
United States Patent [19J

Wright, Jr. et al.

[54] ENTERPRISE CONNECTIVITY TO
HANDHELD DEVICES

[75] Inventors: Gerald V. Wright, Jr., Solana Beach;
James O'Grady, Del Mar, both of
Calif.

[73] Assignee: Wright Strategies, Inc., San Diego,
Calif.

[21] Appl. No.: 665,422

[22] Filed: Jun. 18, 1996

[51] Int. Cl.6
.. G06F 17/30

[52] U.S. Cl. 707/104; 707/10; 707/201
[58] Field of Search 395/617, 608,

395/610, 683, 149, 200.58, 200.03; 364/468;
379/58; 705/34; 707/201, 10, 104

[56] References Cited

4,603,232
4,651,288
4,730,253
4,863,384
4,937,439
5,047,960
5,100,329
5,204,813
5,208,907
5,225,996
5,283,861
5,335,164

U.S. PATENT DOCUMENTS

7/1986 Kurland eta!. 179/2
3/1987 Zeising 364/519
3/1988 Gordon 364/415
9/1989 Slade 434/107
6/1990 Wanninger et a!. 235/456
9/1991 Sloan 364/523
3/1992 Deesen et a!. 434/327
4/1993 Samph eta!. 364/419
5/1993 Shelton et a!. 395/149
7/1993 Weber 364/550
2/1994 Dangler et a!. 395/149
8/1994 Gough, Jr. et a!. 364/149

(List continued on next page.)

01HER PUBLICATIONS

"Announcing FormLogic, the First Seamless Platform to
Eliminate Paper-Based Processes in the Field; Uses Low­
Cost Handheld Computers to Extend Existing Enterprise
Systems", Business Wire, p. 06180011, Jun. 1996.
"FormLogic Update Links PDAs to the Enterprise Debuts
FormLogic 2.0 Development Software for Building &
Deploying Mobile Client/Server Apps", PC Week, p. 29,
Jun. 1996.

111111 111
US005857201A

[11] Patent Number:

[45] Date of Patent:

5,857,201
Jan. 5, 1999

"Vendors Hawk Wares to VARS, Resellers at Trade Show:
Multimedia and Emerging Handheld Markets Make their
Mark at Macworld", Computer Reseller News, p. 53, Aug.
1995.

"Wright Strategies Seeks VARs Gathering Mobile Experi­
ence Launches FormLogic 2.0, a Client/Server-Based Data
Collection Software for Mobile Users", Computer Reseller
News, p. 55, Jul. 1996.

(List continued on next page.)

Primary Examiner-Paul R. Lintz
Assistant Examiner--Charles L. Ranes
Attorney, Agent, or Firm-Knobbe, Martens, Olson & Bear,
LLP

[57] ABSTRACT

A FormLogic (FL) client/server system and method to
access existing enterprise data sources on an occasional
basis. The system includes a FL builder program to generate
a communications agent that encapsulates a communication
session. The session includes one or more related tasks. The
system also includes a FL server which is connected to one
or more enterprise data sources. The FL server provides the
ability to link hardware devices running a FL engine as a
client to access existing enterprise data sources on an
occasional basis. It is optimized to communicate by
exchanging a minimum amount of data, since the wireless
transports do not move large amounts of data quickly and
data is expensive to move. Each session encompasses con­
necting the remote host, performing a specific task or set of
tasks, then disconnecting from the host. Because the con­
nection times must be short, the client and server need to be
able to perform the required tasks without user intervention.
The FL engine includes a user interface, a script engine, a
communications module, and a local data store, and prefer­
ably runs on a mobile personal digital assistant. Upon
connection, this local database is automatically manipulated
by the FL server. The FL server can query the FL client
database, add data to the client database, or remove data
from the client database so as to make updates to both the
client and server databases for reflecting changes that have
happened on both sides since the last connection.

19 Claims, 5 Drawing Sheets

1 of 17

FedEx Exhibit 1004

5,857,201
Page 2

5,408,619
5,423,043
5,434,994
5,463,555
5,581,753
5,600,834
5,603,026
5,666,530
5,696,903
5,704,029
5,706,431
5,742,668
5,745,884
5,758,355

U.S. PATENT DOCUMENTS

4/1995 Oran 395/610
6/1995 Fitzpatrick et a!. 395/683
7/1995 Shaheeh et a!. 395/617

10/1995 Ward et a!. 364/468
12/1996 Terry et a!. 395/617
2/1997 Howard 707/201
2/1997 Demers eta!. 395/608
9/1997 Clark et a!. 395/617

12/1997 Mahany 395/200.58
12/1997 Wright, Jr. 395/149

1!1998 Otto 395/200.03
4/1998 Pepe et a!. 379 !58
4/1998 Carnegie et a!. 705/34
5/1998 Buchanan 707/201

01HER PUBLICATIONS

Hwang, Diana "Start-up Wright Strategies is Seeking the
'Right Strategy': Making it OmniForm Data-Collection
Software Competitive", Computer Reseller News, p. 49,
Feb. 1995.
Ladin et al. "Providing High Availability Using Lzay Rep­
lication", ACM Transactions on Computer Systems, v.lO,
n.4, pp. 360-391, Nov. 1992.
Day et al. "References to Remote Mobile Objects in Thor",
ACM Letters on Programming Languages and Systems, v.2,
n1-4, pp. 115-126, Mar. 1993.

Wayfarer Press Release: Jan. 29, 1996, "Wayfarer Intro­
duces First Server Software to Support High-Performance
Client/Server Applications Over the Internet", 4 pages.

Wayfarer White Paper, "Moving Client/Server to the Inter­
net," 8 pages, printed May 20, 1996.

Tsukashima, Ross, "I Don't Do Windows What's Up With
the Newton?," ComputerEdge, pp. 50, 52, 54, Jun. 7, 1996.

Goodman, Danny, "The Newton Shuffle", MacUser, pp.
183-184, Feb. 1994.

Thornon, J. et al., "Using Computers to Survey Property",
Public Finance Account, Feb. 12, 1993 (abstract only).

Brochure entitled "Introducing the ETE Communicator",
ETE, Inc., Nov., 1993.

Brochure entitled "Form Factor, Business and Personal Data
Collection for PDAs", Meta Pacific, 1993.

Apple Computer, Inc. "The NewtonScript Programming
Language, Alpha Draft 1.0", Jul. 17, 1993.

Brochure entitled "Newton Software Titles, Starcore", New­
ton, 1993.

Straley, S.J., "Straley's Programming with Clipper 5.0", A
Bantam Book, Jul. 1991, pp. 166-169, 1015-1020,
1079-1081, 1084-1087, 1090-1107.

2 of 17

U.S. Patent Jan. 5, 1999 Sheet 1 of 5 5,857,201

('-------'--,--------'-----------' l

I \ '
~
~ \~}_-Jj

3 of 17

,----------- ~----- -~------- -~------------------------,

w4~ I I a 4 B6

102

EXISTING
DATABASE

106

107/

EXISTING MAIL
SERVER

148

D
FORM LOGIC

ADMINISTRATOR

1.32

FORM LOGIC
SERVER

I
I
I

146/

146

L----------------- _I_------ _I_-------------------- _j

FIG 2

d •
\Jl •
~
~
~ =

~
~

?
~Ul

'"""' '0
'0
'0

'JJ.

=­~
~
N
0,
Ul

Ul
00
Ul
......::.
N = ~

4 of 17

!62~

!64~

r-

!66-~

!70~

F ormlogic Client and Server Architecture

CLIENT A cus FLServer !90-. r--------------

: Service 1

FLEngine !60 Conn1
!94~

I
I
I

208

2!0 USER INTERFACE

;
SCRIPT ENGINE

t
COMMUNICATION

MODULE

;

!84~

I• •J • • 1Message
Handler

DATA STORE ~ !72

v1
204

I

Conn2 :
I
I
I
I
I

I
I
I

Ci I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I

r--------------

Service2

I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I

~GPPucJ ~ I
I I
I

I

I
I

I

I
I

I

I
I
I

!96~
I
I 204
I

I I
I I
I I
I I
I I
I

206
I

I I
I I
I I
I

~ I

------- ------- ------- _______ j

!80

~ :::: r-- -_..

Data Source I Data Source 2 -

~!32
_L

. !92
1200

Sess1

208 202

!82

d
•
\Jl
•
~
~
~ =

~
~

?
~Ul

'"""' '0
'0
'0

'JJ.

=-~
~
~

0,
Ul

Ul
00
Ul
......::.
N = ~

5 of 17

U.S. Patent Jan. 5, 1999 Sheet 4 of 5 5,857,201

Client/Server Message Exchange for Mail Exchange Session

2.30-------.......

Client Server
!.36'

' Log

2.32

username, password, appProfile, session Name 1n

J ~/
234

GMT+/- Time Zone

\
~2.38

• • •

CreateRecordSet("Mail"," _direction=' outgoing'")

- 252
OnCreateRecordSet("M ail", 2)

~254

GetNextRecord(''Mail'')
256'~

-
,_ OnGetN extRecord("M ail'', theRecord)

258-/

GetNextRecord("Mail'')
26'0~

-
OnGetNextRecord("Mail ", theRecord)

262-

FIG 4o

~

~

--

--

--

--

v---1.32

Aut henticate

~2.36'

>-S ynchronize SW

~240

s tartNextTask
GetMail) (

~250

6 of 17

U.S. Patent Jan. 5, 1999 Sheet 5 of 5 5,857,201

Client Server
v-----136

AddRecord("Mail", theRecord)
272-\

OnAddRecord() 274~

AddRecord("Mail", theRecord)
276\

OnAddRecord()

278

280---_
Send(mthdiD, theMessaqe) -\

~

Disconnect() 292~
-

OnDisconnect()

294/
J

FIC 4b

~

~

-

~ 132

St
(S

artNextT ask
endMail)
\

'------2 70

Di sconnect

~290

7 of 17

5,857,201
1

ENTERPRISE CONNECTIVITY TO
HANDHELD DEVICES

BACKGROUND OF THE INVENTION

2
held devices and 2) ODBC is designed to work over a
persistent connection with high bandwidth, such as Ethernet.
Therefore, what is desired is a set of client/server APis that
can utilize a variety of transports to move a minimum

1. Field of the Invention

The present invention generally relates to client/server
technology and, more specifically, to a client/server archi­
tecture for occasional connections between mobile comput­
ing devices and enterprise computing systems.

5 amount of data over the wire or through the airways. To
accommodate current and future transports, a message­
based asynchronous communications protocol that is
designed to work efficiently over low bandwidth, high
latency networks is needed. This capability is required for

2. Background
In the current persistent connection client/server model,

personal computer clients "connect" to a server on the
network and request data from the server as needed by an
application. This is usually performed by use of SQL
(Structured Query Language). The connection between the
client and server exists the entire time the application is in
use, usually for hours at a time. This is not possible in a
mobile model, because it is not possible for mobile clients
to remain connected for that amount of time. Mobile clients
connect on an occasional basis, and when they do connect,
the connection needs to move the smallest amount of data in
the least amount of time. This is because wireless transports
are not capable of moving large of amounts of data quickly,
and data is extremely expensive to move.

10
evolving wireless transports, such as these provided by the
companies of ARDIS™, RAM Mobile Data™, and 2-way
paging, such that developers will automatically be able to
support them without making any changes to their applica­
tions.

Application software on a client device may not be the
15 most recent available due to enhancements, fixes, and so

forth. The architecture should support a users and groups
model, wherein different applications modules can be dis­
tributed to a particular user or group. Using a version control
for these applications components, users can automatically

20 be updated with the latest version of an application upon
connection.

SUMMARY OF THE INVENTION

The client/server (CIS) architecture of the present inven-
25 tion is designed to allow the client to become a direct

extension of the corporate data sources. The CIS compo­
nents use an object management scheme and are preferably
based on Microsoft™'s OLE technology. A 32 bit OLE
control (OCX) is used to manage a connection with a

Existing client/server technologies based on persistent
network connections were not designed to support occa­
sional connections between low performance, low overhead
handheld computing devices and existing enterprise com­
puting systems. What is needed is a client/server architecture 30

that supports occasional connections between low
performance, low overhead mobile computing devices and
existing enterprise computing systems. What is desired is an
application development and deployment platform, such that
developers have the ability to create applications using a 35

series of forms, tables, and communications agents, and the
ability to deploy and maintain these applications. This
platform should be implemented using an object model that
can be easily ported to other hardware platforms and oper-
ating systems. 40

multiple mobile personal digital assistant (PDA). This arc hi­
tecture allows the developer to manage a single connection
with a single PDA device. It provides a completely asyn­
chronous communications interface, providing multiple
connections with multiple devices at the same time. Appli-
cations built with existing development tools can be enabled
to either exchange data on demand, or provide facilities for
a multi-port server allowing remote database access and
e-mail access from the field. When used with client/server
development tools such as Visual Basic™, this server object
allows developers to create direct connections between PDA
devices, and nearly any host data source, including
databases, mail servers, and Internet data sources.

In one aspect of the present invention there is a client/
server system, comprising a portable client computer, com-

An architecture that allows multiple devices to connect
concurrently to a single server is desired. This architecture
should allow developers to connect any existing enterprise
data source to handheld clients in the field. This architecture
should allow developers to create two way links between
any existing enterprise data source on a network, such as a
database, mail server, or internet news feed, and FormLogic
client applications.

45 prising a client database, and a communications module; a
server computer, comprising a server data source, a session
module, in communication with the server data source, to
non-persistently connect to the communications module and
access the client database from time to time.

The improved client/server architecture should provide 50
"transport independence", which is a unique requirement of
field based applications. Sometimes it is necessary to con­
nect over a serial cable, other times over a wireless local area
network (LAN), and other times over the Internet. Such
functionality has been addressed with "middleware" prod- 55
ucts. However, middleware products usually consist only of
a series of "C" application programming interfaces (APis)
on client and server ends that require the developer to
integrate them into an application. What is desired is to
integrate "middleware" functionality directly into a specific 60
server structure for which developers create "services".

Existing client/server APis move a tremendous amount of
data, such as Microsoft™'s ODBC (Open Database
Connectivity). It is not feasible to use interfaces such as
ODBC in the handheld or occasionally connected environ- 65

ment for two reasons. 1) The code size of ODBC is several
megabytes-more than the entire memory of today's hand-

In another aspect of the present invention there is, in a
computer network, including a server, a data source, and a
mobile client having a database, a method of synchronizing
the client database and data source during a non-persistent
connection, the method comprising the steps of connecting
the mobile client to the server; manipulating the client
database by the server; updating the data source responsive
to the manipulation by the server; and disconnecting the
client from the server.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of an exemplary known
client/server system;

FIG. 2 is a high-level block diagram of a preferred
client/server embodiment of the present invention;

FIG. 3 is a block diagram of the architecture of client
components and server components of the system shown in
FIG. 2; and

8 of 17

5,857,201
3

FIGS. 4a and 4b are a diagram showing an exemplary
client/server message exchange for a mail exchange session.

DETAILED DESCRIPTION OF 1HE
PREFERRED EMBODIMENTS

5
The following detailed description of the preferred

embodiments presents a description of certain specific
embodiments to assist in understanding the claims.
However, the present invention can be embodied in a
multitude of different ways as defined and covered by the 10

claims. Reference is now made to the drawings wherein like
numerals refer to like parts throughout.

The new FormLogic client/server (CIS) architecture is
designed to allow a FormLogic client to become a direct
extension of the corporate database. Previously, as described 15

in applicant's copending patent application, now U.S. Pat.
No. 5,704,029, FormLogic clients provided data to host
databases in the form of ASCII files that had to be imported
into the target database. While reliable for batch file
processing, this method did not provide a direct link between 20

the client personal digital assistant (PDA) and the enterprise
database. Furthermore, there was no way to automatically
extract records from the enterprise database, and send them
to the device. The new FormLogic CIS architecture over­
comes these limitations by allowing developers to create 25

direct links between PDAs and enterprise data sources using
industry standard development tools.

The new FormLogic client/server components described
herein use an object management scheme and are preferably
based on Microsoft™'s OLE technology. A 32 bit OLE 30

control (OCX) is used to manage a connection with a
multiple PDA device. Because this OCX component is
based on the industry standard component software model,
it can be used with all leading industry standard develop­
ment tools including Lotus Notes ™, Microsoft Visual 35

Basic™, Microsoft Access™, Microsoft Visual FoxPro™,
Borland Delphi™ and PowerBuilder™. The OLE imple­
mentation also provides the developer with a familiar object
model and programming interface for integrating PDA tech­
nology into a predominantly Windows™-based computing 40

infrastructure. This allows developers to create PDA-based
solutions using their existing development tools, avoiding
the need to develop for proprietary PDA operating systems.

A key component of the FormLogic client/server archi­
tecture is the FormLogic service object. The FormLogic 45

service object allows developers to link PDA client appli­
cations for an unlimited number of user connections over a
variety of transports without the need to worry about multi­
user and concurrency issues. The service object allows the
developers to write the application as if it were communi- 50

eating with a single client, allowing them to focus on the
application itself, rather than focus on communications
transport, multi user, and concurrency issues.

4
MDS authentication with the FormLogic Client;
Complete Software Distribution interface allowing devel­

opers to programmatically install FormLogic forms, agents
and tables during connections;

100% asynchronous interface.
A variety of applications are possible for the new Form­

Logic client/server architecture. Several exemplary applica­
tions are described below:
Provide Real-Time Access to Corporate Databases - Prob­

ably the most exciting use of the FormLogic CIS archi­
tecture is the integration of PDA technology with enter­
prise computing environments. Developers can now build
applications that allow PDA devices to connect to virtu­
ally any type of database, from Microsoft Access™ to
Oracle TM, or even legacy systems. Once connected, devel­
opers can create applications that can query as well as
update the database. For example, this allows for
extremely fast development of field service applications,
wherein field personnel connect to a remote database to
retrieve work orders, and then later update the same work
orders.

Create Robust E-mail Gateways - Using existing OLE
controls from third parties, developers can easily integrate
existing Messaging API-based or point-of-presence
(POP)ISimple Mail Transfer Protocol (SMTP) mail sys­
tems. This provides opportunities for developers seeking
to provide an application that provides access to both a
host database and an enterprise e-mail system in a single
connection.

Create Sophisticated Servers- Because the FormLogic Con­
nection object is based on the OLE component
technology, developers can create applications that host
multiple simultaneous connections with a minimum
amount of effort. Existing applications created with tools
such as Microsoft Access ™, can quickly be turned into
servers capable of hosting numerous simultaneous con-
nections to PDA devices in the field.

Integrate PDA Data Transfer Functionality Into Existing
Applications - Existing applications can easily be modi­
fied to provide simple data exchange facilities with PDA
devices. This allows portions of databases to be carried
into the field where they can be modified and later
synchronized with the server database.
Referring to FIG. 1, a typical client/server (CIS) system

100 previously known in software technology is shown. The
system 100 includes a database 102, one or more servers
104, such as a mail server 104', and a local area network
(LAN) 106. Alternatively, the LAN could be a wide area
network (WAN) or an intranet. The database 102, the servers
104 and the LAN 106 collectively are known as the server
portion 107 of the client/server system. A plurality of clients,
such as personal digital assistants (PDAs) 108, 110 and 112,
are in communication with the server portion 107. The
communication may be over a direct serial link, such as a The FormLogic service object has the following features:

Ability to retrieve specific records based on a query;
Ability to programmatically build and send records to the

55 serial cable or a modem.

FormLogic Client;
Ability to send asynchronous messages between the Cli­

ents and Server;
Support for direct serial and modem connections;
Support for AppleTalk™ (ADSP) and Internet (TCPIIP)

network connections;
OCX (ActiveX) implementation allowing integration

with a host of development tools;
Ability to customize the FormLogic Client Connection

dialog during connections;

In a traditional persistent connection based client/server
model, clients remain connected and request data from the
server as they need it. As the data is requested it is stored
locally for manipulation and then discarded. The server still

60 remains the primary and only main storage area for the data
because the client always has access to it when needed.

Referring to FIG. 2, a client/server system 130 of the
present invention will be described. The client/server system
130 hereinafter may also be referred to as the FormLogic

65 client/server system. The system 130 includes the database
102, the mail server 104',the LAN 106 and an administrator
server 148. This portion 107' is similar to the server portion

9 of 17

5,857,201
5 6

server 132 since the last connection. The client database 172
serves as a temporary representation of the host database,
e.g., 180, because the client cannot maintain a full-time
connection to the FL server 132. On the server side, a
Remote Database API has been developed that allows devel­
opers to efficiently manipulate the client database 172 while
sending a minimum amount of data over the connection.
FL Server

The implementation of the FormLogic Server architecture

107 of FIG. 1. However, a FormLogic (FL) server 132 is
connected to the LAN 106 in a persistent fashion to provide
advantages not possible with the traditional system 100. The
FL server 132 is connected to a plurality of client sub­
systems. For example, modems 134 and 134' interconnect 5

the FL server 132 and PDA clients 136 and 136', respec­
tively. An intranet or the Internet interconnects the FL server
132 and clients 142 and 142'. Client devices 146 and 146' are
directly connected to the FLserver 132 by a serial cable 147,
for example. 10 is unique. To allow the FL server 132 access to any data

source a developer may already be working with, an API is
provided between those existing data sources, e.g., 180, 182,
and the FLserver 132. The FLserver 132 comprises an OCX
(Microsoft™ OLE Custom Control), or software

Referring to FIG. 3, the architecture of the FormLogic
server 132 and a representative FormLogic client 136 will be
described. The FL server and FL client were introduced in
conjunction with FIG. 2.
FL Client

The FL client 136 includes an FL Engine 160 which
allows FormLogic applications to execute on a variety of
handheld devices. The FL Engine 160 preferably runs on an
Apple® Message Pad® Model120 or Model130 PDA using
the Newton® version 2.0 operating system software. Of
course, other portable computer devices and operating sys­
tem software, such as Magic Cap™ from General Magic™

15 component, that can be embedded in a variety of existing
development tools, including those tools that are already
being used by developers to access enterprise data sources
(e.g., MS Visual Basic™, PowerBuilder™, Delphi™, Visual
C++ ™). This allows developers to easily extend the FL

20 server 132 to their data sources using tools they are already
familiar with.

The FL server 132 provides the ability to link hardware
devices running the FL Engine 160 to access existing
enterprise data sources on an occasional basis. It is opti-

or Pegasus™ from Microsoft™ Corporation, can be used in
other embodiments. The FL Engine 160 is, in simple terms,
a hardware independent virtual machine that allows a single
application to work on various hardware platforms. A simi­
lar example is the Java virtual machine, licensed by Sun
Microsystems™, which may or may not execute within the
context of a browser.

25 mized to communicate by exchanging a minimum amount of
data, since the wireless transports are expensive and are
characterized by high latency and low bandwidth. The
FormLogic Server 132 serves as a "gateway" between
FormLogic Clients (e.g., 136, 142, 146) and enterprise data

30 sources (e.g., 180, 182). The server 132 supports what is
known as a multi -tier client/server model in that it creates an
intermediate server between the client and the "traditional"
or "original" server.

The FL client subsystem 136 preferably includes the FL
Engine 160 comprising a user interface (UI) 162, a script
engine 164, a communications module 166, and a data store
168. The user interface (UI) 162 and the script engine 164
have been previously described in applicant's copending
patent application, now U.S. Pat. No. 5,204,029, which is 35

hereby incorporated by reference. The communication mod­
ule 166 packages data that is either being received or sent by
the FL Engine 160 and handles interfacing the FL Engine to
the FL Server 132 through the modem 134, the Internet 140

The FL Builder (not shown) is a development tool,
previously described in applicant's copending patent
application, now U.S. Pat. No. 5,704,029, used to build
FormLogic applications that can be executed on a variety of
hardware platforms. It is designed to give developers the
look and feel of existing development tools, preferably
Microsoft Visual Basic™, while at the same time introduc­
ing some innovative features. It is a WYSIWYG tool that
allows one to write code. It is unique in that it allows
developers to create an object called a "communications
agent" or just "agent" that encapsulates a communications

or the direct serial connection 147. Another embodiment 40

may include a wireless LAN. The data store 168 includes
one or more application programs 170 and a remote database
172 for storing the results of running the application pro­
gram or storing data received from the FL Server 132, for
example. 45 "session".

Because FormLogic clients, e.g., 136, do not maintain
persistent connections with the FL server 132, they need to
be able to store and access information while not connected
to the host database, e.g., 182, or other data source. The FL
Engine 160 incorporates a full local database implementa- 50

tion that allows data to be manipulated and collected by the
FL client while not connected to the FL server 132. Upon
connection, this local database 172 is automatically manipu­
lated by the FL server 132. The FL server 132 can query the
client database 172, add data to the client database, or 55

remove data from the client database in order make updates
to both the client and server databases to reflect changes that
have happened on both sides since the last connection. Thus,
a synchronization of the two databases is performed.

In the FormLogic CIS model, the FLserver 132 maintains 60

the primary enterprise database, e.g., 180, but instead of
maintaining a full-time connection with clients, clients con­
nect on an occasional basis. During this connection, the FL
server 132 is responsible for manipulation of the FL client
database 172, including retrieving data that has been col- 65

lected by the client since the last connection, or inserting
new data in the database that has been added on the FL

Because mobile clients cannot maintain a persistent con­
nection to the FL server 132, they must "connect" for short
periods of time to perform a specified operation or set of
operations. Each of these connections is referred to as a
"session", during which time a specified set of operations are
performed between the FL client and FL server. Examples of
these sessions include connecting to retrieve work orders,
checking inventory on a product, or retrieving a monthly
price list update. Each "session" encompasses connecting
the remote host, performing a specific task or set of tasks,
and then disconnecting from the host. Because the connec­
tion times must be short, the FL client and FL server need to
be able to perform the required tasks without user interven­
tion. This is very different from a persistent connection
based client/server model where the connection exists the
entire time the application is used, and data is only retrieved
when the user requests it.

Communications agents, also just known as "agents", are
developed to describe the communications "session". Com­
munications agents know how to connect to a particular
host, perform a set of operations or tasks, which usually
includes synchronizing the host data source, e.g., 180, with

10 of 17

5,857,201
7

the client database 172, and then disconnecting. The idea is
that a developer can create a communications agent that
represents each of the communications sessions that a field
user may need. For example, there may be a communica­
tions agent that retrieves work orders, updates work orders, 5
or downloads a price list. There may also be a communica­
tions agent that simply checks inventory on a particular
product. In general, communications agents are designed to
encompass the fundamental operations that are needed to
exchange data between a client and a host for a particular

10
application.

The agent implementation is simple, and utilizes a simple
software "object" to describe the agent. The developer
creates a named object and provides a name, as well as other
properties, which, upon connection, tell the FL server what
type of session the FL client is requesting, as well as any 15

parameters required to perform specific operations in that
session. Agents may also specify a particular transport to
minimize the cost of a connection, e.g., an agent needing a
long connection time would use a less expensive type of
transport. 20

8
ex1stmg enterprise data sources without worrying about
multi-user and concurrency issues. The FL Server APis are
used from within Visual Basic or other development tools to
communicate with FL Engine and allow server applications
for an unlimited number of user connections over a variety
of transports without the need to worry about multi -user and
concurrency issues. The server object allows the developers
to write the application as if it were communicating with a
single client, allowing them to focus on writing services for
the application itself, rather than focus on communications
transport, multi-user, and concurrency issues.

Service methods are invoked by services, usually with the
convention "connobj.MethodO". Some methods such as of
the remote database APis have corresponding events that are
triggered by the messages from the client indicating the
results of the actions invoked by the method.

The Service APis fall into three distinct categories: the
Remote Database APis, the Messaging APis, and Utility
APis:

Remote Database APis
These calls are used to directly manipulate the client

database during a connection. When invoking Remote Data­
base APis from services, corresponding events will be
passed back to the services that generated the call. A remote

An exemplary Session1 200 called Daily Connect
includes three tasks: Task1 204, e.g., GetMail; Task2 206,
e.g., SendMail; and Task3 208, e.g., Updateinventory.
Another exemplary Session2 202 includes two tasks: Task4
210, e.g., Interrogateinventory; and Task2 206, SendMail. 25 procedure call mechanism is used. There is a corresponding

event for every Remote Database API. Corresponding
events are guaranteed to be called, assuming the method
used to trigger it did not return an error. Methods and Events
for the Remote Database APis are listed in Table 1 below.

The FL Server 132 includes a message handler 184 for
interfacing the FL Server 132 to the FL Engine 160 through
the modem 134, the Internet 140 or the direct serial con­
nection 147, for example. The message handler 184 com­
municates with each instantiation of the FormLogic Con- 30

nection object. For example, as shown in FIG. 3, a
Connection object 194 may be associated with Client A 136
and a Connection object 196 may be associated with Client
C 146. Each of these connections are independent, and a
plurality of connections may be concurrent. Each Connec- 35

tion object has a current task pointer for pointing to the
current task. When the task is completed, the pointer is
incremented to point to the next task in the session. Each of
the Connection objects is pointing to a particular task in a
particular session. In FIG. 3, for example, Connection object 40

194 is pointing to Session1 and Connection object 196 is
pointing to Session2. There is one real object for each
session, and each connection points to its current place (task)
in the session.

A set of tasks are provided or handled by a service. A 45

service defines the relationship between a client application
and an enterprise data source. Examples of services include
Mail, World Wide Web Gateway, or Inventory. For example,

TABLE 1

Method

CreateRecordSet (RSName, tableName,
query De f)
GetNextRecord (RSName)
AddRecord (RSName, FLRec)
DeleteRecord (RSName, FLRec)
DeleteRecordSet (RSName)
Event

OnCreateRecordSet (errcode, RSName,
record Count)
OnGetNextRecord (errcode, RSName, record)
OnAddRecord (errcode, RSName)
OnDeleteRecord (errcode, RSName)
OnDeleteRecordSet(errcode, RSName)

Corresponding Event

OnCreateRecordSet

OnGetNextRecord
OnAddRecord
OnDeleteRecord
OnDeleteRecordSet

Method details and Event details for the Remote Database
APis are listed in Table 2 below.

TABLE 2

CreateRecordSet(tableName queryDef, RSName)
RSName String User defined recordSet name.
tableName String Name of table on FormLogic Client.
queryDef String SQL "Where" clause
returns errcode
GetNextRecord(RSName)
RSName String User defined recordSet name.
returns errcode
AddRecord(RSName, FLRec)
RSName String

a Mail service 190 is a service that provides the Getail task
204 and SendMail task 206, and is connected to the data 50

source 180. An Inventory service 192 provides the Update­
Inventory task 208 and Interrogateinventory task 210, and is
connected to an inventory data source 182, for example.
Each Connection object has its own instantiation of the
service class associated with it. For example, Task1 and 55

Task2 comprise an instantiation of Service1 for Connection
object 194. The service is written as if the server was in
communication with a single client. Multiple copies of the
service are needed for each single client connection coming
into the FL server. Each instantiation of the service does not
maintain connection to its data source; only the "master"
service object maintains connection to the associated data
source. The service instantiations can be considered as
interfaces between the "master" service and the connection.

60
FLRec FL Record Object
returns errcode
DeleteRecord(RSName, FLRec)

User defined recordSet name.
Record to send to FormLogic Client.

FL Server APis
The FL Server APis allow developers to write services for

FL Server that will link FonmLogic client applications to

RSName String
FLRec FL Record Object
returns errcode

User defined recordSet name.
Record to send to FormLogic Client.

OnCreateRecordSet(errcode, RSName, recordCount)
65 errcode Long Error code.

RSName String User defined recordSet name

11 of 17

9

TABLE 2-continued

record Count Long Number of records in RSName
record Set

OnGetNextRecord(errcode, RSName, FLRec)
errcode Long Error code.
RSName String User defined recordSet name
FLRec FL Record Object Record received from FormLogic

Client.
OnAddRecord(errcode RSName)
errcode Long Error code.
RSName String User defined recordSet name
OnDeleteRecord(errcode, RSName)
errcode Long Error code.
RSName String User defined recordSet name

Messaging APis

5,857,201

5

10

10

TABLE 5-continued

Event
OnTimer (errcode, RSName)

Method details for the Utility APis are listed m Table 6
below.

TABLE 6

LogEntry(messagetype, message)
messagetype Integer
message String
returns errcode

Message type
Text message

SetStatus(message, gaugeType, currVal)
15 message String Text message

These APis are used to send specific messages to Form­
Logic Agents 170 (FIG. 3) on the client device. A rules­
based specification of a particular agent on the client can be
done. Messages can be used to send any type of data in real

20
time, and allows the agent on the client side to decide how

gaugeType Integer kProgressbar ~ 0, kBarberPole ~ 1
currVal Integer Gauge position between 0 and 100.
returns errcode

The LogEntry method provides the ability to write to the
system log when a selected activity occurs, e.g., when the
user logs on or off. Error messages can be written to the
system log specific to a particular service that the developer
is writing. The system log can be read by the system

to handle it. Virtual sessions can be established with these
APis. Methods and Events for the Messaging APis are listed
in Table 3 below.

TABLE 3

Method

Send
Reply
Event
OnMessage

Method details and Event details for the Messaging APis are
listed in Table 4 below.

Send(agent!D, methiD, message)
agent!D Long
methiD Long
message FL Record Object
returns errcode
Reply(agent!D, meth!D, message)
agent!D Long
methiD Long
message FL Record Object

returns errcode

Client agent ID
Developer defined method ID
Record to send to FormLogic Client.

Client agent ID
Developer defined method ID
Record to receive from FormLogic
Client.

OnMessage(errcode, obj!D, methiD, FLRec)
errcode Long Error code.
obj!D Long User defined object ID
methiD String User defined method ID
FLRec FL Record Object Record to send to FormLogic Client.

Utility APis

25 administrator. This method could be used for billing clients.
For example, a log entry could be made every time a
message is read from a news feed service.

The SetStatus method gives the FL server a means to
update a dialog box on the client side without causing an

30
extra message to be sent over the link, i.e., this method does
not generate additional traffic on the link. The update mes­
sage is jammed into the next message or packet that is being
sent.

The SetTimer method provides a way to determine if the
client has responded. The developer can set an alarm time

35 interval and an alarm timer name to measure elapsed time.
After the alarm is triggered, an OnTimer Event is fired with
the name of the alarm timer. This method is used to prevent
code block or lockup, and is used in place of a timeout
because different transports take different amounts of time to

40 respond.
The GetUsername method can be used inside the service

to obtain the name of a logged-on user.
The GetAgentParm method allows a service to extract any

of the parameters sent over to the FL server at log-on time.
45 For example, a Mail agent may pass over a log-on name, a

password and a mail server ID. The FL server stores these
parameters for the developer to use inside the service. In the
current example, the developer could use the internet pro-

50
tocol (IP) address of the mail server inside the service.

The StartNextTask method is used by the developer to
execute the next task after the current task is completed.

Utility APis don't actually send any data between the
server and the client. They are used to perform functions
such as setting timers, writing to the system log, and 55
controlling the client's connection dialog. Methods and
Events for the Utility APis are listed in Table 5 below.

After StartNextTask is called, the FL server takes over and
automatically gets and executes the next task in the session.
Example Client/Server Message Exchange

Referring to FIGS. 4a and 4b, an exemplary client/server
message exchange for a Mail Exchange session 230 will be
described. The exchange between the FL client 136 and the
FL server 132 is shown in a graphical time dependent
format. Time increases while traversing downward on the TABLE 5

Method

SetTimer (Name, interval)
La gEntry (messagetype, message)
SetStatus (message, gaugeType, currVal)
GetUsername ()
GetAgentParm (parmName)
StartNextTask

60 graph.
The session shown in FIGS. 4a and 4b illustrates a single

service. Of course, other services could be part of a single
session. The session shown in FIGS. 4a and 4b shows Task1
(204) and Task2 (206) of Session1 (200). Task3 (208) is not

65 shown in this session.
The session 230 begins with a user initiating a login 232.

A message 234 passes a username of the user, the user's

12 of 17

5,857,201
11

password, an application profile, and a session name to the
server. The application profile is a client list of all its
applications and includes forms, agents, tables and respec­
tive version numbers. The server maintains an administra­
tion profile which is a list of the most current applications 5
and the version numbers of the applications and their forms,
agents and tables.

12
event 274. The server checks every event to determine if an
error code is included, and if so, takes appropriate action.
Every method also returns an error code that is also checked.
A second AddRecord method 276 and a second OnAd­
dRecord event 278 are performed for a second FL record
object sent to the client.

A SetStatus method (not shown) of the Utility APis is
called after each GetNextRecord method and each
AddRecord method to update a progress thermometer in a

The server authenticates 236 the received data from the
message 234, i.e., the received username and password are
verified as correct. In response, the server sends the time of
authentication 238 to the client. The server also checks the
application profile received from the client against its
administration profile to determine if the client applications
are current as determined from the version numbers. If any
applications are not current, a synchronize software opera­
tion 240 is initiated by the server to update the client
machine. The most current application(s) are then sent over
to the client using a handshaking mechanism. Since FL
application and updates are relatively small, this process
should complete rather quickly.

10
dialog, for example. At the completion of the OnAddRecord
event 278, the server calls a Send method 280 to send a
dialog message in a dialog box on the video screen of the
client, such as "2 mail records sent, 2 mail records received".
The server 132 then invokes a disconnect task 290 by a
Disconnect method 292. In the presently preferred

15 embodiment, the client disconnects and responds with a
OnDisconnect event 294 to the server. In another
embodiment, the client does not respond with the OnDis­
connect event 294, but does perform the disconnect house-
keeping task.

While the above detailed description has shown,
described, and pointed out the fundamental novel features of
the invention as applied to various embodiments, it will be
understood that various omissions and substitutions and
changes in the form and details of the system illustrated may

At the completion of the software synchronization 240, 20

the server accesses the exemplary ExchangeMail session.
StartNextTask 250 is automatically called by the server for
the first task (GetMail) in the session. A CreateRecordSet
method 252 (Remote Database API) is invoked by the
server. A recordSet object represents a plurality of records in 25 be made by those skilled in the art, without departing from

the spirit of the invention. a base table or the records that result from running a query.
In this instance, the name of the recordSet is "Mail" and the
"_direction='outgoing"' string is a query that identifies
records in the Mail table for which the direction is outgoing.
The communication module 166 at the client creates a set of 30

records on the client device in response to the message 252.
It also sends an OnCreateRecordSet event 254 to the server.
The recordSet name ("Mail") and a recordCount, which is
the number of records in the recordSet, e.g., two pieces of
outgoing mail, are returned to the server. 35

The server then utilizes the GetNextRecord method 256 to
retrieve the first record from the "Mail" recordSet. The
communication module 166 at the client responds with an
event which is received by OnGetNextRecord 258 at the
server. The recordSet name ("Mail") and a FL record object 40

(the Record), are returned to the server. The FLrecord object
is an object of type FL record that encapsulates a set of fields
and their values. In this instance the results are sent to mail
server, but could also be sent to a printer, a screen display,
or to a database, for example. In the preferred embodiment, 45

after the record is received at the server, the record is deleted
at the client. In another embodiment, the record is main­
tained at the client. The second outgoing mail record is
retrieved by a second GetNextRecord method 260 and
OnGetNextRecord event 262. At the completion of event 50

262, both pieces of mail have been retrieved from the client
by the server. Continuing the session 230 on FIG. 4b, the
session calls StartNextTask 270 to invoke a SendMail task.
The server utilizes an AddRecord method 272 to send mail
to the client. The recordSet name ("Mail") and the FL record 55

object (the Record), are passed to the client. The mail server
or other source of data is interrogated to determine the data
to be sent to the client. This example assumes that the
recordSet is available from the previous GetMail task and
that the SendMail task is done after GetMail. Alternatively, 60

a CreateRecordSet method could be invoked at the begin­
ning of the SendMail task (before AddRecord). Using a flag
or other indicator, a check could be done to determine if the
recordSet is already created, and if not, the CreateRecordSet
method would be invoked. 65

The client receives the FL record object (the Record) and
responds to the AddRecord method with an OnAddRecord

What is claimed is:
1. A data synchronization system for a portable client

computer, comprising:
a data storage;
a gateway computer having a persistent connection with

the data storage, the gateway computer comprising a
session module in communication with the data storage
for retrieving data, removing data, or updating data in
the data storage and wherein the data storage resides on
a network that is further connected to the gateway
computer; and

a portable client computer, comprising:
a client database, and
a communications module capable of establishing a

non-persistent connection to the gateway computer
and allowing access to the client database from time
to time for synchronization of at least a portion of the
data in the client database.

2. The system of claim 1, wherein the access to the client
database from the gateway computer is a query.

3. The system of claim 1, wherein the access to the client
database from the gateway computer is to add data to the
client database.

4. The system of claim 1, wherein the access to the client
database from the gateway computer is to remove data from
the client database.

5. The system of claim 1, wherein a portion of the client
database is retrieved and stored in the data storage.

6. The system of claim 1, wherein the network is a wide
area network.

7. The system of claim 6, wherein the wide area network
is the Internet.

8. The system of claim 1, additionally comprising an
application program running on the portable client
computer, wherein the application program results in
changes to the client database.

9. The system of claim 8, wherein the application program
is for completing electronic forms.

10. The system of claim 1, wherein the data storage
comprises a mail server so that the client computer can
access electronic mail.

13 of 17

5,857,201
13

11. In a computer network, including a gateway computer,
a data storage connected to a network that is further con­
nected to the gateway computer, and a mobile client having
a database, a method of synchronizing the client database
and the data storage during a non-persistent connection, the 5

method comprising the steps of:

connecting the mobile client to the gateway computer;
manipulating the client database by commands received

from the gateway computer;
10

accessing the data storage by the gateway computer via
the network;

updating the data storage responsive to the manipulation
by the gateway computer; and

14
13. The method of claim 11, wherein the manipulating

step includes querying the client database.
14. The method of claim 11, wherein the manipulating

step includes removing data from the client database.
15. The method of claim 11, wherein the data storage

comprises a mail server so that the mobile client can access
electronic mail.

16. The method of claim 11, wherein the gateway com­
puter is persistently connected to the data storage.

17. The method of claim 11, wherein the network com­
prises a local area network.

18. The method of claim 11, wherein the network com­
prises a wide area network.

19. The method of claim 18, wherein the wide area
disconnecting the client from the gateway computer. 15 network is the Internet.
12. The method of claim 11, additionally comprising the

step of updating the client database. * * * * *

14 of 17

111111 111
US005857201Cl

c12) EX PARTE REEXAMINATION CERTIFICATE (7512th)
United States Patent c1o) Number: US 5,857,201 Cl
Wright, Jr. et al. (45) Certificate Issued: May 18, 2010

(54) ENTERPRISE CONNECTIVITY TO
HANDHELD DEVICES

(75) Inventors: Gerald V. Wright, Jr., Solana Beach,
CA (US); James O'Grady, Del Mar, CA
(US)

(73) Assignee: Visto Corporation, Redwood City, CA
(US)

Reexamination Request:
No. 90/010,125, Mar. 14, 2008

Reexamination Certificate for:
Patent No.: 5,857,201
Issued: Jan. 5, 1999
Appl. No.: 08/665,422
Filed: Jun. 18, 1996

(51) Int. Cl.
G06F 17130
H04L 29108

(2006.01)
(2006.01)

(52) U.S. Cl. 707/104.1; 707/10; 707/201;
707/E17.005

(58) Field of Classification Search None
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,598,534 A *
5,699,244 A
5,867,688 A
5,933,478 A
6,047,327 A

111997
12/1997
2/1999
8/1999
4/2000

Haas 712/219
Clark, Jr. et a!.
Simmon eta!.
Ozaki eta!.
Tso et al.

OTHER PUBLICATIONS

Roy Want, et a!., A Focus on Context Sensitivity and the
Spatial Arrangement of Computers, "An Overview of the
PARCTAB Ubiquitous Computing Experiment", IEEE Per­
sonal Communications (Dec. 1995); pp. 28-43
(RIM00005649-RIM00005664).

Brown, Kevin et a!., Mastering Lotus Notes, 1995 Sybex
Incorporated.
Lamb, John P. and Lew, Peter W., Lotus Notes Network
Design, 1996 McGraw-Hill.
Lotus Notes Release 4 Administrator's Guide, 1995 Lotus
Development Corporation, Cambridge, MA.
Lotus Notes Release 4 Deployment Guide, 1995 Lotus
Development Corporation, Cambridge, MA.
Courtois, Todde and Rischpater, Ray, "Portal: A
PDA-to-World-Wide-Web Interface", published by AllPen
Software, Inc., copyright 1994, PDA Developers 3.1, Jan./
Feb. 1995 issue.

* cited by examiner

Primary Examiner-Matthew Heneghan

(57) ABSTRACT

A FormLogic (FL) client/server system and method to
access existing enterprise data sources on an occasional
basis. The system includes a FL builder program to generate
a communications agent that encapsulates a communication
session. The session includes one or more related tasks. The
system also includes a FL server which is connected to one
or more enterprise data sources. The FL server provides the
ability to link hardware devices running a FL engine as a
client to access existing enterprise data sources on an occa­
sional basis. It is optimized to communicate by exchanging a
minimum amount of data, since the wireless transports do
not move large amounts of data quickly and data is expen­
sive to move. Each session encompasses connecting the
remote host, performing a specific task or set of tasks, then
disconnecting from the host. Because the connection times
must be short, the client and server need to be able to per­
form the required tasks without user intervention. The FL
engine includes a user interface, a script engine, a communi­
cations module, and a local data store, and preferably runs
on a mobile personal digital assistant. Upon connection, this
local database is automatically manipulated by the FL
server. The FL server can query the FL client database, add
data to the client database, or remove data from the client
database so as to make updates to both the client and server
databases for reflecting changes that have happened on both
sides since the last connection.

Server Architecture

15 of 17

US 5,857,201 Cl
1

EX PARTE
REEXAMINATION CERTIFICATE

ISSUED UNDER 35 U.S. C. 307

THE PATENT IS HEREBY AMENDED AS
INDICATED BELOW.

Matter enclosed in heavy brackets [] appeared in the
patent, but has been deleted and is no longer a part of the
patent; matter printed in italics indicates additions made
to the patent.

10

2
20. The system of claim 1, wherein the access of the client

database is independent of an application programming
interface (API) at the handheld portable client.

21. The system of claim 1, wherein the access of the client
database is via a database API call procedure of the gateway
computer to the service application of the hardware inde­
pendent virtual machine.

22. The system of claim 1, wherein the access of the client
database is by an object link exchange scheme shared
between the gateway computer and handheld portable cli-
ent.

23. The system of claim 1, wherein the handheld portable
client computer is a PDA.

AS A RESULT OF REEXAMINATION, IT HAS BEEN
DETERMINED THAT:

2 4. The system of claim 1, wherein the hardware indepen­
dent virtual machine is embodied by a browser interface of

15 the handheld portable client computer.

Claims 1 and 11 are determined to be patentable as
amended.

25. The method of claim 11, wherein the access of the
client database is independent of an application program­
ming interface (API) at the handheld mobile client.

Claims 2-10, 12-19 dependent on an amended claim, are
determined to be patentable.

New claims 20-49 are added and determined to be patent­
able.

26. The method of claim 11, wherein the access of the
20 client database is via a database API call procedure of the

gateway computer to the service application of the hardware
independent virtual machine.

1. A data synchronization system [for a portable client 25

computer], comprising:
a data storage;
a gateway computer having a persistent connection with

the data storage, the gateway computer comprising a
session module in communication with the data storage 30

for retrieving data, removing data, or updating data in
the data storage[and wherein], the data storage [resides]
residing on a network that is further connected to the
gateway computer; and

a handheld portable client computer operably linked to 35

the gateway computer via a wireless link, comprising:
a hardware independent virtual machine;
a client database, and
a communications module capable of establishing a non- 40

persistent connection to the gateway computer and
allowing wireless access to the client database from
time to time for synchronization of at least a portion of
the data in the client database, the at least a portion of
the data synchronized being subject to service applica- 45

tion processing via the hardware independent virtual
machine.

11. In a computer network, including a gateway computer,
a data storage connected to a network that is further con­
nected to the gateway computer, and a handheld mobile eli- 50
ent having a database, the handheld mobile client being
operably linked to the gateway computer via a wireless link
and including a hardware independent virtual machine, a
method of synchronizing the client database and the data
storage during a non-persistent connection, the method com-

55 prising the steps of:
connecting the handheld mobile client to the gateway

computer via a wireless link; manipulating the client
database through service application processing of the
virtual machine, by processing commands received

60
from the gateway computer;

accessing the data storage, at the handheld mobile client,
by processing the commands received from gateway
computer via the network;

updating the data storage responsive to the manipulation 65
by the gateway computer; and

disconnecting the client from the gateway computer.

2 7. The method of claim 11, wherein the access of the
client database is by an object line exchange scheme shared
between the gateway computer and the handheld mobile cli­
ent.

28. The method of claim 11, wherein the handheld mobile
client is a PDA.

29. The method of claim 11, wherein the hardware inde­
pendent virtual machine is embodied by a browser interface
of the handheld.

30. A data synchronization system, comprising:
a data storage;
a gateway computer having a persistent connection with

the data storage, the gateway computer comprising a
session module in communication with the data storage
for retrieving data, removing data, or updating data in
the data storage, the data storage residing on a network
that is further connected to the gateway computer,
wherein the network includes the Internet; and

a handheld portable client computer, comprising:
a client database, and
a communications module to establish a non-persistent

connection to the gateway computer and allowing
intermittent access to the client database for synchroni­
zation of at least a portion of the data in the client
database.

31. The system of claim 30, wherein the access of the
client database is independent of an application program­
ming interface (API) at the handheld portable client com­
puter.

32. The system of claim 30, wherein the access of the
client database is via a database API call procedure of the
gateway computer to a service application of the handheld
portable client computer.

33. The system of claim 30, wherein the access of the
client database is by an object link exchange scheme shared
between the gateway computer and the handheld portable
client computer.

34. The system of claim 30, wherein the handheld portable
client computer is a PDA.

35. In a computer network, including a gateway computer,
a data storage connected to a network that is further con­
nected to the gateway computer, and a handheld mobile cli­
ent having a database, a method of synchronizing the client
database and the data storage during a non-persistent
connection, the method comprising:

16 of 17

US 5,857,201 Cl
3

connecting the handheld mobile client to the gateway
computer;

manipulating the client database by commands received
from the gateway computer;

providing access to the data storage, to the gateway
computer, via the Internet;

updating the data storage responsive to the manipulation
by the gateway computer; and

disconnecting the client from the gateway computer.
36. The method of claim 35, wherein the access of the

client database is independent of an application program­
ming interface (API) at the handheld mobile client.

37. The method of claim 35, wherein the access of the
client database is via a database API call procedure of the
gateway computer to a service application of the handheld
mobile client.

38. The method of claim 35, wherein the access of the
client database is by an object link exchange scheme shared
between the gateway computer and the handheld mobile eli-
ent.

4
42. The system of claim 40, wherein the access of the

client database is via a database API call procedure of the
gateway computer to a service application of the handheld
portable client computer.

43. The system of claim 40, wherein the access of the
client database is by an object link exchange scheme shared
between the gateway computer and the handheld portable
client computer.

44. The system of claim 40, wherein the handheld portable
10 client computer is a PDA.

45. In a computer network, including a gateway computer,
a data storage connected to a network that is further con­
nected to the gateway computer, and a handheld mobile cli-

15 ent having a database, a method of synchronizing the client
database and the data storage during a non-persistent
connection, the method comprising:

connecting the handheld mobile client to the gateway
computer via a wireless local area network (LAN) link;

39. The method of claim 35, wherein the handheld par- 20

table client is a PDA.
manipulating the client database by commands received

from the gateway computer;
40. A data synchronization system, comprising:
a data storage;

providing access to the data storage, to the gateway
computer, via the Internet;

updating the data storage responsive to the manipulation
by the gateway computer; and

disconnecting the client from the gateway computer.

a gateway computer having a persistent connection with
the data storage, the gateway computer comprising a 25

session module in communication with the data storage
for retrieving data, removing data, or updating data in
the data storage, the data storage residing on a network
that is further connected to the gateway computer, the
network being the Internet; and

46. The method of claim 45, wherein the access of the
client database is independent of an application program-

30 ming interface (API) at the handheld mobile client.
a handheld portable client computer operably linked to

the gateway computer via a wireless local area network
(LAN) link, comprising:

a client database, and
a communications module to establish a non-persistent

wireless LAN connection to the gateway computer and
allowing intermittent, wireless LAN access to the client
database for synchronization of at least a portion of the
data in the client database.

41. The system of claim 40, wherein the access of the
client database is independent of an application program­
ming interface (API) at the handheld portable client com­
puter.

47. The method of claim 45, wherein the access of the
client database is via a database API call procedure of the
gateway computer to a service application of the handheld

35
mobile client.

48. The method of claim 45, wherein the access of the
client database is by an object link exchange scheme shared
between the gateway computer and the handheld mobile cli­
ent.

40
49. The method of claim 45, wherein the handheld por-

table client is a PDA.

* * * * *

17 of 17

