UNIX SYSTEM
PROGRAMMING

Building RPC-based applications that

run on heterogenous UNIX platforms
| -
Creating advanced multithreaded
applications for multiprocessor systems |
| E—
Advanced ANSI, POSIX and UNIX
programming techniques in C++

Proven C++ classes and code examples
to aid development of new applications

Terrence Chan

Facebook's Exhibit No. 1069
Page 1

UNIX System Programming Using C++

Terrence Chan

To join a Prentice Hall PTR internet mailing list:
point to http://www.prenhall.com

Prentice Hall PTR
Upper Saddle River, New Jersey 07458

http://www.prenhall.com.

Facebook's Exhibit No. 1069
Page 2

Library of Congress Cataloging-in-Publication Data
Chan, Terrence

UNIX system programming using C++ / Terrence Chan.
p. cm.

Includes bibliographical references and index.

ISBN 0-13-331562-2

1. C++ (Computer program language) 2. UNIX (Computer file)
1. Title.
QA76.73.C153C46 1997
005.13"3--dc20 96-30559

CIP
Editorial/Production Supervisor: Nicholas Radhuber
Manufacturing Manager: Alexis Heydt
Acquisitions Editor: Greg Doench
Editorial Assistant: Leabe Berman
Cover Design: Lundgren Graphics, Ltd,
Cover Design Direction: Jerry Votta

—_ © 1997 by Prentice Hall PTR
¥ Prentice-Hall, Inc.
A Simon & Schuster Company

Upper Saddle River, New Jersey 07458

The publisher offers discounts on this book when ordered in bulk quantities.
For more information, contact:

Corporate Sales Department

PTR Prentice Hall

1 Lake Street

Upper Saddle River, NJ 07458

Phone: 800-382-3419, Fax: 201-236-7141
E-mail: dan_rush@prenhall.com

All product names mentioned herein are the trademarks of their respective owners.

All rights reserved. No part of this book may be
reproduced, in any form or by any means,
without permission in writing from the publisher.

Printed in the United States of America
10987654321

ISBN 0-13-331562-2

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Simon & Schuster Asia Pte. Ltd., Singapore

Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

Facebook's Exhibit No. 1069
Page 3

Table of Contents

Prefacecciiiiiiiiiieenrenrencencneennnnnes xi
UNIX and ANSIStandardsco0iieeeeennnnn 1
The ANSICStandard oin.. 2
The ANSI/ISOC++ Standard 7
Differences Between ANSICand C++ 7
The POSIX Standards i, 8

The POSIX Environment 11

The POSIX Feature Test Macros 11

Limits Checking at Compile Time and at Run Time . . 13
The POSIX.1 FIPS Standard 18
The X/Open Standards 18
SUMMATY .. oi et e e e 19
References i, 19
C++Language Reviewcccivivvenernncnens 21
C++ Features for Object-Oriented Programming 22
C++ClassDeclarationccviininrnnn.. 23
Friend Functionsand Classes 28
Const Member Functions, 30

Facebook's Exhibit No. 1069

Page 4

Table of Contents

C++ClassInheritance 31
Virtual Functions 34
Virtual Base Classeso 36
Abstract Classesouvuiinenenninenenennennn 39
The new and delete Operators, 42
Operator Overloading 46
Template Functions and Template Classes 49
Template Functions 50
Template Classescoooviiiniion... 52
Exception Handling 57
Exceptions and Catch-Blocks Matching 63
Function Declarations with Throw 63

The Terminate and Unexpected Functions 64
SUMMATY ..ottt e e 65
Referenceso vt s 66
C++ /O Stream Classesccovevvivenennncannns 67
The /O Stream Classescooiii .. 68
Theistream Classcoiiiiia.., 68
Theostream Class 70
Theiostream Class 72
TheiosClass it 72

The Manipulators 75
TheFileI/Oclasses, 76
The strstream Classeso, 79
SUMMALY ..ottt et e 81
Standard C Library Functions 83
<stdioh> ... 84
<stdlibh> ... 88
<stringh> ... 93
SLESPN, STICSPI « oot vttt 94
SITOK & ot 95

L 435 (o) 97
<memory.h> ... 98
<time.h> e e 103
<asserth> 106
<stdargh> L 107
Command Line Arguments and Switches 112

Facebook's Exhibit No. 1069

Page 5

Table of Contents

<seimp.h> ... 115
<pwdh> ... 117
<grp.h> . 119
<crypth> 121
SUMmaryooeiuiiniii i 123
UNIX and POSIXAPISciviiiininnennncnnns 125
The POSIX APIso 126
The UNIX and POSIX Development Environment 126
API Common Characteristics 127
Summary 128
UNIXFiles ...oviitiiiiiiiniiiiinienennannennns 129
File Types . .o it 130
The UNIX and POSIX File Systems 133
The UNIX and POSIX File Attributes 134
Inodes in UNIX SystemV 136
Application Program Interface toFiles 137
UNIX Kernel Support for Files 139
Relationship of C Stream Pointers and File Descriptors . . 142
Directory Filest 143
Hard and Symbolic Links 144
Summary ... e 146
UNIXFile APISiviiiiiiiiiieinnnenennennss 147
General File APIs i i 148
OPEIL & ettt ettt ettt s 148
(07 (< | 152
read 152
WIILE . ottt et et e 154
ClOSE .ot 155
fentl ... 156
Iseek ... o 158
Iink ..o 159
unlink 160
stat, fstat 162
ACCESS & v v vt et et e 167
chmod, fchmod 168

Facebook's Exhibit No. 1069

Page 6

Table of Contents

Vi

chown, fchown, Ichown 170
UHIME .« oottt it e et e et e 172
Fileand Record Locking 173
DirectoryFile APIs 178
DeviceFile APIs o ... 182
FIFOFile APIs i, 185
Symbolic Link File APIs 188
GeneralFileClass oo, 191
Regfile Class for Regular Files 194
dirfile Class for Directory Files 196
FIFOFile Classcoiiiiinin i, 198
DeviceFileClass oo, 199
Symbolic Link File Class 201
File Listing Program 203
SUMMATY .ottt ettt e et et e e ieeenanns 205
UNIX Processesceveuienirencnscsscosnnns 207
UNIX Kernel Support for Processes 208
Process APIs i 211
fork, vfork 211

BXI e e e 214

wait, waitpid L 216

o (O 220
PIPE .ot e 224
I/ORedirectionc.iiiiiniunnn.. 228
Process Attributes i 238
Change Process Attributes 241
A Minishell Example 242
Summary e 257
Signals ...iviiiiiiiiiiii i ittt ettt e 259
The UNIX Kernel Supports of Signals 261
signal i 262
Signal Maskc.o i 264
sigaction e e e e e e 268
The SIGCHLD Signal and the waitpid APT 271
The sigsetjmp and siglongjmp APIs 272
Kill o e 274
alarm 276

Facebook's Exhibit No. 1069

Page 7

10

.........................

Interval Timers
POSIX.1b Timers
timer Class
Summary

.......................
............................

.............................

Interprocess Communication
POSIX.1b IPC Methods
The UNIX System V IPC Methods
UNIX System V Messages

UNIX Kernel Support for Messages
The UNIX APIs for Messages
msgget
msgsnd
msgrcv
msgctl
Client/Server Example
POSIX.1b Messages
POSIX.1b Message Class
UNIX System V Semaphores
UNIX Kernel Support for Semaphores
The UNIX APIs for Semaphores
semget

oooooooooooo
..................
...............
e e
...........................
...........................
...........................
............................
...............
....................
...........
...........................
.............................

............................

POSIX.1b Semaphores
UNIX System V Shared Memory
UNIX Kernel Support for Shared Memory
The UNIX APIs for Shared Memory

...........................

..................

..........

Semaphore and Shared Memory Example
Memory Mapped I/0O
Memory mapped I/O APIs
mmap
munmap
msync

............

..........................

............................

Table of Contents

.........
.........

ooooooooo
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........

.........

Vil

Facebook's Exhibit No. 1069
Page 8

Table of Contents

11

12

Vil

Client/Server Program Using Mmap 354
POSIX.1b Shared Memoryccouviinn.. 357
POSIX.1b Shared Memory and Semaphore Example 359
Summary 365
Socketsand TLIciiiiiiiiiiiiiiinnennnnn 367
SOCKELS vt 368
SOCKEt ... 371
bind ... 372
Listen ... e 373
COMMECE . v vttt ettt ettt eenn 373
ACCEPL ottt e 374
SENA . .t teee 375
SENALO ... 376
TECV t ottt e et e e e e e 376
recvirom L 377
shutdown 377
a Stream Socket Example 378
Client/Server Message-Handling Example 391
T 395
TLIAPIs ... 396
L) 3o 399
thind 402
St . . 404
£ ACCEPL .o vt 405
L CONMMECE & .ottt e e e e e e 407
tsnd,t sndudata.............. 408
t_rcv, t_rcvudata, t revuderr 410
tsndrel ,t revrel 413
tsnddis, t_revdis ... 414
L CloSe 415
TLICIaSS « oo 416
Client/Server Message Example 423
Datagram Example 428
Summary 434
Remote Procedure Calls 435
History of RPC 436
RPC Programming Interface Levels 436

Facebook's Exhibit No. 1069

Page 9

Table of Contents

RPC Library Functions, 437
01724 1 O 439
clnt create 445
The rpcgen Program 446
A Directory Listing Example Using rpcgen 447
rpcgen Limitationso, 452
Low-Level RPC Programming Interface 452
XDR Conversion Functions 452
Lower Level RPCAPIs 455
RPCClasses 457
SV CTBALE &+ v v v et e e e e ettt e e e 474
SVC TUI &« v vt ettt e e e ettt e et e 476
SVC_ZELATES « . oottt e 476
sve_sendreply 476
clnt_create 477
cint_call 478
Managing Multiple RPC Programs and Versions 478
Authentication 483
AUTH_NONE i 484
AUTH_SYS (or AUTH_UNIX) 485
AUTH_DES i 487
Directory Listing Example with Authentication 490
RPCBroadcastt 498
RPC Broadcast Example 500
RPCCallBackooiii i 502
Transient RPC Program Number 509
RPC Services UsingInetd 514
Summary 520
Multithreaded Programmingcc0vnnn. 521
Thread Structureand Uses 523
Threads and Lightweight Processes 524
Sun Thread APIs 526
thr_create 526
thr_suspend, thr_continue 528
thr_exit, thr_join oo, 528
thr_sigsetmask, thr_Iill 529
thr_setprio, thr_getprio, thr_yield 531

Facebook's Exhibit No. 1069
Page 10

Table of Contents

thr_setconcurrency, thr_getconcurrency 531
Multithreaded Program Example 532
POSIX.1c Thread APIs 536
pthread_create 537
pthread_exit, pthread_detach, pthread_join 539
pthread_sigmask, pthread_kill 540
sched_yield i 541
Thread Synchronization Objects 541
Mutually Exclusive Locks (mutex Locks) 542
SunMutexLocks it 543
POSIX.lcMutex Locks 544
Mutex Lock Examples 545
Condition Variables 550
Sun Condition Variables 550
Condition Variable Example 551
POSIX.1c Condition Variables 554
Sun Read-Write Locks 555
Semaphores i i 560
Thread-SpecificData 564
The Multithreaded Programming Environment 571
Distributed Multithreaded Application Example 571
Summaryo i 584
INdeX . oovvieirneinnnenenenencnennssensanancnns 585

Facebook's Exhibit No. 1069
Page 11

Preface

The content of this book is derived from my several years of teaching Advanced
UNIX Programming with C and C++ at two University of California Extensions (Berkeley
and Santa Cruz). The objectives of the courses were to teach students advanced programming
techniques using UNIX system calls and the ANSI C and C++ programming languages. Spe-
cifically, students who took the courses learned the following:

* Advanced ANSI C and C++ programming techniques, such as how to use function
pointers and create functions that accept variable numbers of arguments

» The ANSI C library functions and C++ standard classes, and how to use them to
reduce development time and to maximize portability of their applications

* Familiarity with the UNIX kernel structure and the system calls. These allow users
to write sophisticated applications to manipulate system resources (e.g., files, pro-
cesses, and system information), and to design new operating systems

* How to create network-based, multitasking, client/server applications which run on
heterogenous UNIX platforms '

The objective of this book is to convey to readers the techniques and concepts stated
above. Furthermore, this book provides more detailed explanations and comprehensive exam-
ples on each topic than can be done in a course. Thus, readers can gain a better understanding
of the subject matter and can learn at their own pace. This book also describes the latest
advanced UNIX programming techniques on remote procedure calls and multithreaded pro-
grams. These techniques are important for the development of advanced distributed client/
server applications in a symmetrical multiprocessing and network-based computing environ-
ment.

Xi

Facebook's Exhibit No. 1069

Page 12

Preface

All the aforementioned information will be described in the C++ language. This is
because in the last few years more and more advanced software developers are using C++ in
applications development. This is due to the fact that the C++ language provides much stron-
ger type-checking and includes object-oriented programming constructs than other proce-
dural programming languages. These features are very useful in facilitating large-scale,
complex UNIX system applications development and management.

This book covers the C++ programming language based on the draft version of the
ANSVISO C++ standard [1, 2, 3]. Most of the latest C++ compilers provided by various com-
puter vendors (e.g., Sun Microsystems Inc., Microsoft Corporation, Free Software Founda-
tion, etc.) are compliant with this standard.

In addition to the C++ language, some significant C library functions, as defined by the
ANSI C standard [4], are also described in this book. These functions are not covered by the
C++ standard classes or by the UNIX application program interface. Thus, it is important that
users be familiar with these to increase their knowledge base and choices of library functions.

The UNIX operating systems covered in this book include: UNIX System V.3, UNIX
System V.4, BSD UNIX 4.3 and 4.4, Sun OS 4.1.3, and Solaris 2.4. The last two operating
systems belong to SUN Microsystems, where Sun OS 4.1.3 is based on BSD 4.3 with UNIX
System V.3 extensions, and Solaris 2.4 is based on the UNIX System V.4.

Although the primary focus of this book is on UNIX system programming, the IEEE
(Institute of Electrical and Electronics Engineering) POSIX.1, POSIX.1b, and POSIX.1c
standards are also covered in detail. This is to aid system programmers to develop applica-
tions that can be readily ported to different UNIX systems, as well as to POSIX-compliant
systems (e.g., VMS and Windows-NT). This is important as most advanced commercial soft-
ware products must run on heterogenous platforms by various computer vendors. Thus, the
POSIX and ANSI standards can help users create highly platform-independent applications.

Target Audience

The book is targeted to benefit experienced software engineers and managers who are
working on advanced system applications development in a UNIX environment. The prod-
ucts they develop may include advanced network-based client/server applications, distributed
database systems, operating systems, compilers, or computer-aided design tools.

The readers should be familiar with the C++ language based on the AT&T version 3.0
(or the latest) and should have developed some C++ application programs on their own in the
past. Moreover, the readers should be familiar with at least one version of UNIX system (e.g.,

X

Facebook's Exhibit No. 1069

Page 13

Preface

UNIX System V). Specifically, the readers should know the UNIX file system architecture,
user accounts assignment and management, file access control, and jobs control methods.
Readers who need to brush up on UNIX system knowledge may consult any text book cover-
ing an introduction to the UNIX system.

Book Content

Although this book covers the ANSI C++ and C library functions and UNIX APIs
extensively, the primary focus in describing these functions is to convey the following infor-
mation to readers:

» Purposes of these functions

» Conformance of these functions to standard(s)

* How to use these functions

* Examples of their uses

* Where appropriate, how these functions are implemented in a UNIX system

* Any special considerations (e.g., conflict between the UNIX and POSIX standards)
in using these functions

It is not the intention of the author to make this book a UNIX system programmer’s ref-
erence manual. Thus, the function prototypes and header files required to use the ANSI
library and UNIX API functions are described, but the detailed error codes that may be
returned by these functions and the archive or shared libraries needed by users’ programs will
not be depicted. This type of information may be obtained via either the man pages of the
functions or the programmer’s reference manuals from the users’ computer vendors.

The general organization of this book is:

* Chapter 1 describes the history of the C++ programming language and various
UNIX systems. It also describes the ANSI/ISO C, ANSVISO C++, IEEE POSIX.1,
POSIX.1b, and POSIX.1c standards

* Chapters 2 and 3 review the draft ANSI/ISO C++ programming language and
object-oriented programming techniques. The C++ I/O stream classes, template
functions, and exception handlings are also depicted in detail

» Chapter 4 describes the ANSI C library functions

» Chapter 5 gives an overview of the UNIX and POSIX APIs. Special header files and
compile time options, as required by various standards, are depicted.

» Chapters 6 and 7 describe UNIX and POSIX.1 file APIs. These depict APIs that can
be used to control various types of files in a system. They also describe file-locking
techniques used to synchronize files in a multiprocessing environment

Xill

Facebook's Exhibit No. 1069

Page 14

Preface

¢ Chapter 8 describes UNIX and POSIX.1 process creation and control methods.
After reading this chapter, readers can write their own multiprocessing applications,
such as a UNIX shell

* Chapter 9 describes UNIX and POSIX.1 signal handling methods

* Chapter 10 describes UNIX and POSIX.1b interprocess communication methods.
These techniques are important in creating distributed client/server applications.

» Chapter 11 describes advanced network programming techniques using UNIX sock-
ets and TLI

» Chapter 12 describes remote procedure call. This is important for development of
network transport protocol-independent client/server application development on
heterogenous UNIX platforms

» Chapter 13 describes multithreaded programming techniques. These techniques
allow applications to make efficient use of multiprocessor resources available on any
machines on which they run

Note that although this book is based on C++, the focus on this book is not object-ori-
ented programming techniques. This is because some readers are expected to be new to
UNIX system programming and/or C++ language, thus it may be difficult for these readers to
learn both object-oriented and system programming techniques at the same time. However,
this book includes many useful C++ classes for interprocess communication, sockets, TLI,
remote procedure call, and multithreaded programming. These classes encapsulate the low-
level programming interface to these advanced system functions, and can be easily extended
and incorporated into user applications to reduce their development efforts, time, and costs.

Example Programs

Throughout the book extensive example programs are shown to illustrate uses of the
C++ classes, library functions, and system APIs. All the examples have been compiled by a
Sun Microsystems C++ (version 4.0) compiler and tested on a Sun SPARC-20 workstation
running Solaris 2.4. These examples are also compiled and tested using the Free Software
Foundation GNU g++ compiler (version 2.6.3) on a Sun SPARC-20 workstation. Since the
GNU g++ compilers can be ported to various hardware platforms, the examples presented in
this book should run on different platforms (e.g., Hewlett Packadd’s HP-UX and Interna-
tional Business Machines’s AIX) also.

Readers are encouraged to try out the example programs on their own systems to get
more in-depth familiarity of this subject matter. Users may download an electronic copy of
the example programs via anonymous ftp to fip.prenhall.com. The directory that stores the
example tar file is /pub/ptr/professional_computer_science.w-0.22/chan/unixsys. There are
README files in the tar file that describe the programs and their cross references to chapters
in the book. Finally, readers are welcome to send Emails to the author at twe @netcom.com.

Xiv

Facebook's Exhibit No. 1069

Page 15

Preface

Acknowledgments

I would like to thank Peter Collinson, Jeff Gitlin, Chi Khuong, Frank Mitchell, and my
wife Jessica Chan for their careful reviewing of the book manuscript. Much of their valuable
input has been incorporated in the final version of this book. Furthermore, I would like to
extend my appreciation to Greg Doench, Nick Radhuber, and Brat Bartow for their valuable
assistance in helping me through the preparation and publication process of this book.

Finally, I am grateful to my former students at the University of California Santa Cruz
Extension who took my Advanced UNIX System Calls course and gave me valuable feed-
back in the refinement of the course material, much of which is used throughout this book.

References

[1]. Margaret A. Ellis and Bjarne Stroustrup, The Annotated C++ Reference Manual,
Addison-Wesley, 1990.

[2]. Andrew Koenig, Working Paper for Draft Proposed International Standard for
Information Systems -- Programming Language C++ (Committees: WG21/NO414,
X3J16/94-0025), January 1994.

[3]. Bjarne Stroustrup, Standardizing C++. The C++ Report. Vol. 1. No. 1, 1989.

[4]. American National Standard Institute, American National Standard for Information
Systems - Programming Language C, X3.159 - 1989, 1989.

XV

Facebook's Exhibit No. 1069
Page 16

Facebook's Exhibit No. 1069
Page 17

CHAPTER

UNIX and ANSI Standards

Since the invention of UNIX in the late 1960s, there has been a proliferation of differ-
ent versions of UNIX on different computer systems. Recent UNIX systems have developed
from AT&T System V and BSD 4.x UNIX. However, most computer vendors often add their
own extensions to either the AT&T or BSD UNIX on their systems, thus creating the differ-
ent versions of UNIX. In late 1980, AT&T and Sun Microsystems worked together to create
the UNIX System V release 4, which is an attempt to set a UNIX system standard for the
computer industry. This attempt was not totally successful, as only a few computer vendors
today adopt the UNIX System V.4.

However, in the late 1980s, a few organizations proposed several standards for a UNIX-
like operating system and the C language programming environment. These standards are
based primarily on UNIX, and they do not impose dramatic changes in vendors’ systems;
thus, they are easily adopted by vendors. Furthermore, two of these standards, ANSI C and
POSIX (which stands for Portable Operating System Interface), are defined by the American
National Standard Institute (ANSI) and by the Institute of Electrical and Electronics Engi-
neers (IEEE). They are very influential in setting standards in the industry; thus, most com-
puter vendors today provide UNIX systems that conform to the ANSI C and POSIX.1 (a
subset of the POSIX standards) standards.

Most of the standards define an operating system environment for C-based applica-
tions. Applications that adhere to the standards should be easily ported to other systems that
conform to the same standards. This is especially important for advanced system program-
mers who make extensive use of system-level application program interface (API) functions
(which include library functions and system calls). This is because not all UNIX systems pro-

1

Facebook's Exhibit No. 1069

Page 18

Chap. 1. The ANSI C Standard

vide a uniform set of system APIs. Furthermore, even some common APIs may be imple-
mented differently on different UNIX systems (e.g., the fen#l APl on UNIX System V can be
used to lock and unlock files, something that the BSD UNIX version of fcntl API does not
support). The ANSI C and POSIX standards require all conforming systems to provide a uni-
form set of standard libraries and system APIs, respectively; the standards also define the sig-
natures (the data type, number of arguments, and return value) and behaviors of these
functions on all systems. In this way, programs that use these functions can be ported to dif-
ferent systems that are compliant with the standards.

Most of the functions defined by the standards are a subset of those available on most
UNIX systems. The ANSI C and POSIX committees did create a few new functions on their
own, but the purpose of these functions is to supplement ambiguity or deficiency of some
related constructs in existing UNIX and C. Thus, the standards are easily learned by experi-
enced UNIX and C developers, and easily supported by computer vendors.

The objective of this book is to help familiarize users with advanced UNIX system pro-
gramming techniques, including teaching users how to write portable and easily maintainable
codes. This later objective can be achieved by making users familiar with the functions
defined by the various standards and with those available from UNIX so that users can make
an intelligent choice of which functions or APIs to use.

The rest of this chapter gives an overview of the ANSI C, draft ANSI/ISO C++, and the
POSIX standards. The subsequent chapters describe the functions and APIs defined by these
standards and others available from UNIX in more detail.

1.1 The ANSI C Standard

In 1989, the American National Standard Institute (ANSI) proposed C programming
language standard X3.159-1989 to standardize the C programming language constructs and
libraries. This standard is commonly known as the ANSI C standard, and it attempts to unify
the implementation of the C language supported on all computer systems. Most computer
vendors today still support the C language constructs and libraries as proposed by Brian Ker-
nighan and Dennis Ritchie (commonly known as K&R C) as default, but users may install the
ANSI C development package as an option (for an extra fee).

The major differences between ANSI C and K&R C are as follows:

* Function prototyping

* Support of the const and volatile data type qualifiers

» Support wide characters and internationalization

« Permit function pointers to be used without dereferencing

Facebook's Exhibit No. 1069

Page 19

Chap. 1. The ANSI C Standard

Although this book focuses on the C++ programming technique, readers still need to be
familiar with the ANSI C standard because many standard C library functions are not covered
by the C++ standard classes, thus almost all C++ programs call one or more standard C
library functions (e.g., get time of day, or use the strlen function, etc.). Furthermore, for some
readers who may be in the process of porting their C applications to C++, this section
describes some similarities and differences between ANSI C and C++, so as to make it easy
for those users to transit from ANSI C to C++.

ANSI C adopts C++ function prototype technique where function definition and decla-
ration include function names, arguments’ data types, and return value data types. Function
prototypes enable ANSI C compilers to check for function calls in user programs that pass
invalid numbers of arguments or incompatible argument data types. These fix a major weak-
ness of the K&R C compilers: Invalid function calls in user programs often pass compilation
but cause programs to crash when they are executed.

The following example declares a function foo and requires that foo take two argu-
ments: the first argument fmt is of char* data type, and the second argument is of double data
type. The function foo returns an unsigned long value:

unsigned long foo (char* fmt, double data)

{
/* body of foo */

To create a declaration of the above function, a user simply takes the above function
definition, strips off the body section, and replaces it with a semicolon character. Thus, the
external declaration of the above function foo is:

unsigned long foo (char* fmt, double data);

For functions that take a variable number of arguments, their definitions and declara-
tions should have “...” specified as the last argument to each function:

int printf(const char* fmt, ...);

int printf(const char* fmt, ...)

{
/* body of printf */

The const key word declares that some data cannot be changed. For example, the above
function prototype declares a fimt argument that is of a const char* data type, meaning that the

3

Facebook's Exhibit No. 1069

Page 20

Chap. 1. The ANSI C Standard

function printf cannot modify data in any character array that is passed as an actual argument
value to fmt.

The volatile key word specifies that the values of some variables may change asyn-
chronously, giving a hint to the compiler’s optimization algorithm not to remove any “redun-
dant” statements that involve “volatile” objects. For example, the following statements define
an io_Port variable that contains an address of an I/O port of a system. The two statements
that follow the definition are to wait for two bytes of data to arrive from the I/O port and
retain only the second byte of data:

char get_io()

{

volatile char* io_Port = 0x7777;

char ch = *io_Port; /* read first byte of data */

ch = *io_Port; /* read second byte of data */
}

In the above example, if the io_Port variable is not declared to be “volatile,” when the
program is compiled, the compiler may eliminate the second ch = *io_Port statement, as it is
considered redundant with respect to the previous statement.

The const and volatile data type qualifiers are also supported in C++.

ANSI C supports internationalization by allowing C programs to use wide characters.
Wide characters use more than one byte of storage per character. These are used in countries
where the ASCII character set is not the standard. For example, the Korean character set
requires two bytes per character. Furthermore, ANSI C also defines the setlocale function,
which allows users to specify the format of date, monetary, and real number representations.
For example, most countries display the date in <day>/<month>/<year> format, whereas the
US displays the date in <month>/<day>/<year> format.

“The function prototype of the setlocale function is:

#include <locale.h>

char setlocale (int category, const char™® locale);

The setlocale function prototype and possible values of the caregory argument are
declared in the <locale.h> header. The category values specify what format class(es) is to be
changed. Some possible values of the category argument are:

Facebook's Exhibit No. 1069
Page 21

Chap. 1. The ANSI C Standard

category value Effect on standard C functions/macros

LC_CTYPE Affects the behaviors of the <ctype.h> macros

LC_TIME Affects the date and time format as returned by the
strftime, ascftime functions, etc.

LC_NUMERIC Affects the number representation formats via the

' printf and scanf functions

LC_MONETARY Affects the monetary value format returned by the
localeconv function

LC_ALL Combines the effects of all the above

The locale argument value is a character string that defines which locale to use. Possi-
ble values may be C, POSIX, en_US, etc. The C, POSIX, en_US locales refer to the UNIX,
POSIX, and US locales. By default, all processes on an ANSI C or POSIX compliant system
execute the equivalent of the following call at their process start-up time:

setlocale(LC_ALL, “C”);

Thus, all processes start up have a known locale. If a locale value is NULL, the setlo-
cale function returns the current locale value of a calling process. If a locale value is ““ (a
null string), the setlocale function looks for an environment variable LC_ALL, an environ-
ment variable with the same name as the category argument value, and, finally, the LANG
environment variable - in that order - for the value of the locale argument.

The setlocale function is an ANSI C standard that is also adopted by POSIX.1.

ANSI C specifies that a function pointer may be used like a function name. No derefer-
ence is needed when calling a function whose address is contained in the pointer. For exam-
ple, the following statements define a function pointer funcptr, which contains the address of
the function foo:

extern void foo (double xyz, const int* Iptr);
void (*funcptr)(double, const int*) = foo;

The function foo may be invoked by either directly calling foo or via the funcptr. The
following two statements are functionally equivalent:

foo (12.78, “Hello world™);
funcptr (12.78, “Hello world”);

Facebook's Exhibit No. 1069

Page 22

Chap. 1. The ANSI C Standard

The K&R C requires funcptr be dereferenced to call foo. Thus, an equivalent statement
to the above, using K&R C syntax, is:

(*funcptr)(12.78, “Hello world™);
Both the ANSI C and K&R C function pointer uses are supported in C-++.

In addition to the above, ANSI C also defines a set of ¢pp (C preprocessor) symbols
which may be used in user programs. These symbols are assigned actual values at compile
time:

cpp symbol Use

__STDC__ Feature test macro. Value is 1 if a compiler is
ANSI C conforming, 0 otherwise

_LINE__ Evaluated to the physical line number of a source
file for which this symbol is reference

__FILE__ Value is the file name of a module that contains
this symbol

_DATE__ Value is the date that a module containing this
symbol is compiled

__TIME___ Value is the time that a module containing this

symbol is compiled

The following test_ansi_c.c program illustrates uses of these symbols:

#include <stdio.h>
int main()
{
#if __STDC__ ==
printf(“cc is not ANSI C complianf\n”);
#else
printf(* %s compiled at %s:%s. This statement is at line %d\n”,
_FILE__, _DATE__, _TIME__, _LINE_);
#endif
return 0;

}

Note that C++ supports the _ LINE__, _FILE_, DATE__, and __TIME__ sym-
bols, butnot __STDC__.

Facebook's Exhibit No. 1069

Page 23

Chap. 1. The ANSI/ISO C++ Standard

Finally, ANSI C defines a set of standard library functions and associated headers.
These headers are the subset of the C libraries available on most systems that implement
K&R C. The ANSI C standard libraries are described in Chapter 4.

1.2 The ANSI/ISO C++ Standard

In early 1980s, Bjarne Stroustrup at AT&T Bell Laboratories developed the C++ pro-
gramming language. C++ was derived from C and incorporated object-oriented constructs,
such as classes, derived classes, and virtual functions, from simula67 [1].The objective of
developing C++ is “to make writing good programs earlier and more pleasant for individual
programmer” [2]. The name C++ signifies the evolution of the language from C and was
coined by Rick Mascitti in 1983.

Since its invention, C++ has gained wide acceptance by software professionals. In
1989, Bjarne Stroustrup published The Annotated C++ Reference Manual [3). This manual
became the base for the draft ANSI C++ standard, as developed by the X3J16 committee of
ANSI. In early 1990s, the WG21 committee of the International Standard Organization (ISO)
joined the ANSI X3J16 committee to develop a unify ANSI/ISO C++ standard. A draft ver-
sion of such a ANSI/ISO standard was published in 1994 [4]. However, the ANSI/ISO stan-
dard is still in the development stage, and it should become an official standard in the near
future.

Most latest commercial C++ compilers, which are based on the AT&T C++ language
version 3.0 or later, are compliant with the draft ANSI/ISO standard. Specifically, these com-
pilers should support C++ classes, derived classes, virtual functions, operator overloading.
Furthermore, they should also support template classes, template functions, exception han-
dling, and the iostream library classes.

This book will describe the C++ language features as defined by the draft ANSI/ISO
C++ standard.

1.3 Differences Between ANSI C and C++

C++ requires that all functions must be declared or defined before they can be refer-
enced. ANSI C uses the K&R C default function declaration for any functions that are refer-
enced before their declaration and definition in a user program.

Another difference between ANSI C and C++ is given the following function declara-
tion:

int foo ();

Facebook's Exhibit No. 1069

Page 24

Chap. 1. The POSIX Standards

ANSI C treats the above function as an old C function declaration and interprets it as
declared in the following manner:

intfoo (...);

which means foo may be called with any number of actual arguments. However, for C++, the
same declaration is treated as the following declaration:

int foo (void);
which means foo may not accept any argument when it is called.

Finally, C++ encrypts external function names for type-safe linkage. This ensures that
an external function which is incorrectly declared and referenced in a module will cause the
link editor (/bin/ld) to report an undefined function name. ANSI C does not employ the type-
safe linkage technique and, thus, does not catch these types of user errors.

There are many other differences between ANSI C and C++, but the above items are
the more common ones run into by users (For a detailed documentation of the ANSI C stan-
dard, please see [5]).

The next section describes the POSIX standards, which are more elaborate and com-
prehensive than are the ANSI C standard for UNIX system developers.

1.4 The POSIX Standards

Because many versions of UNIX exist today and each of them provides its own set of
application programming interface (API) functions, it is difficult for system developers to
create applications that can be easily ported to different versions of UNIX. To overcome this
problem, the IEEE society formed a special task force called POSIX in the 1980s to create a
set of standards for operating system interfacing. Several subgroups of the POSIX such as
POSIX.1, POSIX.1b and POSIX.1c are concerned with the development of a set of standards
for system developers.

Specifically, the POSIX.1 committee proposes a standard for a base operating system
application programming interface; this standard specifies APIs for the manipulation of files
and processes. It is formally known as the IEEE standard 1003.1-1990 {6], and it was also
adopted by the ISO as the international standard ISO/IEC 9945:1:1990. The POSIX.1b com-
mittee proposes a set of standard APIs for a real-time operating system interface; these
include interprocess communication. This standard is formally known as the IEEE standard

8

Facebook's Exhibit No. 1069

Page 25

Chap. 1.) The POSIX Standards

1003.4-1993 [7]. Lastly, the POSIX.1c standard [8] specifies multithreaded programming
interface. This is the newest POSIX standard and its details are described in the last chapter
of this book.

Although much of the work of the POSIX committees is based on UNIX, the standards
they proposed are for a generic operating system that is not necessarily a UNIX system. For
example, VMS from the Digital Equipment Corporation, OS/2 from International Business
Machines, and Windows-NT from the Microsoft Corporation are POSIX-compliant, yet they
are not UNIX systems. Most current UNIX systems, like UNIX System V release 4, BSD
UNIX 4.4, and computer vendor-specific operating systems (e.g., Sun Microsystem’s Solaris
2.x, Hewlett Packard’s HP-UX 9.05 and 10.x, and IBM’s AIX 4.1.x, etc.) are all POSIX.1-
compliant but they still maintain their system-specific APIs.

This book will discuss the POSIX.1, POSIX.1b and POSIX.1c APIs, and also UNIX
system-specific APIs. Furthermore, in the rest of the book, unless stated otherwise, when the
word POSIX is mentioned alone, it refers to both the POSIX.1 and POSIX.1b standards.

To ensure a user program conforms to the POSIX.1 standard, the user should either
define the manifested constant _POSIX_SOURCE at the beginning of each source module of
the program (before the inclusion of any headers) as:

#define _POSIX_SOURCE
or specify the -D_POSIX_SOURCE option to a C++ compiler (CC) in a compilation:
% CC-D_POSIX_SOURCE *.C

This manifested constant is used by ¢pp to filter out all non-POSIX.1 and non-ANSI C
standard codes (e.g., functions, data types, and manifested constants) from headers used by
the user program. Thus, a user program that is compiled and run successfully with this switch
defined is POSIX.1-conforming.

POSIX.1b defines a different manifested constant to check conformance of user pro-
grams to that standard. The new macro is _POSIX_C_SOURCE, and its value is a time-
stamp indicating the POSIX version to which a user program conforms. The possible values
of the _POSIX_C_SOURCE macro are:

_POSIX_C_SOURCE value Meaning

168808L First version of POSIX.1 compliance
199009L Second version of POSIX.1 compliance
199309L POSIX.1 and POSIX.1b compliance

Facebook's Exhibit No. 1069

Page 26

Chap. 1. The POSIX Standards

Each _POSIX_C_SOURCE value consists of the year and month that a POSIX stan-
dard was approved by IEEE as a standard. The L suffix in a value indicates that the value’s
data type is a long integer.

The _POSIX_C_SOURCE may be used in place of the _POSIX_SOURCE. However,
some systems that support POSIX.1 only may not accept the _POSIX_C_SOURCE defini-
tion. Thus, readers should browse the unistd.h header file on their systems and see which con-
stants, or both, are used in the file.

There is also a _POSIX_VERSION constant that may be defined in the <unistd.h>
header. This constant contains the POSIX version to which the system conforms. The follow-
ing sample program checks and displays the _POSIX_VERSION constant of the system on
which it is run: :

/* show_posix_ver.C */
#define _POSIX_SOURCE ,
#define _POSIX_C_SOURCE 199309L
#include <iostream.h>
#include <unistd.h>
int main{)
{
#ifdef _POSIX_VERSION

cout << “System conforms to POSIX: “

<< _POSIX_VERSION << endl;

#else

cout << “_POSIX_VERSION is undefined\n”;
#endif

return O;

__In general, a user program that must be strictly POSIX.1- and POSIX.1b-compliant
may be written as follows:

#define _POSIX_SOURCE

#define _POSIX_C_SOURCE 199309L
#include <unistd.h>

/* include other headers here */

int main()

{

10

Facebook's Exhibit No. 1069

Page 27

Chap. 1. The POSIX Standards

1.4.1 The POSIX Environment

Although POSIX was developed based on UNIX, a POSIX-compliant system is not
necessarily a UNIX system. A few UNIX conventions have different meanings, according to
the POSIX standards. Specifically, most standard C and C++ header files are stored under the
lusr/include directory in any UNIX system, and each of them is referenced by the:

#include <header_file_name>

This method of referencing header files is adopted in POSIX. However, for each name
specified in a #included statement, there need not be a physical file of that name existing on a
POSIX-conforming system. In fact the data that should be contained in that named object
may be builtin to a compiler, or stored by some other means on a given system. Thus, in a
POSIX environment, included files are called simply keaders instead of header files. This
“headers” naming convention will be used in the rest of the book. Furthermore, in a POSIX-
compliant system, the /usr/include directory does not have to exist. If users are working on a
non-UNIX but POSIX-compliant system, please consult the C or C++ programmer’s manual
to determine the standard location, if any, of the headers on the system.

Another difference between POSIX and UNIX is the concept of superuser. In UNIX, a
superuser has privilege to access all system resources and functions. The superuser user ID is
always zero. However, the POSIX standards do not mandate that all POSIX-conforming sys-
tems support the concept of a superuser, nor does the user ID of zero require any special priv-
ileges. Furthermore, although some POSIX.1 and POSIX.1b APIs require the functions to be
executed in “special privilege,” it is up to an individual conforming system to define how a
“special privilege” is to be assigned to a process.

1.4.2 The POSIX Feature Test Macros

Some UNIX features are optional to be implemented on a POSIX-conforming system.
Thus, POSIX.1 defines a set of feature test macros, which, if defined on a system, means that
the system has implemented the corresponding features.

These feature test macros, if defined, can be found in the <unistd.h> header. Their
names and uses are:

Feature test macro Effects if defined on a system
_POSIX_JOB_CONTROL The system supports the BSD-style job control
_POSIX_SAVED_IDS Each process running on the system keeps the

saved set-UID and set-GID, so that it can change
its effective user ID and group ID to those values
via the seteuid and setegid APIs, respectively

11

Facebook's Exhibit No. 1069

Page 28

Chap. 1.

12

Feature test macro

_POSIX_CHOWN_RESTRICTED

_POSIX_NO_TRUNC

_POSIX_VDISABLE

The POSIX Standards

Effects if defined on a system

If the defined value is -1, users may change owner-
ship of files owned by them. Otherwise, only users
with special privilege may change ownership of
any files on a system. If this constant is undefined
in <unistd.h> header, users must use the pathconf
or fpathconf function (described in the next sec-
tion) to check the permission for changing owner-
ship on a per-file basis

If the defined value is -1, any long path name
passed to an API is silently truncated to
NAME_MAX bytes; otherwise, an error is gener-
ated. If this constant is undefined in the <unistd.h>
header, users must use the pathconf or fpathconf
function to check the path name truncation option
on a per-directory basis

If the defined value is -1, there is no disabling char-
acter for special characters for all terminal device
files; otherwise, the value is the disabling character
value. If this constant is undefined in the
<unistd.h> header, users must use the pathconf or
fpathconf function to check the disabling character
option on a per-terminal device file basis

The following sample program prints the POSIX-defined configuration options sup-
ported on any given system:

/* show_test_macros.C */

#define _POSIX_SOURCE
#define _POSIX_C_SOURCE 199309L

#include <iostream.h>
#include <unistd.h>

int main()

{

#ifdef _POSIX_JOB_CONTROL
cout << “System supports job control\n”;

#else

~ cout << “System does not support job controf\n”;

#endif

Facebook's Exhibit No. 1069
Page 29

Chap. 1.

1.4.3

The POSIX Standards

#ifdef _POSIX_SAVED_IDS
cout << “System supports saved set-UID and saved set-GID\n”;
#else
cout << “System does not support saved set-UID and “
<< " saved set-GID\n";
#endif

#ifdef _POSIX_CHOWN_RESTRICTED
cout << “chown_restricted option is: “ <<
_POSIX_CHOWN_RESTRICTED << endl;
#else
cout << “System does not support chown_restricted option\n”;
#endif

#ifdef _POSIX_NO_TRUNC
cout << “Pathname trunc option is: “ << _POSIX_NO_TRUNC
<< endl;
#else
cout << “System does not support system-wide pathname”
<< “trunc option\n”;
#endif

#ifdef _POSIX_VDISABLE
cout << “Disable char. for terminal files is: “
<< _POSIX_VDISABLE << endl;
felse
cout << “System does not support _POSIX_VDISABLE\n”;
#endif
return O;

Limits Checking at Compile Time and at Run
Time

POSIX.1 and POSIX.1b define a set of system configuration limits in the form of man-
ifested constants in the <limits.h> header. Many of these limits are derived from the UNIX
systems and they have the same manifested constant names as their UNIX counterparts, plus
the POSIX_ prefix. For example, UNIX systems define the constant CHILD_MAX, which
specifies the maximum number of child processes a process may create at any one time. The
corresponding POSIX.1 constant is _POSIX_CHILD_MAX. The reason for defining these

13

Facebook's Exhibit No. 1069

Page 30

Chap. 1.

The POSIX Standards

constants is that although most UNIX systems define a similar set of constants, their values
vary substantially from one UNIX system to another. The POSIX-defined constants specify
the minimum values for these constants for all POSIX-conforming systems; thus, it facilitates
application programmers to develop programs that use these system configuration limits.

The following is a list of POSIX.1-defined constants in the <limits.h> header:

Compile time limit Min. value
_POSIX_CHILD_MAX 6
_POSIX_OPEN_MAX 16

_POSIX_STREAM_MAX 8

_POSIX_ARG_MAX 4096

_POSIX_NGROUP_MAX 0

_POSIX_PATH_MAX 255
_POSIX_NAME_MAX 14
_POSIX_LINK_MAX 8
_POSIX_PIPE_BUF 512
_POSIX_MAX INPUT 255

- _POSIX_MAX_CANON 255
_POSIX_SSIZE_MAX 32767

_POSIX_TZNAME_MAX 3

Meaning

Maximum number of child processes
that may be created at any one time by
a process

Maximum number of files that may be
opened simultaneously by a process
Maximum number of I/O streams that
may be opened simultaneously by a
process

Maximum size, in bytes, of arguments
that may be passed to an exec function
call

Maximum number of supplemental
groups to which a process may belong
Maximum number of characters
allowed in a path name

Maximum number -of characters
allowed in a file name

Maximum number of links a file may
have

Maximum size of a block of data that
may be atomically read from or written
to a pipe file

Maximum capacity, in bytes, of a ter-
minal’s input queue

Maximum size, in bytes, of a termi-
nal’s canonical input queue

Maximum value that can be stored in a
ssize_t-typed object

Maximum number of characters in a
time zone name

The following is a list of POSIX. 1b-defined constants:

14

Facebook's Exhibit No. 1069

Page 31

Chap. 1.
Compile time limit Min. value
_POSIX_AIO_MAX 1

_POSIX_AIO_LISTIO_MAX 2

_POSIX_TIMER_MAX 32

_POSIX_DELAYTIMER_MAX 32

_POSIX MQ_OPEN_MAX 2
_POSIX_MQ_PRIO_MAX 2
_POSIX_RTSIG_MAX 8

_POSIX_SIGQUEUE_MAX 32

_POSIX_SEM_NSEMS_MAX 256

_POSIX_SEM_VALUE_MAX

32767

The POSIX Standards

Meaning

Number of simultaneous asynchronous
1/0

Maximum number of operations in one
listio

Maximum number of timers that can
be used simultaneously by a process
Maximum number of overruns allowed
per timer

Maximum number of message queues
that may be accessed simultaneously
per process

Maximum number of message priori-
ties that can be assigned to messages
Maximum number of real-time signals
Maximum number of real time signals
that a process may queue at any one
time

Maximum number of semaphores that
may be used simultaneously per pro-
cess

Maximum value that may be assigned
to a semaphore

Note that the POSIX-defined constants specify only the minimum values for some sys-
tem configuration limits. A POSIX-conforming system may be configured with higher values
for these limits. Furthermore, not all these constants must be specified in the <limits.h>
header, as some of these limits may be indeterminate or may vary for individual files.

To find out the actual implemented configuration limits system-wide or on individual
objects, one can use the sysconf, pathconf, and fpathconf functions to query these limits’ val-
ues at run time. These functions are defined by POSIX.1; the sysconfis used to query general
system-wide configuration limits that are implemented on a given system; pathconf and
Jpathconf are used to query file-related configuration limits. The two functions do the same
thing; the only difference is that pathconf takes a file’s path name as argument, whereas
Jpathconf takes a file descriptor as argument. The prototypes of these functions are:

#include <unistd.h>

long sysconf (const int limit_name);

long pathconf (const char* pathname, int flimit_name);
long fpathconf (const int fdesc, int flimit_name);

15

Facebook's Exhibit No. 1069

Page 32

Chap. 1.

16

The POSIX Standards

The limit_name argument value is a manifested constant as defined in the <unistd.h>
header. The possible values and the corresponding data returned by the sysconf function are:

Limit value
_SC_ARG_MAX

_SC_CHILD_MAX

_SC_OPEN_MAX
_SC_NGROUPS_MAX

_SC_CLK_TCK
_SC_JOB_CONTROL
_SC_SAVED_IDS
_SC_VERSION
_SC_TIMERS
_SC_DELAYTIMER_MAX
_SC_RTSIG_MAX
_SC_MQ_OPEN_MAX
_SC_MQ_PRIO_MAX
_SC_SEM_MSEMS_MAX
_SC_SEM_VALUE_MAX
_SC_SIGQUEUE_MAX

_SC_AIO_LISTIO_MAX
_SC_AIO_MAX

sysconf return data

Maximum size, in bytes, of argument values that
may be passed to an exec API call

Maximum number of child processes that may be
owned by a process simultaneously

Maximum number of opened files per process

Maximum number of supplemental groups per
process

The number of clock ticks per second.

The _POSIX_JOB_CONTROL value

The _POSIX_SAVED_IDS value

The _POSIX_VERSION value

The _POSIX_TIMERS value

Maximum number of overruns allowed per timer
Maximum number of real time signals
Maximum number of message queues per process
Maximum priority value assignable to a message
Maximum number of semaphores per process
Maximum value assignable to a semaphore

Maximum number of real time signals that a pro-
cess may queue at any one time

Maximum number of operations in one listio
Number of simultaneous asynchronous 1/0

As can be seen in the above, all constants used as a sysconf argument value have the
SC prefix. Similarly, the flimit_name argument value is a manifested constant defined in
the <unistd.h> header. These constants all have the _PC_ prefix. The following lists some of
these constants and their corresponding return values from either pathconf or fpathconf for a
named file object:

Limit value
_PC_CHOWN_RESTRICTED
_PC_NO_TRUNC
_PC_VDISABLE
_PC_PATH_MAX
_PC_LINK_MAX
_PC_NAME_MAX
_PC_PIPE_BUF

pathconf return data

The _POSIX_CHOWN_RESTRICTED value
Return the _POSIX_NO_TRUNC value

Return the _POSIX_VDISABLE value

Maximum length, in bytes, of a path name
Maximum number of links a file may have
Maximum length, in bytes, of a file name
Maximum size of a block of data that may be auto-

Facebook's Exhibit No. 1069
Page 33

Chap. 1. The POSIX Standards
matically read from or written to a pipe file
_PC_MAX_CANON Maximum size, in bytes, of a terminal’s canonical
input queue
_PC_MAX_INPUT Maximum capacity, in bytes, of a terminal’s input

queue

These variables parallel their corresponding variables as defined on most UNIX sys-
tems (the UNIX variable names are the same as those of POSIX, but without the _POSIX _
prefix). These variables may be used at compile time, such as the following:

char pathname [_POSIX_PATH_MAX + 1];
for (int i=0; i < _POSIX_OPEN_MAX; i++)

close (i; // close all file descriptors

The following tes:_config.C program illustrates the use of sysconf, pathconf, and fpath-

conf:

#define _POSIX_SOURCE

#define _POSIX_C_SOURCE 199309L
#include <stdio.h>

#include <iostream.h>

#include <unistd.h>

int main()

{

int res;

if ((res=sysconf(_SC_OPEN_MAX))==-1)
perror(“sysconf”);

else cout << “OPEN_MAX: “ << res << endl;

if ((res=pathconf("/",_PC_PATH_MAX))==-1)
perror(“pathconf”);
else cout << “Max path name: “ << (res+1) << endl;

if ((res=fpathconf(0,_PC_CHOWN_RESTRICTED))==-1)
perror(“fpathconf”);
else
cout << “chown_restricted for stdin: “ << res << endl;
return O;

17

Facebook's Exhibit No. 1069
Page 34

Chap. 1. The POSIX.1 FIPS Standard

1.5 The POSIX.1 FIPS Standard

FIPS stands for Federal Information Processing Standard. The POSIX.1 FIPS standard
was developed by the National Institute of Standards and Technology (NIST, formerly, the
National Bureau of Standards), a department within the US Department of Commerce. The
latest version of this standard, FIPS 151-1, is based on the POSIX.1-1988 standard. The
POSIX.1 FIPS standard is a guideline for federal agencies acquiring computer systems. Spe-
cifically, the FIPS standard is a restriction of the POSIX.1-1988 standard, and it requires the
following features to be implemented in all FIPS-conforming systems:

+ Job control; the _POSIX_JOB_CONTROL symbol must be defined

+ Saved set-UID and saved set-GID; the _POSIX_SAVED_IDS symbol must be
defined

* Long path name is not supported; the _POSIX_NO_TRUNC should be defined - its
value is not -1

* The _POSIX_CHOWN_RESTRICTED must be defined - its value is not -1. This
means only an authorized user may change ownership of files, system-wide

+ The _POSIX_VDISABLE symbol must be defined - its value is not equal to -1

* The NGROUP_MAX symbol’s value must be at least 8

» The read and write API should return the number of bytes that have been transferred
after the APIs have been interrupted by signals

* The group ID of a newly created file must inherit the group ID of its containing
directory ,

The FIPS standard is a more restrictive version of the POSIX.1 standard. Thus, a FIPS
151-1 conforming system is also POSIX.1-1988 conforming, but not vice versa. The FIPS
standard is outdated with respect to the latest version of the POSIX.1, and it is used primarily
by US federal agencies. This book will, therefore, focus more on the POSIX.1 standard than
on FIPS. oo

1.6 The X/Open Standards

The X/Open organization was formed by a group of European companies to propose a
common operating system interface for their computer systems. The organization published
the X/Open Portability Guide, issue 3 (XPG3) in 1989, and issue 4 (XPG4) in 1994. The port-
ability guides specify a set of common facilities and C application program interface func-
tions to be provided on all UNIX-based “open systems.” The XPG3 [9] and XPG4 [10] are
based on ANSI-C, POSIX.1, and POSIX.2 standards, with additional constructs invented by
the X/Open organization.

18

Facebook's Exhibit No. 1069
Page 35

Chap. 1. Summary

In addition to the above, in 1993 a group of computer vendors (e.g., Hewlett-Packard,
International Business Machines, Novell, Open Software Foundation, and Sun Microsystems,
Inc.) initiated a project called Common Open Software Environment (COSE). The goal of the
project was to define a single UNIX programming interface specification that would be sup-
ported by all the vendors. This specification is known as Spec 1170 and has been incorporated
into XPG4 as part of the X/Open Common Application Environment (CAE) specifications.

The X/Open CAE specifications have a much broader scope than do the POSIX and
ANSI-C standards. This means applications that conform to ANSI-C and POSIX also con-
form to the X/Open standards, but not necessarily vice versa. Furthermore, though most com-
puter vendors and independent software vendors (ISVs) adopted POSIX and ANSI-C, some
of them have yet to conform to the X/Open standards. Thus, this book will focus primarily on
the common UNIX system programming interface and the ANSI-C and POSIX standards.
Readers may consult more detailed publications [4,5] for further information on the X/Open
CAE specifications.

1.7 Summary

This chapter gave an overview of the various standards that are applicable to UNIX sys-
tem programmers. The objective is to familiarize readers with these standards and to help
readers understand the benefits they provide. The details of these standards and their corre-
sponding functions and APIs, as provided on most UNIX systems, are described in the rest of
the book.

1.8 References

[1]. O-J. Dahl, B. Myrhaug, and K. Nygaard, SIMULA Common Base Language, 1970.

[2]. Bjarne Stroustrup, The C++ Programming Language, Second Edition, 1991.

[31. Margaret A. Ellis and Bjarne Stroustrup, The Annotated C++ Reference Manual,
Addison-Wesley, 1990.

[4]. Andrew Koenig, Working Paper for Draft Proposed International Standard for
Information Systems -- Programming Language C++ (Committees: WG21/N0414,
X3J16/94-0025), 1994.

19

Facebook's Exhibit No. 1069

Page 36

Chap. 1.

[51.

[6].

[7].

[8].

[91.

[10].

20

References

American National Standard Institute, American National Standard for Information
Systems - Programming Language C, X3.159 - 1989, 1989.

Institute of Electrical and Electronics Engineers, Information Technology - Portable
Operating System Interface (POSIX) Part 1: System Application Program Interface
(API) [C language], IEEE 1003.1. 1990.

Institute of Electrical and Electronics Engineers, Information Technology - Portable
Operating System Interface (POSIX) Part 1: System Application Program Interface
(API) [C language] - Amendment: Real-Time Extension, IEEE 1003.1b. 1993.

Institute of Electrical and Electronics Engineers, Information Technology - Portable
Operating System Interface (POSIX) Part 1: System Application Program Interface
(API) [C language] - Amendment: Thread Extension, IEEE 1003.1c. 1995.

X/Open, X/Open Portability Guide, Prentice Hall, 1989.

X/Open, X/Open CAE Specification, Issue 4, Prentice Hall, 1994.

Facebook's Exhibit No. 1069

Page 37

CHAPTERn

UNIX Files

Files are the building blocks of any operating system, as most operations in a system
invariably deal with files. When you execute a command in UNIX, the UNIX kernel fetches
the corresponding executable file from a file system, loads its instruction text to memory, and
creates a process to execute the command on your behalf. Furthermore, in the course of exe-
cution, a process may read from or write to files. All these operations involve files. Thus, the
design of an operating system always begins with an efficient file management system.

Files in UNIX and POSIX systems cover a wide range of file types. These include text
files, binary files, directory files, and device files. Furthermore, UNIX and POSIX systems
provide a set of common system interfaces to files, such that they can be handled in a consis-
tent manner by application programs. This, in turn, simplifies the task of developing applica-
tion programs on those systems.

This chapter will explore the various file types in UNIX and POSIX systems and will
show how they are created and used. Moreover, there is a set of common file attributes that an

operating system keeps for each file in the system -- these attributes and their uses are

explained in detail. Finally, the UNIX System V kernel and process-specific data structures
used to support file manipulation are described to tie in the system call interface for files. The
UNIX and POSIX.1 system calls for file handling are discussed in the next chapter.

129

Facebook's Exhibit No. 1069

Page 38

Chap. 6. File Types

6.1 File Types

A file in a UNIX or POSIX system may be one of the following types:

* Regular file

¢ Directory file

* FIFO file

¢ Character device file
¢ Block device file

A regular file may be either a text file or a binary file. UNIX and POSIX systems do
not make any distinction between these two file types, and both may be “executable”, pro-
vided that the execution rights of these files are set and that these files may be read or written
to by users with the appropriate access permission.

Regular files may be created, browsed through, and modified by various means such as
text editors or compilers, and they can be removed by specific system commands (e.g., rm in
UNIX).

A directory file is like a file folder that contains other files, including subdirectory files.
It provides a means for users to organize their files into some hierarchical structure based on
file relationship or uses. For example, the UNIX /bin directory contains all system execut-
able—programs such as cat, rm, sort, etc.

A directory may be created in UNIX by the mkdir command. The following UNIX
command will create the /usr/foo/xyz directory if it does not exist;

mkdir /usr/foo/xyz

A UNIX directory is considered empty if it contains no other files except the “” and “..”
files, and it may be removed via the rmdir command. The following UNIX command
removes the /usr/foo/xyz directory if it exists:

rmdir /usr/foo/xyz
The content of a directory file may be displayed in UNIX by the Is command.

A block device file represents a physical device that transmits data a block at a time.
Examples of block devices are hard disk drives and floppy disk drives. A character device
Jile, on the other hand, represents a physical device that transmits data in a character-based
manner. Examples of character devices are line printers, modems, and consoles. A physical
device may have both block and character device files representing it for different access

130

Facebook's Exhibit No. 1069

Page 39

Chap. 6. File Types

methods. For example, a character device file for a hard disk is used to do raw (nonblocking)
data transfer between a process and the disk.

An application program may perform read and write operations on a device file in the
same manner as on a regular file, and the operating system will automatically invoke an
appropriate device driver function to perform the actual data transfer between the physical
device and the application.

Note that a physical device may have both a character and a block device file refer to it,
so that an application program may choose to transfer data with that device by either a char-
acter-based (via the character device file) or block-based (via the block device file) method.

A device file is created in UNIX via the mknod command. The following UNIX com-
mand creates a character device file with the name /dev/cdsk0, and the major and minor num-
bers of the device file are 115 and 5, respectively. The argument ¢ specifies that the file to be
created is a character device file:

mknod /dev/cdsk c 115 5

A major device number is an index to a kernel table that contains the addresses of all
device driver functions known to the system. Whenever a process reads data from or writes
data to a device file, the kernel uses the device file’s major number to select and invoke a
device driver function to carry out the actual data transfer with a physical device. A minor
device number is an integer value to be passed as an argument to a device driver function
when it is called. The minor device number tells the device driver function what actual phys-
ical device it is talking to (a driver function may serve multiple physical device types), and
the 1/O buffering scheme to be used for data transfer.

Device driver functions are supplied either by physical device vendors or by operating
system vendors. Whenever a device driver function is installed to a system, the operating sys-
tem kernel will require reconfiguration. This scheme allows an operating system to be
extended at any customer site to handle any new device type preferred by users.

A block device file is also created in UNIX by the mknod command, except that the
second argument to the mknod command will be b instead of c. The b argument specifies that
the file to be created is a block device file. The following command creates a /dev/bdsk block
device file with the major and minor device numbers of 287 and 101, respectively:

mknod /dev/bdsk b 287 101

In UNIX, mknod must be invoked through superuser privileges. Furthermore, it is con-
ventional in UNIX to put all device files in either the /dev directory or a subdirectory beneath
it.

131

Facebook's Exhibit No. 1069

Page 40

Chap. 6. File Types

A FIFO file is a special pipe device file which provides a temporary buffer for two or
more processes to communicate by writing data to and reading data from the buffer. Unlike
regular files, however, the size of the buffer associated with a FIFO file is fixed to PIPE_BUF.
(PIPE_BUF and its POSIX.1 minimum value, _POSIX_PIPE_BUF, are defined in the <lim-
its.h> header). A process may write more than PIPE_BUF bytes of data to a FIFO file, but it
may be blocked when the file buffer is filled. In this case the process must wait for a reader
process to read data from the’/pipe and make room for the write operation to complete.
Finally, data in the buffer is accessed in a first-in-first-out manner, hence the file is called a
FIFO.

The buffer associated with a FIFO file is allocated when the first process opens the
FIFO file for read or write. The buffer is discarded when all processes which are connected to
the FIFO close their references (e.g., stream pointers) to the FIFO file. Thus the data stored in
a FIFO buffer is temporary; they last as long as there is one process which has a direct con-
nection to the FIFO file for data access.

A FIFO file may be created in UNIX via the mkfifo command. The following command
creates a FIFO file called /usr/prog/fifo_pipe if it does not exist:

mkfifo ust/progffifo_pipe

In some early versions of UNIX (e.g., UNIX System V.3), FIFO files were created via
the mknod command. The following UNIX command creates the /usr/prog/fifo_pipe FIFO
file if it does not exist:

mknod /usr/progffifo_pipe p

The UNIX System V.4 supports both the mknod and mkfifo commands, whereas BSD
UNIX supports only the mkfifo command to create FIFO files.

A FIFO file may be removed like any regular file. Thus FIFO files can be removed in
UNIX via the rm command.

Beside the above file types, BSD UNIX and UNIX System V.4 also define a symbolic
link file type. A symbolic link file contains a path name which references another file in
either the local or a remote file system. POSIX.1 does not yet support symbolic link file type,
although it has been proposed:to be added to the standard in a future revision.

A symbolic link may be created in UNIX via the /n command. The following command
creates a symbolic link /usr/mary/slink which references the file /usr/jose/original. The cat
command which follows will print the content of the /usr/jose/original file:

132

Facebook's Exhibit No. 1069
Page 41

Chap. 6. The UNIX and POSIX File Systems

In -s /usr/jose/original /ust/mary/slink
cat -n /ust/mary/slink

The path name referenced by a symbolic link may be depicted in UNIX via the Is -/
command on the symbolic link file. The following command will show that /usr/mary/slink is
a symbolic link to the /usr/jose/original file:

% Is -1 Jusr/mary/slink
sr--r--r-- 1 terry 20 Aug 20, 1994 slink -> /usr/jose/original
%

It is possible to create a symbolic link to reference another symbolic link. When sym-
bolic links are supplied as arguments to the UNIX commands vi, cat, more, head, tail, etc.,
these commands will dereference the symbolic links to access the actual files that the links
reference. However, the UNIX commands rm, my, and chmod will operate only on the sym-
bolic link arguments directly and not on the files that they reference.

6.2 The UNIX and POSIX File Systems

Files in UNIX or POSIX systems are stored in a tree-like hierarchical file system. The
root of a file system is the root directory, denoted by the *“/” character. Each intermediate node
in a file system tree is a directory file. The leaf nodes of a file system tree are either empty
directory files or other types of files.

The absolute path name of a file consists of the names of all the directories, specified in
the descending order of the directory hierarchy, starting from */,” that are ancestors of the file.
Directory names are delimited by the “/” characters in a path name. For example, if the path
name of a file is /usr/xyz/a.out, it means that the file a.out is located in a directory called xyz,
and the xyz directory is, in turn, stored in the usr directory. Furthermore, the usr directory is
in the “/” directory.

Y1)

A relative path name may consist of the “.” and “..” characters. These are references to
the current and parent directories, respectively. For example, the path name ../../login denotes
a file called .login, which may be found in a directory two levels up from the current direc-
tory. Although POSIX.1 does not require a directory file to contain “.” and “..” files, it does
specify that relative path names with “” and “..” characters be interpreted in the same manner
as in UNIX.

A file name may not exceed NAME_MAX characters, and the total number of charac-
ters of a path name may not exceed PATH_MAX. The POSIX.1-defined minimum values for

133

Facebook's Exhibit No. 1069

Page 42

Chap. 6. The UNIX and POSIX File Attributes

NAME_MAX and PATH_MAX are _POSIX NAME_MAX and _POSIX_PATH_MAX,
respectively. These are all defined in the <limits.h> header.

Furthermore, POSIX.1 specifies the following character set is to be supported by all
POSIX.1-compliant operating systems as legal file name characters. This means application
programs that are to be ported to POSIX.1 and UNIX systems should manipulate files with
names in the following character set only:

AtoZ atoz Oto 9 _ -

The path name of a file is called a hard link. A file may be referenced by more than one
path name if a user creates one or more hard links to the file using the UNIX In command.
For example, the following UNIX command creates a new hard link fusr/prog/mew/nl for the
file /usr/foo/pathl. After the In command, the file can be referenced by either path name.

In /usrffoo/path1 /ust/prog/new/n1

Note that if the -5 option is specified in the above command, the /ust/prog/n1 will be a
symbolic link instead of a hard link. The differences between hard and symbolic links will be
explained in Chapter 7.

The following files are commonly defined in most UNIX systems, although they are not
mandated by POSIX.1:

File Use

letc Stores system administrative files and programs
letc/passwd Stores all user information

/etc/shadow Stores user passwords (For UNIX System V only)
/etc/group Stores all group information

/bin Stores all the system programs like cat, rm, cp, etc.
/dev Stores all character and block device files
/usr/include N Stores standard header files

fust/lib Stores standard libraries

tmp Stores temporary files created by programs

6.3 The UNIX and POSIX File Attributes

Both UNIX and POSIX.1 maintain a set of common attributes for each file in a file sys-
tem. These attributes and the data they specify are:

134

Facebook's Exhibit No. 1069

Page 43

Chap. 6.

files.

Attribute
file type
access permission

Hard link count
uib

GID

file size

last access time
last modify time
last change time

inode number
file system ID

The UNIX and POSIX File Attributes

Value meaning
Type of file

The file access permission for owner, group, and
others

Number of hard links of a file

The file owner user ID

The file group ID

The file size in bytes

The time the file was last accessed
The time the file was last modified

The time the file access permission, UID, GID, or
hard link count was last changed

The system inode number of the file
The file system ID where the file is stored

Most of the above information can be depicted in UNIX by the Is -/ command on any

The above attributes are essential for the kernel to manage files. For example, when a

user attempts to access a file, the kernel matches the user’s UID and GID against those of the
file to determine which category (user, group, or others) of access permission should be used
for the access privileges of the user. Furthermore, the last modification time of files is used by
the UNIX make utility to determine which source files are newer than their corresponding
executable files and require recompilation.

Although the above information is stored for all file types, not all file types make use of
the information. For example, the file size attribute has no meaning for character and block
device files.

In addition to the above attributes, UNIX systems also store the major and minor device
numbers for each device file. In POSIX.1, the support of device files is implementation-
dependent; thus, it does not specify major and minor device numbers as standard attributes
for device files.

All the above attributes are assigned by the kernel to a file when it is created. Some of
these attributes will stay unchanged for the entire life of the file, whereas-others may change
as the file is being used. The attributes that are constant for any file are:

« File type
¢ File inode number

135

Facebook's Exhibit No. 1069

Page 44

Chap. 6. Inodes in UNIX System V

e File system ID
* Major and minor device number (for device files on UNIX systems only)

The other attributes are changed by the following UNIX commands or system calls:

UNIX command System call Attributes changed

chmod chmod Changes access permission, last change time

chown chown Changes UID, last change time

chgrp chown Changes GID, last change time

touch utime Changes last access time, modification time

In link Increases hard link count

rm unlink Decreases hard link count. If the hard link
count is zero, the file will be removed from
the file system

vi, emac - Changes file size, last access time, last modi-

fication time

6.4 Inodes in UNIX System V

Two of the file attributes which were mentioned but not explained in the above are the
inode number and the file system ID. One may also notice that file names are not part of the
attributes which an operating system keeps for files. This section will use UNIX System V as
the context to give answers to all these puzzles.

In UNIX System V, a file system has an inode table which keeps tracks of all files. Each
entry of the inode table is an inode record which contains all the attributes of a file, including
an unique inode number and the physical disk address where the data of the file is stored.
Thus if a kernel needs to access information of a file with an inode number of, say 15, it will
scan the inode table to find an entry which contains an inode number of 15, in order to access
the necessary data. Since an operating system may have access to multiple file systems at one
time (they are connected to the operating system via the mount system command, and each is
assigned an unique file system ID), and an inode number is unique within a file system only,
a file inode record is identified by a file system ID and an inode number.

An operating system does not keep the name of a file in its inode record, because the
mapping of file names to inode numbers ‘is'done via directory files. Specifically, a directory
file contains a list of names and their respective inode numbers for all files stored in that
directory. For exaggplé; if a directory foo contains files xyz, a.out, and xyz_Inl, where xyz_Inl
is a hard link of xyz, the content of the directory foo is shown in Figure 6.1 (most implemen-
tation-dependent data is omitted).

136

Facebook's Exhibit No. 1069

Page 45

Chap. 6. Application Program Interface to Files

To access a file, for example /ust/joe, the UNIX kernel always knows the “/” directory
inode number of any process (it is kept in a process U-area and may be changed via the chdir
system call). It will scan the *“/” directory file (via the “/” inode record) to find the inode num-
ber of the usr file. Once it gets the usr file inode number, it checks that the calling process has
permission to search the usr directory and accesses the content of the usr file. It then looks for
the inode number of the joe file.

Whenever a new file is created in a directory, the UNIX kernel allocates a new entry in
the inode table to store the information of the new file. Moreover, it will assign a unique
inode number to the file and add the new file name and inode number to the directory file that
contains it.

inode number file name
115
89
201 xyz
346 a.out
201 xyz_inl
Figure 6.1 A sample directory file content

Inode numbers and file system IDs are defined in POSIX.1, but the uses of these
attributes are implementation-dependent. Inode tables are kept in their file systems on disk,
but the UNIX kernel maintains an in-memory inode table to contain a copy of the recently
accessed inode records.

6.5 Application Program Interface to Files

Both UNIX and POSIX systems provide an application interface similar to files, as fol-
lows:

+ Files are identified by path names

» Files must be created before they can be used. The UNIX commands and corre-
sponding system calls to create various types of files are:

137

Facebook's Exhibit No. 1069

Page 46

Chap. 6. Application Program Interface to Files
File type UNIX command UNIX and POSIX.1 system call
Regular files vi, ex, etc. open, creat
Directory files mkdir mkdir, mknod
FIFO files mkfifo mkfifo, mknod
Device files mknod mknod
Symbolic links In-s symlink

138

*

Files must be opened before they can be accessed by application programs. UNIX
and POSIX.1 define the open API, which can be used to open any files. The open
function returns an integer file descriptor, which is a file handle to be used in other
system calls to manipulate the open file

A process may open at most OPEN_MAX files of any types at any one time. The
OPEN_MAX and its POSIX.1-defined minimum value _POSIX_OPEN_MAX are
defined in the <limits.h> header

The read and write system calls can be used to read data from and write data to
opened files

File attributes can be queried by the stat or fstat system call
File attributes can be changed by the chmod, chown, utime, and link system calls
File hard links can be removed by the unlink system call

To facilitate the query of file attributes by application programs, UNIX and POSIX.1
define a struct stat data type in the <sys/stat.h> header. A struct stat record contains all the
user-visible attributes of any file being queried, and it is assigned and returned by the star or
Jfstat function. The POSIX.1 declaration of the struct stat type is:

struct stat

{

dev_t st_dev; /* file system ID */

ino_t st_ino; /* File inode number */

mode_t st_mode; /* Contains file type and access flags */

nlink_t st_nlink; /* Hard link count */

uid_t st_uid; /* File user ID */

gid_t st_gid; /* File group ID ¥/

dev_t st_rdev; /* Contains major and minor device numbers */
off _t st_size; /* File size in number of bytes */

time_t st_atime; /* Last access time */
time_t = st_mtime; /* Last modification time */
time_t- st_ctime; /* Last status change time */

Facebook's Exhibit No. 1069

Page 47

Chap. 6. UNIX Kernel Support for Files

If the path name (or file descriptor) of a symbolic link file is passed as an argument to a
stat (or fstar) system call, the function will resolve the link reference and show the attributes
of the actual file to which the link refers. To query the attributes of a symbolic link file itself,
one can use the Iszat system call instead. Because symbolic link files are not yet supported by
POSIX.1, the Istat system call is also not a POSIX.1 standard.

6.6 UNIX Kernel Support for Files

In UNIX System V.3, the kernel has a file table that keeps track of all opened files in the
system. There is also an inode table that contains a copy of the file inodes most recently
accessed.

When a user executes a command, a process is created by the kernel to carry out the
command execution. The process has its own data structure which, among other things, is a
file descriptor table. The file descriptor table has OPEN_MAX entries, and it records all files
opened by the process. Whenever the process calls the open function to open a file for read
and/or write, the kernel will resolve the path name to the file inode. If the file inode is not
found or the process lacks appropriate permissions to access the inode data, the open call fails
and returns a -1 to the process. If, however, the file inode is accessible to the process, the ker-
nel will proceed to establish a path from an entry in the file descriptor table, through a file
table, onto the inode for the file being opened. The process for that is as follows:

1. The kernel will search the process file descriptor table and look for the first unused
entry. If an entry is found, that entry will be designated to reference the file. The index
to the entry will be returned to the process (via the return value of the open function) as
the file descriptor of the opened file.

2. The kernel will scan the file table in its kernel space to find an unused entry that can be
assigned to reference the file.

If an unused entry is found, the following events will occur:

a. The process’s file descriptor table entry will be set to point to this file table entry.
b. The file table entry will be set to point to the inode table entry where the inode
record of the file is stored.

c. The file table entry will contain the current file pointer of the open file. This is an
offset from the beginning of the file where the next read or write operation will
occur .

d. The file table entry will contain an open mode that specifies that the file is opened
for read-only, write-only, or read and write, etc. The open mode is specified from
the calling process as an argument to the open function call.

e. The reference count in the file table entry is set to 1. The reference count keeps

139

Facebook's Exhibit No. 1069

Page 48

Chap. 6. UNIX Kernel Support for Files

track of how many file descriptors from any process are referencing the entry.

f. The reference count of the in-memory inode of the file is increased by 1. This count
specifies how many file table entries are pointing to that inode.

If either (1) or (2) fails, the open function will return with a -1 failure status, and no file
descriptor table or file table entry will be allocated.

Figure 6.2 shows a process’s file descriptor table, the kernel file table, and the inode
table after the process has opened three files: xyz for read-only, abc for read-write, and abc
again for write-only.

file table inode table

file descriptor table

kernel space

rc=1 \
rc=1| xyz

w
re=1 \.’
/ rc=2| abc

3

Process Space g

rc = reference count
r =read-only

rw = read-write

w = write-only

Figure 6.2 Data Structure for File Manipulation

Note that the reference count of an allocated file table entry is usually 1, but a process
may use the dup (or dup2) function to make multiple file descriptor table entries point to the
same file table entry. Alternatively, the process may call the fork function to create a child
process, such that the child and parent process file table entries are pointing to corresponding
file table entries at the same time. All these will cause a file table entry reference count to be
larger than 1. The dup, dup2 and fork functions and their uses will be explained in more
detail in Chapter 8. ;

The reference count in a file inode record specifies how many file table entries are
pointing to the file inode record. If the count is not zero, it means that one or more processes
are currently opening the file for access.

140

Facebook's Exhibit No. 1069

Page 49

Chap. 6. UNIX Kernel Support for Files

Once an open call succeeds, the process can use the returned file descriptor for future
reference. Specifically, when the process attempts to read (or write) data from the file, it will
use the file descriptor as the first argument to the read (or write) system call. The kernel will
use the file descriptor to index the process’s file descriptor table to find the file table entry of
the opened file. It then checks the file table entry data to make sure that the file is opened with
the appropriate mode to allow the requested read (or write) operation.

If the read (or write) operation is found compatible with the file’s open mode, the ker-
nel will use the pointer specified in the file table entry to access the file’s inode record (as
stored in the inode table). Furthermore, it will use the file pointer stored in the file table entry
to determine where the read (or write) operation should occur in the file. Finally, the kernel
checks the file’s file type in the inode record and invokes an appropriate driver function to ini-
tiate the actual data transfer with a physical device.

If a process calls the Iseek system call to change the file pointer to a different offset for
the next read (or write) operation, the kernel will use the file descriptor to index the process
file descriptor table to find the pointer to the file table entry. The kernel then accesses the file
table entry to get the pointer to the file’s inode record. It then checks that the file is not a char-
acter device file, a FIFO file, or a symbolic link file, as these files allow only sequential read
and write operations. If the file type is compatible with Iseek, the kernel will change the file
pointer in the file table entry according to the value specified in the Iseek arguments.

When a process calls the close function to close an opened file, the sequence of events
are as follows:

1. The kernel sets the corresponding file descriptor table entry to be unused.

2. It decrements the reference count in the corresponding file table entry by 1. If the refer-
ence count is still non-zero, go to 6.

3. The file table entry is marked as unused.

4. The reference count in the corresponding file inode table entry is decrement by one. If
the count is still nonzero, go to 6.

5. If the hard-link count of the inode is not zero, it returns to the caller with a success sta-
tus. Otherwise it marks the inode table entry as unused and deallocates all the physical

disk storage of the file, as all the file path names have been removed by some process.

6. It returns to the process with a 0 (success) status.

141

Facebook's Exhibit No. 1069

Page 50

Chap. 6. Relationship of C Stream Pointers and File Descriptors

6.7 Relationship of C Stream Pointers and File
Descriptors

C stream pointers (FILE*) are allocated via the fopen C function call. A stream pointer
is more efficient to use for applications doing extensive sequential read from or write to files,
as the C library functions perform I/O buffering with streams. On the other hand, a file
descriptor, allocated by an open system call, is more efficient for applications that do frequent
random access of file data, and I/O buffering is not desired. Another difference between the
two is stream pointers is supported on all operating systems, such as VMS, CMS, DOS, and
UNIX, that provide C compilers. File descriptors are used only in UNIX and POSIX.1-com-
pliant systems; thus, programs that use stream pointers are more portable than are those using
file descriptors.

To support stream pointers, each UNIX process has a fixed-size stream table with
OPEN_MAX entries. Each entry is of type FILE and contains working data from an open
file. Data stored in a FILE record includes a buffer for /O data buffering, the file I/O error
status, and an end-of-file flag, etc. When fopen is called, it scans the calling process FILE
table to find an unused entry, then assigns this entry to reference the file and returns the
address of this entry (FILE*) as the stream pointer for the file. Furthermore, in UNIX, the
Jopen function calls the open function to perform the actual file opening, and a FILE record
contains a file descriptor for the open file. One can extract the file descriptor associated with a
stream pointer via the fileno macro, which is declared in the <stdio.h> header:

int fileno (FILE* stream_pointer);

Thus, if a process calls fopen to open a file for access, there will be an entry in the process
FILE table and an entry in the process’s file descriptor table being used to reference the file. If
the process calls open to open the file, only an entry in the process’s file descriptor table is
assigned to reference the file. However, one can convert a file descriptor to a stream pointer
via the fdopen C library function:

FILE* fdopeti (int file_descriptor, char * open_mode);

The fdopen function has an action similar to the fopen function, namely, it assign a process
FILE table entry to ref@renég’the file, records the file descriptor value in the entry, and returns
the address of the entry to the caller.

After eithéfmtﬁéﬁlenb or fdopen call, the process may reference the file via either the
stream pointer or the file descriptor. Other C library functions for files also rely on the operat-

142

Facebook's Exhibit No. 1069
Page 51

"Chap. 6. Directory Files

ing system APIs to perform the actual functions. The following lists some C library functions
and the underlying UNIX APIs they use to perform their functions:

C Library function UNIX system call used
fopen open

fread, fgetc, fscanf, fgets read

fwrite, fputc, fprintf, fputs write

fseek, ftell, frewind Iseek

fclose close

6.8 Directory Files

A directory is a record-oriented file. Each record contains the information of a file
residing in that directory. The record data type is struct dirent in UNIX System V and
POSIX.1, and struct direct in BSD UNIX. The record content is implementation-dependent,
but in UNIX and POSIX systems they all contain two essential member fields: a file name
and an inode number. The usage of directory files is to map file names to their corresponding-
inode numbers so that an operating system can resolve any file path name to locate its inode
record.

Although an application can use the open, read, write, lseek, and close system calls to
manipulate directory files, UNIX and POSIX.1 define a set of portable functions to open,
browse, and close directory files. They are built on top of the open, read, write, and close sys-
tem calls and are defined in <dirent.h> for UNIX System V and POSIX.1-compliant systems
or in <sys/dir.h> for BSD UNIX:

Directory function Purpose

opendir Opens a directory file

readdir Reads the next record from file
closedir Closes a directory file

rewinddir Sets file pointer to beginning of file

The opendir function returns a handle of type DIR*. It is analogous to the FILE* han-
dle for a C stream file. The handle is used in the readdir, rewinddir, and closedir function
calls to specify which directory file to manipulate.

Besides the above functions, UNIX systems also define the telldir and seekdir func-
tions for random access of different records in a directory file. These functions are not
POSIX.1 standard, and they are analogous to the ftell and fseek C library functions, respec-
tively.

143

Facebook's Exhibit No. 1069
Page 52

Chap. 6. Hard and Symbolic Links

If a process adds or deletes a file in a directory file while another process has opened
the file via the opendir, it is implementation-dependent as to whether the latter process will
see the new changes via the readdir function. However, if the latter process does a rewinddir
and then reads the directory via the readdir, according to POSIX.1, it should read the latest
content of the directory file.

6.9 Hard and Symbolic Links

A hard link is a UNIX path name for a file. Most UNIX files have only one hard link.
However, users may create additional hard links for files via the In command. For example.
the following command creates a new link call /usr/joe/book.new for the file fusr/mary/
fun.doc:

In Just/mary/fun.doc lusrfjoe/book.new

After the above command, users may refer to the same file by either lusr/joe/book.new or /
usr/mary/fun.doc.

Symbolic links can be created in the same manner as hard links, except that you must
specify the -5 option to the In command. Thus, using the above example, you can create /usr/
Joe/book.new as a symbolic link instead of a hard link with the following command:

In -s /ust/mary/fun.doc /ustfjoe/book.new

Symbolic links or hard links are used to provide alternative means of referencing files.
For example, you are at the /usr/jose/proj/doc directory, and you are constantly browsing the
file /usr/include/sys/unistd.h. Thus, rather than specifying the full path name /usr/include/sys/
unistd.h every time you reference it, you could define a link to that file as follows:

In /usrfinclude/sys/unistd.h uniref

From now on, you can refer to that file as uniref. Thus links facilitate users in referencing
files.

In differs from the ¢p command in that ¢p creates a duplicated copy of a file to another
file with a different path name, whereas In primarily creates a new directory entry to refer-

ence a file. For example, given the following command:

In /usr/joseéabc /usr/mary/xyz

the directory files /usr/jose and /usr/mary will contain:

144

Facebook's Exhibit No. 1069

Page 53

Chap. 6.

Hard and Symbolic Links

inode number filename inode number filename
115 515.
89 989
201 abc 201 xyz
346 a.out 146 fun.c
/usrfjose fusr/mary

Note that both the /usr/jose/abc and /usr/mary/xyz refer to the same inode number, 201.
Thus there is no new file created. If, however, we use the /n -s or the ¢cp command to create
the /usr/mary/xyz file, a new inode will be created, and the directory files of /usr/jose and /
usr/mary will look like the following:

inode number file name inode number _file name
115 515
89 989
201 abc 345 xyz
346 a.out 146 fun.c
/usr/jose Jusr/mary

If the /usr/mary/xyz file was created by the cp command, its data content will be identi-
cal to that of /usr/jose/abc, and the two files will be separate objects in the file system. How-
ever, if the /usr/mary/xyz file was created by the In -s command, then the file data will consist
only of the path name /us+/mary/abc.

Thus, In helps save disk space over ¢p by not creating duplicated copies of files. More-
over, whenever a user makes changes to a link (hard or symbolic) of a file, the changes are
visible from all the other links of the file. This is not true for files created by cp, as the dupli-
cated file is a separate object from the original.

Hard links are used in all versions of UNIX. The limitations of hard links are:

* Users cannot create hard links for directories, unless they have superuser (root)
privileges. This is to prevent users from creating cyclic links in a file system. An

example of a cyclic link is like the following command:

In /ust/jose/text/unix_link /ust/jose

145

Facebook's Exhibit No. 1069

Page 54

Chap. 6. Summary

If this command succeeds, then whenever a user does a Is -R /usr/jose, the Is
command will run into an infinite loop in displaying, recursively, the subdirec-
tory tree of /usr/jose. UNIX allows the superuser to create hard links on directo-
ries with the assumption that a supervisor will not make this kind of mistake

* Users cannot create hard links on a file system that references files on a different
system. This is because a hard link is just a directory entry (in a directory file
that stores the new link) to reference the same inode number as the original link,
but inode numbers are unique only within a file system (hard links cannot be
used to reference files on remote file systems)

To overcome the above limitations, BSD UNIX invented the symbolic link concept. A
symbolic link can reference a file on any file system because its data is a path name,
and an operating system kernel can resolve path names to locate files in either local or
remote file systems. Furthermore, users are allowed to create symbolic links to directo-
ries, as the kernel can detect cyclic directories caused by symbolic links. Thus, there
will be no infinite loops in directory traversal. Symbolic links are supported in the
UNIX System V.4, but not by POSIX.1.

The following table summarizes the differences between symbolic and hard links:

Hard Link Symbolic Link
Does not create a new inode Create a new inode
Can not link directories, unless this is Can link directories
done by root
Can not link files across file systems Can link files across file systems
Increase the hard link count of the linked Does not change the hard link count of
inode the linked inode

6.10 Summary

“"*This chapter describes the UNIX and POSIX file systems and the different file types in
the systems. It also depicts how these various files are created and used. Furthermore, the
UNIX System V system-wide and per-process data structures that are used to support file
manipulation and the application program interfaces for files are covered. The objective of
this chapter is to familiarize readers with the UNIX file structures so that they can understand
why the UNIX and POSIX system calls were created, how they work, and what their applica-
tions for users are. =~ -

The ne‘xt«chépter will describe the UNIX and POSIX file APIs in more detail.

146

Facebook's Exhibit No. 1069
Page 55

