base class problem. Say company A sells a
library which defines class CA, then company B builds a product which uses
that class. In doing so they define a class CB, which is a subclass of CA. The
way that most C++ compilers are implemented, the code generated for CB
will have integers hardwired into it that reference the contents of an instance
at fixed offsets. If company A releases a new version of CA which changes
the number of instance variables or methods, then B will have to recompile
CB to correct all the offsets that are now different.

This becomes a nightmare when you take the customer into account: they
have a copy of the software that they bought from B. When CA is a shared
library that is used in many products, the end user is likely to get new versions

114

Facebook Inc.'s Exhibit 1007007

Portability

Translation to
machine code

of it independent of new versions of CB. So if they upgrade the library,
existing applications which use it will break. They would have to go back to B
and get a new release.

In practice, this doesn't happen because software developers don't let it
happen: C++ style object oriented programming is essentially never used in
public interfaces to widely shared libraries. And when it is used, it is used
very carefully.

This problem essentially defeats the whole "software IC" reusability model in
object oriented programming. By fixing this, as we have in Java, the software
IC model can be made to really work.

The way that Java gets around the fragile base class problem is simply to use
symbolic references. For example, in the code fragment at the beginning of
the paper the getfield opcode doesn't contain an offset into the object, it
contains an index into the symbol table. This is a pretty standard technique.
But, as usual, there's a twist: Java is essentially C++, so it is known that once
a system starts executing (assuming that classes can't be dynamically
unloaded and reloaded, which we can get around ...) the off set into the object
doesn't change. When the getfield opcode is executed the interpreter looks up
the symbol, discovers it's offset, then rewrites the instruction stream to be a
quick getfield opcode with the exact offset. This can be executed very quickly.
This technique of rewriting symbolic references is used pervasively.

One of the obvious benefits of using a bytecode like Java's is that compiled
programs are portable: so long as the interpreter is present, programs can
execute on any kind of CPU. One of the requirements for making programs
portable is nailing down, in the language specification, all those little grey
areas in language specifications that are often left "implementation specific".
Things like evaluation order and "what does int mean?". In general, we opted
for semantics that we could make small and fast, which is generally consistent
with the CIC++ tradition. We avoided doing things like defining arithmetic to
be infinite precision. There are a number of hardware trends that we exploited
and cast into the definition of the system. For example, many systems have
very loose definitions of floating point arithmetic. But implementation of the
IEEE 7 54/854 specifications for floating point semantics have become almost
universal in modem hardware, so we explicitly specify that the language
floating point semantics follow the IEEE specification.

The statically determinable type state enables a very powerful performance
technique: simple on the fly translation of bytecodes into efficient machine
code. Because the types of all arguments are statically determinable in a
simple way, the bytecodes can be simply translated into machine code: no
dynamic type checks or sophisticated inferences have to be done. Translation
is just matter of reading the "iadd" bytecode and emitting an "add ra, rb, re''
instruction.

Many other systems, such as Smalltalk [Duetsch84] and Self [Chambers92]
do on the fly compilation of code fragments. They are very sophisticated

115

Facebook Inc.'s Exhibit 1007008

systems that put a lot of effort into caching or deducing type information and
compiled code fragments. The cost of this sophistication is complexity. In
contrast, our goal was to be as simple as possible. The language we compile
has much more static information and this static information is carried
through to the byte codes. We also use a restricted bytecode set to allow a lot
of information (like type codes) to be trivially re-derived rather than carried
along. What is interesting here is not sophisticated technology, it is a set of
simplifying choices.

The representation of the operand stack is a tricky issue. Just being
straightforward and representing it directly at runtime isn't very efficient.
Rather, what we do is to think of compiling as watching what the interpreter
would do, and taking notes. There is a simple data structure that represents the
state of a stack slot:

class SlotState {
int RegisterNurnber;
int IntValue;

} ;

The value at a particular level in the stack is the sum of a register and an
integer. More complex state representations are possible, this one is just
barely complex enough to be instructive.

The byte code to machine code translator iterates over the bytecodes doing
bytecode specific processing on each. Many of the bytecodes generate no
instructions, but simply manipulate the description of the stack state.

For example, the pop opcode merely decrements the reference count on the
register (there's a fictitious register used to represent no-register-needed) and
decrements the stack pointer.

The "integer constant" opcode pushes a new SlotState onto the stack that
has an IntValue taken from the instruction stream and no register.

The "load local" opcode has two cases: if the local variable is in a register, it
pushes a new SlotState that refers to that register and increments its
reference count. If it is not in a register it has to convert it to a form
representable by a SlotState: it allocates a register and emits a "load"
instruction.

The "integer add" opcode looks at the two SlotState descriptions and emits
something appropriate.

So the sequence "load local; load constant; integer add" usually ends up
emitting one instruction, since the first two bytecodes generate nothing and
just manipulate the stack slot state and eventually get folded into the integer
add instruction.

This very simple approach works because the stack state is statically
deterministic.

Another way to think of this is that the operand stack is a source of names.
One traditional intermediate representation used by compilers is as a three

116

Facebook Inc.'s Exhibit 1007009

The tyranny of the
instruction set

Performance

address code [Aho86] where the program is reduced to "a sequence of
statements of the general form:

X := y op Z

Where x, y and z are names, constants, or compiler-generated temporaries. Op
stands for an operator". Bytecodes are a compressed form of the same thing,
where the operands are implicitly derived from the stack.

There are a small number of instruction set architectures, like x86 and
SPARC, and a set of implementations of each. These implementations form
successive generations, perpetuating the instruction set architecture for a long
time in order to preserve the usefulness of existing software. A computer is
useless, after all, if there are no applications that run on it. There are two
problems with this process.

One problem is that the consistancy of instruction sets from one generation to
the next is really fiction. As each of these instruction set architectures go from
one generation to the next the performance trade-offs change dramatically.
The fastest sequence to accomplish a task in one generation may be the worst
in the next.

The other problem in successive generations is that compatibility makes the
CPUs much more complex and usually slower. In general, a group of
electrical engineers designing a new hot chip will be able to get much better
performance if they aren't constrained by the instruction set architecture.
Using an architecture neutral bytecode technique like that in Java, combined
with moderatly reasonable on the fly machine code generation that is targeted
at exactly the machine being executed on, can lead to net better performance
when compared to a sophisticated optimizer that is trying to target an
architecture family. If the CPU were designed without constraints, all the
performance bottlenecks of backward compatibility would be eliminated. In
other words, a reasonably competent code generator targeted precisely to the
CPU at hand, coupled with a CPU whose performance was optimized for the
implementation technology without historic compatibility constraints would
beat a brilliant code generator targeted at a family of CPU chips whose
designers had to expend chip area on compatibility rather than performance.
Unfortunately, this is an essentially untestable conjecture.

The current system running interpreted on a SparcStation 10 (roughly
equivalent to a 486/50) will execute the empty for loop:

for(i = 900000; --i>=O;);

in 1 second (i.e. we're getting about 900K trips around the loop per second).
Add a call to an empty method and we get about 300K trips per second. After
running this through the machine code translator, the numbers get better by a
factor of almost 10, making the performance essentially indistinguishable
from C.

117

Facebook Inc.'s Exhibit 1007010

Conclusions

Bibliography

When you add the deterministic stack type-state restriction to a fairly
conventional bytecode intermediate representation it becomes possible to use
such a low-level representation in situations where higher-level, more abstract
representations are often used. This allows the bytecoded program to be
compact. It can be directly interpreted efficiently or translated to machine
code or analyzed statically. The implementation of the these manipulations
can be simple, fast and small.

[Adobe85] Adobe Systems Incorporated, "PostScript Language Reference
Manual", Addison Wesley.

[Aho86] Aho, Alfred V., Ravi Sethi, Jeffrey D. Ullman, "Compilers:
Principles, Techniques and Tools", Addison Wesley.

[Bowles78] Bowles, Kenneth L, "UCSD Pascal", Byte. 46 (May)

[Chambers92] Chambers, Craig, David Ungar, and Elgin Lee. An Efficient
Implementation of Self, a Dynamically-Typed Object-Oriented Language
Based on Prototypes. In OOPSLA '89 Conference Proceedings, p. 49-70,
New Orleans, LA, October 1989. Published as SIGPLAN Notices 24(10),
October 1989. Also published in Lisp and Symbolic Computation 4(3),
Kluwer Academic Publishers, June 1991.

[Duetsch84] Deutsch, L. Peter and Alan Schiffman, "Efficient
Implementation of the Smalltalk-SO System." Proceedings of the 11th
Symposium on the Principles of Programming Languages, Salt Lake City,
UT, 1984

[Goldberg83] Goldberg, Adele and David Robson, "Smalltalk-SO: The
Language and its Implementation", Addison Wesley.

118

Facebook Inc.'s Exhibit 1007011

