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Sun Microsystems Laboratories 

Javaf is a programming language loosely related to C++. Java 
originated in a project to produce a software development 
environment for small distributed embedded systems. Programs 
needed to be small, fast, "safe" and portable. These needs led to a 
design that is rather different from standard practice. In particular, 
the form of compiled programs is machine independent bytecodes. 
But we needed to manipulate programs is ways usually associated 
with higher level, more abstract intermediate representations. This 
lets us build systems that are safer, less fragile, more portable, and 
yet show little performance penalty while still being simple. 

The project that produced Java started in 1991. Its goal was to produce a 
software environment for small distributed embedded systems. The 
requirements imposed on this system were based on the need to cope with 
heterogeneous networks and to build long-lived reliable systems. In 
particular, it was necessary for compiled software to be shipped around the 
network and executed on whatever CPU it landed on. Once the code gets to 
the client CPU, the code needs to adapt to whatever versions of the classes it 
uses that happen to be there, and the receiving system has to have a 
reasonable amount of faith that the code is safe to run. All while being as fast 
and small as possible. 

Originally, we intended to be politically correct and just use C++. But a 
number of serious problems arose as a consequence of the requirements on 
the system. Many of the problems could be addressed with some compiler 
technology, in particular, by using a different intermediate representation for 
compiled programs. This paper covers our solutions to these problems. 

The solution we chose was to compile to a byte coded machine independent 
instruction set that bears a certain resemblance to things like the UCSD Pascal 
P-Codes[Bowles78]. While compact and amenable to interpretation, such a 

t. Java used to be known as "Oak" when it was just an internal project. 
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A Code Sample 

representation is, in general, unsuitable for higher level, more abstract, 
manipulation. We applied a number of twists: there is an unusual amount of 
type information, there are restrictions on the use of the operand stack, and 
there is a heavy reliance on symbolic references and on-the-fly code 
rewriting. 

To give you a taste of what compiled code 
looks like, consider this source fragment: 

It compiles to: 

aload_O Load this 
class vector { get field #10 Load this.arr 

astore_l Store in la int arr[]; 
int sum() { iconst_O 

istore_2 
aload_l 
array length 
istore_3 

Store O in S 
Load la 

Type information 

int la[] = arr; 
int S = O; 
for (int i=la.length; --i>=O;) 

S += la[i]; 
return S; A: iinc 3 -1 

iload_3 
iflt B 
iload_2 
aload_l 
iload_3 
iaload 
iadd 
istore_2 
goto A 

B: iload_2 
ireturn 

Get its length 
Store in i 
Subtract I from i 
Load i 
Exit loop if< 0 
LoadS 
Load la 
Load i 
Loadla[i] 
add in S 
store to S 
do it again 
LoadS 
Return it 

This example is pretty straightforward. One of the slightly odd things about it 
is that there is somewhat more type information than is strictly necessary. 
This type information is often encoded in the opcode. For example, there are 
both aload and iload opcodes whose implementations are identical, except 
that one is used to load a pointer, the other is used to load an integer. 
Similarly, the getfield opcode has a symbol table reference. There is type 
information in the symbol table. 

In most stack based instruction sets, you can do pretty much anything with the
stack and local variables. In the Java bytecode there is an important 
restriction: conceptually, at any point in the program each slot in the stack and
each local variable has a type. This collection of type information is called the
type state of the execution frame. The important property is that this type can
be determined statically by induction. As you read through a block of 
instructions, each instruction pops and pushes values of particular types. 
Instruction definitions are required to have the following inductive property: 

Given only the type state before the execution of the instruction, the type
state afterwards is determined. 

Given a straight-line block of code, starting with a known stack state, the type
state of each slot in the stack is known. For example: 

iload_l 
iconst 5 

Load integer variable, stack type state=! 
Load integer constant, stack type state=Il 
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Checkable 

iadd Add two integers producing an integer, stack type state=! 

A number of stack based codes, like Smalltalk [Goldberg83] and PostScript 
[Adobe85] do not have this property. For example the definition of the 
PostScript add operator explicitly states "If both operands are integers and the 
result is within integer range, the result is an integer, otherwise the result is a 
real". In many situations, this dynamic type behavior is considered to be an 
advantage, but in our situation, it is not. The most important ingredient in a 
simple implementation is a simple specification. 

In conjunction with this we require that: 

When there are two execution paths into the same point, they must arrive 
there with exactly the same type state. 

This means, for example, that bytecode generators cannot write loops that 
iterate through arrays, loading each element of the array onto the stack, 
effectively copying the array onto the stack. Why? Because the flow path into 
the top of the loop will have a different type state than the branch back to the 
top. 

Since all paths to a point are required to arrive with the same type state, then 
the type state from any incoming path can be used to do further 
manipulations. 

These restrictions have a number of important consequences. 

The most important consequence is that there are a number of properties that 
can be checked statically. The simplest is operand stack overflow and 
underflow: the length of the stack portion of the type state is the depth that the 
operand stack will have when that chunk of code is executed. For interpreters 
that are willing to trust the compiler that generated the bytecode, the 
interpreter can skip doing stack checks on each bytecode execution. In other 
situations, like PostScript, stacks have to be checked. In our case, we couldn't 
afford to have every bytecode check the stack depth as it executes, but on the 
other hand we couldn't afford to trust that loaded code came from a correct 
compiler. 
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Fragile superclasses 

The last phase of the bytecode loader is the verifier. It traverses the byte 
codes, constructs the type state information, and verifies the types of the 
parameters to all the opcodes. 

Compile-Time Run-Time 

Interpreter 

t 
Sourc~Compiler---1-.-... Bytecodes-+--a .... Linker........_Verifier 

t 
(move through 
the network or 
a file system) 

' Code generator 

The verifier acts as a sort of gatekeeper: imported code is not allowed to 
execute by any means until after it has passed the verifier's tests. Once the 
verifier is done, a number of important properties are known: 

• There are no operand stack overflows or underflows. 
• The types of the parameters of all opcodes are known to always be cor

rect. 
• No illegal data conversions are done, like converting integers to pointers. 
• Object field accesses are known to be legal (i.e. private/public/ ... are 

rechecked by the verifier). 

Knowing these properties makes the interpreter much faster: it doesn't have to 
check anything. There are no operand type checks and no stack overflow 
checks. The interpreter can do this without compromising reliability. 

These properties also provide a foundation for the security of the system: 
pointers can be treated essentially as capabilities: Applications cannot forge 
them, they cannot get around them, and all the access restrictions are 
enforced. So in higher level software, you can trust that a private variable 
really is private, that no evil piece of application code is doing some magic 
with casts to extract a credit card number from the billing software. 

One of the big problems with using C++ in a commercial situation is 
sometimes called the fragile base class problem. Say company A sells a 
library which defines class CA, then company B builds a product which uses 
that class. In doing so they define a class CB, which is a subclass of CA. The 
way that most C++ compilers are implemented, the code generated for CB 
will have integers hardwired into it that reference the contents of an instance 
at fixed offsets. If company A releases a new version of CA which changes 
the number of instance variables or methods, then B will have to recompile 
CB to correct all the offsets that are now different. 

This becomes a nightmare when you take the customer into account: they 
have a copy of the software that they bought from B. When CA is a shared 
library that is used in many products, the end user is likely to get new versions 
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Portability 

Translation to 
machine code 

of it independent of new versions of CB. So if they upgrade the library, 
existing applications which use it will break. They would have to go back to B 
and get a new release. 

In practice, this doesn't happen because software developers don't let it 
happen: C++ style object oriented programming is essentially never used in 
public interfaces to widely shared libraries. And when it is used, it is used 
very carefully. 

This problem essentially defeats the whole "software IC" reusability model in 
object oriented programming. By fixing this, as we have in Java, the software 
IC model can be made to really work. 

The way that Java gets around the fragile base class problem is simply to use 
symbolic references. For example, in the code fragment at the beginning of 
the paper the getfield opcode doesn't contain an offset into the object, it 
contains an index into the symbol table. This is a pretty standard technique. 
But, as usual, there's a twist: Java is essentially C++, so it is known that once 
a system starts executing (assuming that classes can't be dynamically 
unloaded and reloaded, which we can get around ... ) the off set into the object 
doesn't change. When the getfield opcode is executed the interpreter looks up 
the symbol, discovers it's offset, then rewrites the instruction stream to be a 
quick getfield opcode with the exact offset. This can be executed very quickly. 
This technique of rewriting symbolic references is used pervasively. 

One of the obvious benefits of using a bytecode like Java's is that compiled 
programs are portable: so long as the interpreter is present, programs can 
execute on any kind of CPU. One of the requirements for making programs 
portable is nailing down, in the language specification, all those little grey 
areas in language specifications that are often left "implementation specific". 
Things like evaluation order and "what does int mean?". In general, we opted 
for semantics that we could make small and fast, which is generally consistent 
with the CIC++ tradition. We avoided doing things like defining arithmetic to 
be infinite precision. There are a number of hardware trends that we exploited 
and cast into the definition of the system. For example, many systems have 
very loose definitions of floating point arithmetic. But implementation of the 
IEEE 7 54/854 specifications for floating point semantics have become almost 
universal in modem hardware, so we explicitly specify that the language 
floating point semantics follow the IEEE specification. 

The statically determinable type state enables a very powerful performance 
technique: simple on the fly translation of bytecodes into efficient machine 
code. Because the types of all arguments are statically determinable in a 
simple way, the bytecodes can be simply translated into machine code: no 
dynamic type checks or sophisticated inferences have to be done. Translation 
is just matter of reading the "iadd" bytecode and emitting an "add ra, rb, re'' 
instruction. 

Many other systems, such as Smalltalk [Duetsch84] and Self [Chambers92] 
do on the fly compilation of code fragments. They are very sophisticated 
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systems that put a lot of effort into caching or deducing type information and 
compiled code fragments. The cost of this sophistication is complexity. In 
contrast, our goal was to be as simple as possible. The language we compile 
has much more static information and this static information is carried 
through to the byte codes. We also use a restricted bytecode set to allow a lot 
of information (like type codes) to be trivially re-derived rather than carried 
along. What is interesting here is not sophisticated technology, it is a set of 
simplifying choices. 

The representation of the operand stack is a tricky issue. Just being 
straightforward and representing it directly at runtime isn't very efficient. 
Rather, what we do is to think of compiling as watching what the interpreter 
would do, and taking notes. There is a simple data structure that represents the 
state of a stack slot: 

class SlotState { 
int RegisterNurnber; 
int IntValue; 

} ; 

The value at a particular level in the stack is the sum of a register and an 
integer. More complex state representations are possible, this one is just 
barely complex enough to be instructive. 

The byte code to machine code translator iterates over the bytecodes doing 
bytecode specific processing on each. Many of the bytecodes generate no 
instructions, but simply manipulate the description of the stack state. 

For example, the pop opcode merely decrements the reference count on the 
register (there's a fictitious register used to represent no-register-needed) and 
decrements the stack pointer. 

The "integer constant" opcode pushes a new SlotState onto the stack that 
has an IntValue taken from the instruction stream and no register. 

The "load local" opcode has two cases: if the local variable is in a register, it 
pushes a new SlotState that refers to that register and increments its 
reference count. If it is not in a register it has to convert it to a form 
representable by a SlotState: it allocates a register and emits a "load" 
instruction. 

The "integer add" opcode looks at the two SlotState descriptions and emits 
something appropriate. 

So the sequence "load local; load constant; integer add" usually ends up 
emitting one instruction, since the first two bytecodes generate nothing and 
just manipulate the stack slot state and eventually get folded into the integer 
add instruction. 

This very simple approach works because the stack state is statically 
deterministic. 

Another way to think of this is that the operand stack is a source of names. 
One traditional intermediate representation used by compilers is as a three 
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The tyranny of the 
instruction set 

Performance 

address code [Aho86] where the program is reduced to "a sequence of 
statements of the general form: 

X := y op Z 

Where x, y and z are names, constants, or compiler-generated temporaries. Op 
stands for an operator". Bytecodes are a compressed form of the same thing, 
where the operands are implicitly derived from the stack. 

There are a small number of instruction set architectures, like x86 and 
SPARC, and a set of implementations of each. These implementations form 
successive generations, perpetuating the instruction set architecture for a long 
time in order to preserve the usefulness of existing software. A computer is 
useless, after all, if there are no applications that run on it. There are two 
problems with this process. 

One problem is that the consistancy of instruction sets from one generation to 
the next is really fiction. As each of these instruction set architectures go from 
one generation to the next the performance trade-offs change dramatically. 
The fastest sequence to accomplish a task in one generation may be the worst 
in the next. 

The other problem in successive generations is that compatibility makes the 
CPUs much more complex and usually slower. In general, a group of 
electrical engineers designing a new hot chip will be able to get much better 
performance if they aren't constrained by the instruction set architecture. 
Using an architecture neutral bytecode technique like that in Java, combined 
with moderatly reasonable on the fly machine code generation that is targeted 
at exactly the machine being executed on, can lead to net better performance 
when compared to a sophisticated optimizer that is trying to target an 
architecture family. If the CPU were designed without constraints, all the 
performance bottlenecks of backward compatibility would be eliminated. In 
other words, a reasonably competent code generator targeted precisely to the 
CPU at hand, coupled with a CPU whose performance was optimized for the 
implementation technology without historic compatibility constraints would 
beat a brilliant code generator targeted at a family of CPU chips whose 
designers had to expend chip area on compatibility rather than performance. 
Unfortunately, this is an essentially untestable conjecture. 

The current system running interpreted on a SparcStation 10 (roughly 
equivalent to a 486/50) will execute the empty for loop: 

for(i = 900000; --i>=O;); 

in 1 second (i.e. we're getting about 900K trips around the loop per second). 
Add a call to an empty method and we get about 300K trips per second. After 
running this through the machine code translator, the numbers get better by a 
factor of almost 10, making the performance essentially indistinguishable 
from C. 
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