
(12) United States Patent
Curry et al.

(54) APPARATUS FOR TRANSFER OF SECURE
INFORMATION BETWEEN A DATA
CARRYING MODULE AND AN
ELECTRONIC DEVICE

(75) Inventors: Stephen M. Curry, Dallas; Donald W.
Loomis, Coppell; Christopher W. Fox,
Dallas, all of TX (US)

(73) Assignee: Dallas Semiconductor Corporation,
Dallas, TX (US)

(*) Notice: This patent issued on a continued pros
ecution application filed under 37 CFR
1.53(d), and is subject to the twenty year
patent term provisions of 35 U.S.C.
154(a)(2).

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

(21) Appl. No.: 09/003,541

(22) Filed: Jan. 6, 1998

Related U.S. Application Data

(62) Division of application No. 08/595,014, filed on Jan. 31,
1996.

(60) Provisional application No. 60/004,510, filed on Sep. 29,
1995.

(51) Int. Cl? .. H04L 9/00
(52) U.S. Cl. .. 713/178

1/0 DATA BUFFERS

SYSTEM DATA
COMMON PIN, RANDOM

NUMBER REGISTER, ETC ...

111111 111
US006237095Bl

(10) Patent No.: US 6,237,095 Bl
*May 22, 2001 (45) Date of Patent:

(58) Field of Search 380/4, 25, 24,

(56)

380/21; 711/164; 705/64, 65, 75; 713/175,
178, 168, 172

References Cited

U.S. PATENT DOCUMENTS

4,530,201 7/1985 White 364/408
5,045,675 * 9/1991 Curry 235/441
5,077,792 12/1991 Herring 380/24
5,111,504 * 5/1992 Esserman et a!. 380/21
5,146,575 * 9/1992 Nolan, Jr 711!164
5,577,121 * 11/1996 Davvis et a!. 380/24
5,615,262 * 3/1997 Guy et a!. 380/4
5,832,207 * 11/1998 Little et a!. 713/200

* cited by examiner

Primary Examiner-Tad R. Swann
Assistant Examiner-Matthew Smithers
(74) Attorney, Agent, or Firm-Jenkens & Gilchrist, A
Professional Corporation

(57) ABSTRACT

The present invention relates to an electronic module used
for secure transactions. More specifically, the electronic
module is capable of passing encrypted information back
and forth between a service provider's equipment via a
secure, encrypted technique so that money and other valu
able data can be securely passed electronically. The module
is capable of being programmed, keeping track of real time,
recording transactions for later review, and creating encryp
tion key pairs.

8 Claims, 8 Drawing Sheets

TRANSACTION GROUP
OUTPUT DATA OBJECT #I

OUTPUT DATA OBJECT #2 /

WORKING REGISTER .________

GROUP NAME,
PASSWORD AND ATTRIBUTES

OBJECT 1 t- 42

OBJECT 2

40

40

-
-

TRANSACTION GROUP I

TRANSACTION GROUP 2

TRANSACTION GROUP N

AUDIT TRAIL •

CIRCULAR BUFFER OF
TRANSACTION RECORDS

*THE AUDIT TRAIL DOES
NOT EXIST UNTIL THE
MICRO-IN-A-CAN
HAS BEEN LOCKED

~

ONCE LOCKED ALL /
UNUSED RAM IS
ALLOCATED FOR
THE AUDIT TRAIL .________

OBJECT N r-- 42

U.S. Patent May 22,2001 Sheet 1 of 8 US 6,237,095 Bl

12

18

28

30

26

32

I UNIQUE ID NUMBER 1
~

~ MICRO PROCESSOR] -
1 CLOCK~ - ~ icoNTROLK

~ MATH COPROCESSOR I ROM ~ - -...

l
-...

I NVRAM

'
-...

-- / OUTPUT BUFFER - +V
v v INPUT BUFFER T - ENERGY f-.--

- v CIRCUITRY b-

v ONE-WIRE

- 1--' INTERFACE MODULE

FIG. 1

S1 CREATE TRANSACTION GROUP

GENERATE KEYS AND LOAD
S2 INTO A TRANSACTION GROUP

53 PRIVATIZE DECRYPTION EXPONENT

54 CREATE TRANSACTION SCRIPT

SS LOCK TRANSACTION GROUP

FIG. 2

-
~

f-.

f-.

-

1--'

~10

14

16

22
20

24

34

U.S. Patent May 22,2001 Sheet 2 of 8 US 6,237,095 Bl

USER RECEIVES SECURE E-MAIL

A1 AND ENCRYPTED IDEA KEY

MODULE RECEIVES ENCRYPTED
A2 IDEA KEY IN AN INPUT OBJECT

OF A TRANSACTION GROUP

A3 TRANSACTION SCRIPT DECRYPTS
THE IDEA KEY

FIG. 3

A4 DECRYPTED IDEA KEY IS PLACED
IN AN OUTPUT DATA OBJECT

A5 IDEA KEY IS USED TO DECRYPT
THE SECURE E-MAIL

CREATE TRANSACTION GROUP FOR

B1-
PERFORMING ELECTRONIC

NOTARY FUNCTIONS

~
B2- CREATE OBJECT(S) FOR

RSA ENCRYPTION KEYS

~
B3 CREATE OBJECT FOR TIMEKEEPING

FIG. 4 ~
B4- CREATE TRANSACTION SEQUENCE

OBJECT {COUNTER)

~
CREATE A TRANSACTION SCRIPT THAT CREATES A

CERTIFICATE BY COMBINING AN INPUT DATA OBJECT
B5 - WITH THE TRUE TIME. THE VALUE OF THE TRANSACTION

COUNTER AND A UNIQUE NUMBER ASSOCIATED TO THE
MODULE, THEN SIGNS THE CERTIFICATE

1
B6 PRIVATIZE OBJECTS

1
B7 LOCK TRANSACTION GROUP

U.S. Patent May 22,2001 Sheet 3 of 8 US 6,237,095 Bl

MESSAGE IS PLACED IN AN
C1 - INPUT DATA OBJECT

' TRANSACTION SCRIPT COMBINES
MESSAGE WITH OTHER DATA AND - SIGNS THE COMBINATION WITH A

PRIVATE KEY CREATING AN
C2 FIG. 5

ENCRYPTED CERTIFICATE

~
THE CERTIFICATE CAN BE READ

C3 - AT A LATER TIME BY ENCRYPTING
IT WITH THE PUBLIC KEY

' THE CERTIFICATE AND ORIGINAL
C4 - DOCUMENT CAN BE

STORED ELECTRONICALLY

PREPARE MODULE

CREATE TRANSACTION GROUP
COMPRISING: MONEY OBJECT

D1
TRANSACTION COUNT OBJECT - PRIVATE KEY AND
PUBLIC KEY OBJECTS ETC.

~
D2 PRIVATIZE PRIVATE KEY RELATED OBJECT(S)

' FIG. 6 D3- CREATE OBJECT FOR TIMEKEEPING
RSA ENCRYPTION KEYS

~
D4 LOCK TRANSACTION GROUP

' D5 PUBLISH PUBLIC KEY

U.S. Patent May 22,2001 Sheet 4 of 8 US 6,237,095 Bl

USER MERCHANT BANK/SERVICE PROVIDER

USER WANTS TO MAKE
A PURCHASE H READS MODULE'S

USING A MODULE ID NUMBER E2

' ~ \E1 CREATE DATA PACKET
THAT INCLUDES A

'RANDOM SALT' AND '-E3
MODULE ID NUMBER

j
CREATE A SIGNED

MERCHANT CERTIFICATE
BY ENCRYPTING DATA I'- E4 PACKET WITH

(E6
MERCHANT'S PRIVATE KEY

j
SUBTRACT PURCHASE ATTACHES PURCHASE

AMOUNT FROM r-- PRICE TO MERCHANT'S '-E5
MONEY REGISTER SIGNED CERTIFICATE

' INCREMENT
TRANSACTION AMOUNT E7

' COMBINE TRANSACTION 1'--- EB
COUNT WITH MERCHANT'S

SIGNED CERTIFICATE RECEIVE SIGNED MODULE
AND PURCHASE AMOUNT; r- CERTIFICATE AND DECRYPT t'--

THEN ENCRYPT WITH USING SERVICE E9

SERVICE PROVIDER'S PROVIDER'S PUBLIC KEY

PRIVATE KEY THEREBY ' (E12
CREATING A SIGNED CONFIRM THAT:
MODULE CERTIFICATE 1) AMOUNT OF PURCHASE H RECEIVE MODULE'S

' IS CORRECT SIGNED CERTIFICATE

2) DATA IN MERCHANT'S ' INCREMENT. ~ TRANSACTION AMOUNT CERTIFICATE IS THE DECRYPT MODULE'S

\ E11
SAME AS ORIGINALLY SENT CERTIFICATE WITH SERVICE t'--

'-E10 PROVIDER'S PUBLIC KEY
E13

' DECRYPT MERCHANT'S

FIG. 7 CERTIFICATE WITH
MERCHANT'S PUBLIC KEY

I'- E14

' IF BOTH CERTIFICATES
ARE OK THEN ADO

PURCHASE AMOUNT TO 1--- E15
MERCHANT'S BANK BALANCE

U.S. Patent May 22,2001 Sheet 5 of 8 US 6,237,095 Bl

USER BANK/SERVICE PROVIDER

F1
WANTS TO ADD AN

../ AMOUNT OF CASH r---
READ MODULE ID

TO MODULE NUMBER AND AMOUNT
OF CASH REQUESTED

/
~

REQUEST MODULE TO

CREATE RANDOM PRODUCE A RANDOM SALT

F2

,/ SALT NUMBER
~~OMBINE SALT, ID NUMBH

AND CASH AMOUNT AND
DECRYPT SIGNE SERVICE ENCRYPT WITH SERVICE 1'--..

PROVIDER CERTIFICATE PROVIDER'S PRIVATE KEY,
WITH SERVICE PROVIDER'S THEREBY CREATING A
PUBLIC KEY AND CHECK SIGNED SERVICE

TH ID NUMBER AND PROVIDER CERTIFICATE

RANDOM SALT NUMBER l

F3

F4

,/ F5 IF THE ID NUMBER AND
RANDOM SALT NUMBER FIG. 8 IS UNCHANGED THEN ADD

HE CASH AMOUNT TO THE
MONEY REGISTER OF

THE MODULE

EXAMPLE OF
TRANSFER FROM USER'S MODULE TO MERCHANT'S MODULE

USER/PAYER MERCHANT/PAYEE

RECEIVE SALT AND 1. CREATE RANDOM SALT
REQUEST FOR MONEY

2. DETERMINE AMOUNT OF ~
SUBTRACT REQUESTED MONEY TO BE

MONEY AMOUNT FROM RECEIVED FROM PAYER

A MONEY REGISTER I

G1

G y
CREATE SIGNED PAYMENT
~ERTIFICATE BY COMBINING ~

SALT WITH PAYMENT RECEIVED SIGNED PAYMENT
AMOUNT THEN ENCRYPTING CERTIFICATE AND DECRYPT

WITH BANK/SERVICE USING SERVICE PROVIDER'S ~ PROVIDER'S PRIVATE KEY PUBLIC KEY G3

PAYEE=MERCHANT t
PAYER= USER CHECK DECRYPTED SALT

AGAINST ORIGINALLY SENT SALT

FIG. 9 IF THEY ARE THE SAME ""-.

ADD PAYMENT AMOUNT
G4

TO MONEY REGISTER

U.S. Patent May 22,2001 Sheet 6 of 8 US 6,237,095 Bl

TRANSACTION OVER A NETWORK WITH A MODULE

USER/PAYER MERCHANT/PAYEE

CREATE RANDOM RECEWE PAYER SALT AND
/ PAYER SALT COMBINE WITH AMOUNT OF H1

MONEY TO BE RECEIVED, AND
I'--INCLUDE A PAYEE SALT, THEN H2

ENCRYPT WITH SERVICE
PROVIDER'S PRIVATE KEY TO

' CREATE A FIRST DATA PACKET
RECEIVE FIRST DATA PACKET

H3 / AND DECRYPT WITH SERVICE
PROVIDER'S PUBLIC KEY

' COMPARE ENCRYPTED
PAYER SALT WITH ORIGINAL

PAYER SALT

H4 /
IF THEY ARE THE SAME,

SUBTRACT AMOUNT OF MONEY
TO BE SENT FROM

PAYER TO REGISTER

' GENERATE A SECOND DATA
PACKET CONSISTING OF
PAYEE'S SALT AND THE
AMOUNT OF MONEY TO 1 / BE SENT AND ENCRYPT H5

USING SERVICE RECEIVE SECOND DATA PACKET
PROVIDER'S PRIVATE KEY AND DECRYPT USING SERVICE

PROVIDER'S PUBLIC KEY ~

t
H6

EXTRACT DECRYPTED PAYEE

FIG. 10
SALT AND COMPARE WITH

PAYEE SALT PROVIDED EARLIER I'- H7

IF BOTH ARE THE SAME ADD
MONEY AMOUNT TO

PAYEE MONEY REGISTER

U.S. Patent May 22,2001 Sheet 7 of 8 US 6,237,095 Bl

READ/WRITE OBJECT COMMANDS

MODULE
10 LOCKED

TRANSACTION ;- 40
GROUP

PIN 4\ H o~j~~Ts (o)~ i';-
MATCH --1 SCRIPTS~ I PRIVATE (P)~ - I OBJECTS i'r-

42

42

y_ LOCKED () ~ OBJECTS L r- 42

READ ONLY OBJECT COMMAND

READ/WRITE OBJECT COMMANDS

LOCKED
TRANSACTION 1--r- 40

GROUP

DATA COMMAND PIN ~ O~j~~TS (O)I

1-W

1/
IRE TRANSPORT INTERPRETER MATCH --1 SCRIPTS I I PRIVATE (P)I LAYER ~ 0 I OBJECTS

-i LOCKED () I OBJECTS L

READ ONLY OBJECT COMMAND

READ/WRITE OBJECT COMMANDS

LOCKED
TRANSACTION -40

GROUP

PIN ~ O~j~~TS (O)I

MATCH
--1_ SCRIPTS I I PRIVATE (P)I "---- I OBJECTS

YLOCKED ()I OBJECTS L

I

READ ONLY OBJECT COMMAND

FIG. 11

U.S. Patent May 22,2001 Sheet 8 of 8 US 6,237,095 Bl

40

40

-
-

1/0 DATA BUFFERS

SYSTEM DATA
COMMON PIN, RANDOM

NUMBER REGISTER, ETC ...

OUTPUT DATA OBJECT #1

OUTPUT DATA OBJECT #2

WORKING REGISTER

TRANSACTION GROUP 1

TRANSACTION GROUP 2

.
TRANSACTION GROUP N

AUDIT TRAIL*

CIRCULAR BUFFER OF
TRANSACTION RECORDS

*THE AUDIT TRAIL DOES
NOT EXIST UNTIL THE
MICRO-IN-A-CAN
HAS BEEN LOCKED

ONCE LOCKED ALL
UNUSED RAM IS
ALLOCATED FOR
THE AUDIT TRAIL

TRANSACTION GROUP

GROUP NAME,
PASSWORD AND ATTRIBUTES

OBJECT 1 I- 42

OBJECT 2

.

.

OBJECT N I- 42

TRANSACTION RECORD

GROUP OBJECT DATE/TIME
ID ID STAMP

FIG. 12

US 6,237,095 Bl
1 2

BRIEF DESCRIPTION OF THE DRAWINGS APPARATUS FOR TRANSFER OF SECURE
INFORMATION BETWEEN A DATA

CARRYING MODULE AND AN
ELECTRONIC DEVICE

RELATED APPLICATIONS

A more complete understanding of the method and appa
ratus of the present invention may be had by reference to the
following Detailed Description when taken in conjunction

5 with the accompanying Drawings wherein:

This application is a division of Ser. No. 08/595,014 filing
date Jan. 31, 1996.

FIG. 1 is a block diagram of an embodiment of a module;
FIG. 2 is an exemplary process for creating a transaction

group;
This application claims the benefit of U.S. Provisional 10 FIG. 3 is an exemplary technique for receiving an E-mail

Application No. 60/004,510, filed Sep. 29, 1995.

The following applications of common assignee contains
related subject matter and are hereby incorporated by ref
erence:

Ser. No. 08/594,983, unknown, filed Jan. 31, 1996, 15

entitled METHOD, APPARATUS, SYSTEM AND
FIRMWARE FOR SECURE TRANSACTIONS;

message;
FIG. 4 is an exemplary technique for preparing a module

for notary functions;
FIG. 5 is an exemplary technique for using the module as

a notary;
FIG. 6 is an exemplary technique for preparing a module

to perform a money transaction;
Ser. No. 08/594,975, filed Jan. 31, 1996, entitled TRANS

FER OF VALUABLE INFORMATION BETWEEN A
SECURE MODULE AND ANOTHER MODULE.

FIG. 7 is an exemplary technique for performing a money

20
transaction using a module;

BACKGROUND OF THE INVENTION

1. Technical Field of the Invention

FIG. 8 is an exemplary technique for performing a money
transaction using a module;

FIG. 9 is an exemplary technique for performing a money
transaction using a module;

FIG. 10 is an exemplary technique for passing data over
a network;

FIG. 11 is an exemplary organization of the software and
firmware within a module; and

The present invention relates to a method, apparatus and
system for transferring money or its equivalent electroni- 25

cally. In particular, in an electronic module based system, the
module can be configured to provide at least secure data
transfers or to authorize monetary transactions.

FIG. 12 is an exemplary configuration of software and
30 firmware within a module.

2. Description of Related Art
Presently, credit cards that have a magnetic strip associ

ated with them, are a preferred monetary transaction
medium in the market place. A card user can take the card
to an automatic cash machine, a local store or a bank and
make monetary transactions. In many instances the card is 35
used via a telephone interface to make monetary exchanges.
The magnetic strip card is used to help identify the card and
user of the card. The card provides a relatively low level of
security for the transfer. Regardless, the card enables a card
holder to buy products, pay debts and make monetary 40
exchanges between separate bank accounts.

Improvements have been made to the magnetic strip card.
There have been cards created with microcircuits instead of
magnetic strips. In general the microcircuit, like a magnetic
strip, is used to enable a card-reader to perform a transaction. 45

SUMMARY OF THE INVENTION

The present invention is an apparatus, system and method
for communicating encrypted information between a pref
erably portable module and a service provider's equipment. 50

The invention comprises a module, that has a unique
identification, that is capable of creating a random number,
for example, a SALT, and passing the random number, along
with, for example, a request to exchange money, to a service
provider's equipment. The service provider's equipment 55

may in return encrypt the random number with a private or
public key (depending on the type oftransaction), along with
other information and pass the encrypted information back
to the module as a signed certificate. The module, upon
receiving the signed certificate, will decrypt the certificate 60

with a public or private key (depending on the type of
transaction) and compare the decrypted number with the
original random number. Furthermore, if the numbers are the
same then the transaction that was requested may be deemed
secure and thereby proceeds. The module is capable of time 65

stamping and storing in memory information about the
transaction for later review.

DETAILED DESCRIPTION OF A PRESENTLY
PREFERRED EXEMPLARY EMBODIMENT

FIG. 1 depicts a block diagram of an exemplary module
10 that incorporates an exemplary embodiment of the
present invention. The module circuitry can be a single
integrated circuit. It is understood that the module 10 could
also be on multiple integrated or descrete element circuits
combined combined together. The module 10 comprises a
microprocessor 12, a real time clock 14, control circuitry 16,
a math coprocessor 18, memory circuitry 20, input/output
circuitry 26, and an energy circuit.

The module 10 could be made small enough to be
incorporated into a variety of objects including, but not
limited to a token, a card, a ring, a computer, a wallet, a key
fob, badge, jewelry, stamp, or practically any object that can
be grasped and/or articulated by a user of the object.

The microprocessor 12 is preferably an 8-bit
microprocessor, but could be 16, 32, 64 or any operable
number of bits. The clock 14 provides timing for the module
circuitry. There can also be separate clock circuitry 14 that
provides a continuously running real time clock.

The math coprocessor circuitry 18 is designed and used to
handle very large numbers. In particular, the coprocessor
will handle the complex mathematics of RSA encryption and
decryption.

The memory circuitry 20 may contain both read-only
memory and non-volatile random-access-memory.
Furthermore, one of ordinary skill in the art would under
stand that volatile memory, EPROM, SRAM and a variety of
other types of memory circuitry could be used to create an
equivalent device.

Control circuitry 16 provides timing, latching and various
necessary control functions for the entire circuit.

An input/output circuit 26 enables bidirectional commu
nication with the module 10. The input/output circuitry 26

US 6,237,095 Bl
3 4

Service Providers that can be supported depends on the
number and complexity of the objects 42 defined in each
transaction group 40. Examples of some of the objects 42
that can be defined within a transaction group 40 are the

preferably comprises at least an output buffer 28 and an
input buffer. For communication via a one-wire bus, one
wire interface circuitry 32 can be included with the input/
output circuitry 26.

An energy circuit 34 may be necessary to maintain the
memory circuitry 20 and/or aid in powering the other
circuitry in the module 10. The energy circuit 34 could
consist of a battery, capacitor, RIC circuit, photovoltaic cell,

5 following:

or any other equivalent energy producing circuit or means.

The firmware architecture of a preferred embodiment of a 10

secure transaction module and a series of sample applica
tions using the module 10 will now be discussed. These
examples are intended to illustrate a preferred feature set of
the module 10 and to explain the services that the module
offers. These applications by no means limit the capabilities 15

of the invention, but instead bring to light a sampling of its
capabilities.

RSAModulus
RSA Exponent
Transaction Script
Transaction Counter
Money Register
Destructor

Clock Offset
Random SALT
Configuration Data
Input Data
Output Data

Within each transaction group 40 the module 10 will
initially accept certain commands which have an irreversible
effect. Once any of these irreversible commands are
executed in a transaction group 40, they remain in effect
until the end of the module's useful life or until the trans-I. OVERVIEW OF THE PREFERRED MODULE AND

ITS FIRMWARE DESIGN 20 action group 40, to which it applies, is deleted from the
module 10. In addition, there are certain commands which
have an irreversible effect until the end of the module's life
or until a master erase command is issued to erase the entire
contents of the module 10. These commands will be dis-

The module 10 preferably contains a general-purpose,
8051-compatible micro controller 12 or a reasonably similar
product, a continuously running real-time clock 14, a high
speed modular exponentiation accelerator for large integers
(math coprocessor) 18, input and output buffers 28, 30 with 25
a one-wire interface 32 for sending and receiving data, 32
Kbytes of ROM memory 22 with preprogrammed firmware,
8 Kbytes of NVRAM (non-volatile RAM) 24 for storage of
critical data, and control circuitry 16 that enables the micro
controller 12 to be powered up to interpret and act on the 30
data placed in an input circuitry 26. The module 10 draws its
operating power from the one-wire line. The micro control-
ler 12, clock 14, memory 20, buffers 28, 30, one-wire
front-end 32, modular exponentiation accelerator 18, and
control circuitry 16 are preferably integrated on a single 35
silicon chip and packaged in a stainless steel microcan using
packaging techniques which make it virtually impossible to
probe the data in the NVRAM 24 without destroying the
data. Initially, most of the NVRAM 24 is available for use

cussed further below. These commands are essential to give
the Service Provider the necessary control over the opera
tions that can be performed by the End User. Examples of
some of the irreversible commands are:

Privatize Object Lock Object
Lock Transaction Group Lock Micro-In-A-Can TM

Since much of the module's utility centers on its ability to
keep a secret, the Privatize command is a very important
irreversible command.

Once the module 10, as a whole, is locked, the remaining
NVRAM memory 24 is allocated for a circular buffer for
holding an audit trail of previous transactions. Each of the
transactions are identified by the number of the transaction
group, the number of the transaction script 40 within the
specified group, and the date/time stamp.

The fundamental concept implemented by the firmware is
that the Service Provider can store transaction scripts 44 in

to support applications such as those described below. One 40
of ordinary skill will understand that there are many com
parable variations of the module design. For example,
volatile memory can be used, or an interface other than a
one-wire could be used. The silicon chip can be packaged in
credit cards, rings etc. 45 a transaction group 40 to perform only those operations

among objects that he wishes the End User to be able to
perform. The Service Provider can also store and privatize
RSAkey or keys (encryption keys) that allow the module 10
to "sign" transactions on behalf of the Service Provider,

The module 10 is preferably intended to be used first by
a Service Provider who loads the module 10 with data to
enable it to perform useful functions, and second by an End
User who issues commands to the module 10 to perform
operations on behalf of the Service Provider for the benefit
of the End User. For this reason, the module 10 offers
functions to support the Service Provider in setting up the
module for an intended application. It also offers functions

50
thereby guaranteeing their authenticity. By privatizing and/
or locking one or more objects 42 in the transaction group
40, the Service Provider maintains control over what the
module 10 is allowed to do on his behalf. The End User

to allow the End User to invoke the services offered by the
Service Provider.

Each Service Provider can reserve a block of NVRAM
memory to support its services by creating a transaction
group 40 (refer to FIGS. 11 and 12). A transaction group 40

cannot add new transaction scripts 44 and is therefore

55
limited to the operations on objects 42 that can be performed
with the transaction scripts 44 programmed by the Service
Provider.

is simply a set of objects 42 that are defined by the Service
Provider. These objects 42 include both data objects 60

(encryption keys, transaction counts, money amounts, date/
time stamps, etc.) and transaction scripts 44 which specify
how to combine the data objects in useful ways. Each
Service Provider creates his own transaction group 40,
which is independent of every other transaction group 40. 65

Hence, multiple Service Providers can offer different ser
vices in the same module 10. The number of independent

II. USAGE MODELS OF THE MODULE
This section presents a series of practical applications of

the module 10, ranging from the simplest to the most
complex. Each of these applications is described in enough
detail to make it clear why the module 10 is the central
enabling technology for that application.

A BACKGROUND OF SECURE E-MAIL
In this section we provide an example of how a module 10

could be used to allow anyone to receive his or her own
e-mail securely at any location.

US 6,237,095 Bl
5

1. Standard E-Mail

In a standard e-mail system, a user's computer is con
nected to a provider of Internet services, and the user's
computer provides an e-mail password when polling the
provider's computer for new mail. The mail resides on the 5

provider's computer in plain text form, where it can be read
by anyone working there. In addition, while traveling from
its source, the mail passes through many computers and was
also exposed at these locations. If the user receives his mail
from his provider over a local area network, anyone else on 10

the same network can capture and read the mail. Finally,
with many e-mail systems that do not require the user to
enter the password, anyone sitting at the user's computer can
retrieve and read his mail, since his computer automatically
provides the password when it polls the provider's com- 15

puter.

It is frequently also possible to copy the password from a
configuration file in the user's computer and use it to read his
mail from a different computer. As a result of this broad

20 distribution of the e-mail in plain text form and the weakness
of password protection, standard e-mail is regarded as very
insecure.

6
and loads it into three objects 42 of the transaction
group 40 (one RSA modulus object, N, an.d t~o RSA
exponent objects, E and D). He then pnvatlzes the
decryption exponent S3, D. Finally, he creates a trans-
action script 44, S4 to take data placed in the input data
object, encrypt it with the modulus N and private
exponent D and place the result in the output data
object. He locks the group S5 to prevent any additional
transaction scripts 44 from being added. He "forgets"
the value of D and publishes the values of E and N in
public directories and in the signature blocks of his
e-mail messages. Since he has forgotten D and since the
D exponent object has been privatized, there is no way
that anyone will ever find out the value of D.

b. Referring to FIG. 3, to send secure e-mail to the user,
the P.G.P. system is used. When the user receives the
secure e-mailA1, he transmits the encrypted IDEA key
into the input data object of the transaction group 40,
A2 and then calls the transaction script 44 to decrypt
this key A3 and place the decrypted result in the output
data object A4. He then reads the decrypted IDEA key
from the output data object and uses it to decrypt his
mail AS. Note that it is now impossible for anyone,
including the user, to read any new mail without having
physical possession of the module 10. There is there
fore no way that a user's mail can be read without his
knowledge, because the module 10 must be physically
present on the computer where the mail is read. The
user can carry his module 10 wherever he goes and use
it to read his forwarded mail anywhere. His home
computer is not the weak point in the security system.

Secure e-mail, as described above, is the simplest possible
module application, requiring only one RSA key and one
transaction script 44. It is unnecessary even to store the

35 public key E in the module 10, but it is a good idea to do so
because the public key is supposed to be publicly accessible.
By storing E in an exponent object and not privatizing that
object or the modulus object, N, the user insures that the
public key can always be read from the module 10. There are

To counter this problem, the security system known as
P.G.P. (Pretty Good Privacy) was devised. To use P.G.P., a

25
user generates a complete RSA key set containing both a
public and private component. He makes his public key
widely available by putting it in the signature block of all his
e-mail messages and arranging to have it posted in publicly
accessible directories of P.G.P. public keys. He stores his

30
private key on his own personal computer, perhaps in a
password-protected form. When someone wishes to send
private e-mail to this user, he generates a random IDEA
encryption key and encrypts the entire message with the
IDEA encryption algorithm. He then encrypts the IDEA key
itself using the public key provided by the intended recipi
ent. He e-mails both the message encrypted with IDEA and
the IDEA key encrypted with the user's public key to the
user. No one that sees this transmission can read it except the
intended recipient because the message is encrypted with
IDEA and the IDEA key is encrypted with the intended
recipient's public key. The recipient's computer contains the
corresponding private key, and hence can decrypt the IDEA
key and use the decrypted IDEA key to decrypt the message.
This provides security from those who might try to read the

45
user's mail remotely, but it is less effective when the user's
computer is accessible to others because the computer, itself,
contains the private key. Even if the private key is password
protected, it is often easy to guess the user's password or
eavesdrop on him when he enters it, so the user's computer
provides little security. In addition, the user ca~ re~eive
secure e-mail only at his own computer because his pnvate
key is stored in that computer and is not available elsewhere.
Therefore the weakness of P.G.P. is that it is tied strongly to
the user's' computer where the private key resides.

2. Module Protected E-Mail

With the exemplary module 10 being used to protect
e-mail a user could have his e-mail forwarded to him
where~er he goes without fear that it would be read by others

40 no transaction scripts 44 involving E because the module 10
will never be required to perform an encryption.

B. DIGITAL NOTARY SERVICE
This section describes a preferred notary service using the

module 10.
1. Background of a Standard Notary Service
A conventional Notary Service Provider receives and

examines a document from an End User and then supplies an
uncounterfeitable mark on the document signifying that the
document was presented to the notary on a certain date, etc.

50 One application of such a notary service could be to record
disclosures of new inventions so that the priority of the
invention can later be established in court if necessary. In
this case the most important service provided by the notary
is to cer{ify that the disclosure existed in the possession of

55 the inventor on a certain date. (The traditional method for
establishing priority is the use of a lab notebook in which
inventors and witnesses sign and date disclosures of signifi
cant inventions.)

2. Electronic Notary Service Using The Module
or that his PC would be the weak link that compromises the 60

security of his mail. The module protected e-mail system is
similar to the P.G.P. system, except that the private key used
for decrypting the IDEA key is stored in a privatized object

A company, hereafter referred to as the Service Provider,
decides to go into business to supply a notary service
(strictly, a priority verification service) for its. custom.ers,
hereafter referred to as the End Users. The Service Provider
chooses to do this by using the module 10 as its "agents" and in a transaction group of the module 10 instead of in a PC.

The module protected e-mail system operates as follows:
a. Referring to FIGS. 2, 11 and 12, the user creates a

transaction group 40, S1, generates an RSA key set S2

65 gives them the authority to authenticate (date. and sig~)
documents on his behalf. The preferred operatwn of this
system is as follows:

US 6,237,095 Bl
7

a. Referring to FIGS. 4, 11 and 12, the Service Provider
creates a transaction group 40 for performing electronic
notary functions in a "registered lot" of modules 10,
Bl.

b. The Service Provider uses a secure computing facility
to generate an RSA key set and program the set into
every module 10 as a set of three objects 42, a modulus
object and two exponent objects B2. The public part of
the key set is made known as widely as possible, and
the private part is forgotten completely by the Service
Provider. The private exponent object is privatized to
prevent it from being read back from the modules 10.

c. The Service Provider reads the real-time clock 14 from
each module 10 and creates a clock offset object that
contains the difference between the reading of the
real-time clock 14 and some convenient reference time
(e.g., 12:00 a.m. Jan. 1, 1970). The true time can then
be obtained from any module 10 by adding the value of
the clock offset object to the real-time clock B3.

8
goods or services. (To simplify the discussion, the subject of
refilling the module 10 with cash is postponed until later). In
this case the Service Provider is a bank or other financial
institution, the End User is the bank's customer who wishes

5 to use the module 10 to make purchases, and the Merchant
is the provider of the purchased goods or services. The roles
of the Service Provider, the Merchant, and the End User in
these transactions are explained in detail below.

The fundamental concept of the digital cash purse as

10
implemented in the module 10 is that the module 10 initially
contains a locked money object containing a given cash
value, and the module 10 can generate, on demand, certifi
cates which are essentially signed documents attesting to the
fact that the amount of money requested was subtracted
from the value of the money object. These signed documents

15 are equivalent to cash, since they attest to the fact that the
internal money object was decreased in value by an amount
corresponding to the value of the certificate. The merchant
can redeem these certificates for cash by returning them to
the Service Provider. d. The Service Provider creates a transaction sequence

counter object initialized to zero B4. 20 When dealing with digital certificates representing cash,
"replay" or duplication is a fundamental problem. Since
digital data can be copied and retransmitted easily, it differs
from ordinary coins or paper money which are difficult to
reproduce because of the special technology that is used in

e. The Service Provider creates a transaction script 44
which appends the contents of the input data object to
the true time (sum of real-time clock 14 and the value
of the clock offset object) followed by the value of the
transaction counter followed by the unique lasered
registration number. The transaction script 44 then
specifies that all of this data be encrypted with the
private key and placed in the output data object. The
instructions to perform this operation are stored in the
transaction group 40 as a transaction script object B5.

f. The Service Provider privatizes any other objects 42
that it does not wish to make directly readable or
writable B6.

g. The Service Provider locks the transaction group 40,
preventing any additional transaction scripts 44 from
being added B7.

h. Referring to FIG. 5, now the Service Provider distrib
utes the modules to paying customers (End Users) to
use for notary services. Anytime an End User wishes to
have a document certified, the End User performs the
Secure Hash Algorithm (Specified in the Secure Hash
Standard, FIPS Pub. 180) to reduce the entire document
to a 20 byte message digest. The End User then
transmits the 20 byte message digest to the input data
object C1 and calls on the transaction script 44 to bind
the message digest with the true time, transaction
counter, and unique lasered serial number and to sign
the resulting packet with the private key C2.

25 their manufacture. For this reason, the receiver of the
payment must take special steps to insure that the digital
certificate he receives is not a replay of some previously
issued certificate. This problem can be solved by having the
payee generate a random "SALT", a challenge number, and

30
provide it to the payer.

SALT is a method of preventing replay. A random number
is sent and used in a challenge/response mode. The other
party is challenged to return the random number as part of
their response.

35
The payer constructs a signed certificate which includes

both the money amount and the payee's SALT. When the
payee receives this certificate, he decrypts it with the public
key, checks the money amount, and then confirms that the
SALT is the same as the one he provided. By personalizing

40
the certificate to the payee, the payer proves to the payee that
the certificate is not a duplicate or replay and is therefore
authentic. This method can be used regardless of whether the
module 10 is the payer or the payee.

Another problem that must be addressed is irrepudiability.

45
This means that none of the parties to the transaction should
be able to argue that he did not actually participate in the
transaction. The transaction record (money certificate)
should contain elements to prove that each party to the
transaction was a willing participant.

i. The End User checks the certificate by decrypting it 50

with the public key and checking the message digest,
true time stamp, etc. to make sure they are correct C3.
The End User then stores this digital certificate along
with the original copy of the document in digital form
C4. The Service Provider will attest to the authenticity 55

of the certificates produced by its modules.

1. Background Conventional Cash Transactions
In a conventional cash transaction, the End User first

receives Federal Reserve Notes from a bank and the bank
subtracts the equivalent amount of money from the balance
in his account. The End User can verify the authenticity of
the Federal Reserve Notes by means of the "public key",
which includes:

a. Magnetic ink attracted by a magnet.
b. Red and blue threads imbedded in the paper.
c. Microfine printing surrounding the engraved portrait.
d. Embedded stripe printed with USA and denomination

of the note.

j. After a period of time specified by the Service Provider,
the user returns his module 10, pays a fee, and gets a
new module containing a new private key. The old
modules can be recycled by erasing the entire transac- 60

tion group and reprogramming them. The Service Pro
vider maintains an archive of all the public keys it has
ever used so that it can testify as needed to the
authenticity of old certificates.

The "private key" to this system is the details of how the
raw materials for printing money are obtained and how the
money is actually printed. This information is retained by

65 the government and not revealed. C. DIGITAL CASH DISPENSER
This exemplary usage model focuses on the module 10 as

a cash reservoir from which payments can be made for
These notes are carried by the End User to the Merchant,

where they are exchanged for goods or services. The Mer-

US 6,237,095 Bl
9

chant also uses the "public key" of the notes to verify that
they are legitimate.

10

Finally, the Merchant carries the notes to a Bank, where
the "public key" is again examined by the teller. If the notes
are legitimate, the Merchant's bank account balance is 5

increased by the face value of the notes.

g. The bank decrypts the certificate with the Service
Provider's public key E12, extracts the amount of the
purchase and the transaction count, and decrypts the
remaining data with the Merchant's public key to
reveal the unique lasered registration number of the
module E14. The bank then looks up the module 10 by

The end result of this transaction is that the End User's
bank balance is reduced, the Merchant's bank balance is
increased by the same amount, the goods or services are
transferred from the Merchant to the End User, and the

10
Federal Reserve Notes are ready to be reused for some other

the unique lasered registration number in a database to
confirm that the transaction count for this transaction
has not been submitted before. When this test is passed,
the bank adds the transaction count value to the
database, and then increases the Merchant's bank bal-transaction.
ance by the amount of the purchase E15. The fact that
portions of the certificate were signed by both the
module 10 and the Merchant confirms that the trans-

2. Exemplary Monetary Transactions Using The Module
Monetary transactions using the module 10 and digital

certificates are somewhat more complicated because digital
15 data, unlike Federal Reserve Notes, can be copied and action was freely agreed to by both the Merchant and

the module 10. duplicated easily. Nevertheless, the use of "SALTS" and
transaction sequence numbers can guarantee the authenticity
of digital certificates. (In the following discussion, it is
assumed that every party to the transaction has its own RSA
key set with a private key that it is able to keep secret.)

a. Referring to FIG. 6, the Service Provider (bank) pre
pares the module 10 by creating a transaction group 40
containing a money object representing the monetary
value stored in the module 10. The Service Provider
also creates a transaction count object, a modulus
object, and an exponent object and stores the provider's
private key in the exponent object Dl. He privatizes the
key so that it cannot be read D2. Next, he stores a
transaction script 44 in the transaction group 40 to
perform the monetary transaction and locks the group
so that no further objects can be made D3, D4. (The
details of what this transaction script does are described
further below.) Finally, he publishes the corresponding
public key widely so that anyone can obtain it D5.

b. The End User receives the module 10 from the Service
Provider, and the End User's bank account is debited by
the amount stored in the module 10. Using a PC or
handheld computer, the End User can interrogate the
module 10 to verify that the balance is correct.

Note that there are many different ways of combining data
combinations of the transaction counter value, the unique
lasered registration number, the random SALT provided by

20 payee, and the amount of purchase, encrypted by the mod
ule's private key, the Merchant's private key, or both. Many
of these combinations can also provide satisfactory guaran
tees of uniqueness, authenticity, and irrepudiability, and the
design of the firmware allows the Service Provider fiexibil-

25 ity in writing the transaction script 44 to serve his particular
needs.

D. DIGITAL CASH REPLENISHMENT
The discussion of a digital cash purse is section II.C.,

above, did not address the issue of cash replenishment. The
30 Service Provider can add cash replenishment capability to

the module 10, as discussed in section II.C., simply by
adding another modulus object and exponent object con
taining the Service Provider's public key, a random SALT
object, and a transaction script 44 for adding money to the

35 balance. The Service Provider can add money to a module
10 either in person or remotely over a network. The process
of adding money is as follows:

1. Referring to FIG. 8, the Service Provider reads the
unique lasered registration number (ID number) of the

40 module F1, F2 and calls on a transaction script 44 to return
the value of a random SALT object. The module 10 calcu
lates a new random SALT value from the previous value and
the random number generator and returns it to the Service

c. Referring to FIG. 7, when the End User wishes to
purchase some goods or services from a Merchant E1,
the Merchant reads the unique lasered registration
number of the module and places it in a packet along
with a random SALT E2, E3. The merchant then signs 45
this packet with the merchant's own private key E4 and
transmits the resulting encrypted packet along with the
amount of the purchase to the input data object of the
transaction group 40, E5.

Provider F3.
2. The Service Provider places the random SALT returned

by the module 10 in a packet along with the amount of
money to be added and the unique lasered registration
number of the module 10 and then encrypts the resulting
packet with the Service Provider's private key F4. This

d. The Merchant then invokes the transaction script 44
programmed into the module 10 by the Service Pro
vider. This transaction script 44 subtracts the amount of
the purchase from the money object E6, appends the
value of the transaction counter object to the contents
of the input data object E7, signs the resulting packet
with the private key, and places the result in the output
data object E8.

e. The Merchant then reads the result from the output data
object and decrypts it with the Service Provider's
public key E9. He then confirms that the amount of the
purchase is correct and that the remaining data is
identical to the packet he signed in step c., E10.

50 encrypted packet is then written back into the input data
object of the transaction group 40.

3. The Service Provider invokes a transaction script 44
which decrypts the contents of the input data object with the
Service Provider's public key and then checks the unique

55 lasered registration number and the value of the random
SALT against the one that it originally provided. If the SALT
matches, the money amount is extracted from the packet and
added to the value of the money object in the module F5.

Note that the inclusion of the unique lasered registration
60 number is not strictly necessary, but it is included to insure

that the Service Provider knows exactly which module is
receiving the funds.

f. Having confirmed that the certificate provided by the
module 10 is both authentic and original (not a
duplicate), the Merchant delivers the goods or services 65

Ell. Later the Merchant sends the digital certificate to

E. EXEMPLARY DESCRIPTION OF DIRECT TRANS
FER OF FUNDS BETWEEN MODULES

Section II.C.2.g. above reveals a problem that occurs
when the Merchant returns the digital certificates to his bank
for crediting to his account. The Merchant's bank must a bank.

US 6,237,095 Bl
11

either send the certificates back to the Service Provider for
redemption, or have access to the Service Provider's records

12
2. The Payee appends the amount of the purchase to the

Payer's SALT, followed by a SALT randomly generated by
the Payee. The Payee then encrypts this packet with the
Service Provider's private key and sends it back to the Payer

5 H2.

in a database so that it can determine whether the value of
the transaction count object is unique. This is inconvenient
and requires infrastructure. It also prevents any of the
transactions from being anonymous (as they would have
been if cash had been used), because the Merchant's bank
must log used certificate numbers into a database to prevent
them from being reused. These problems can all be elimi
nated by making use of fund transfers between modules. In

10
addition, the steps required to accomplish a fund transfer
between modules are considerably simpler than those
described in section II.C.2.

In the discussion which follows, it is assumed that the
Merchant also has a module which he uses to collect the
funds received from End Users (customers). The module in 15

the possession of the End User will be called the Payer, and
the module in the possession of the Merchant will be called
the Payee. The steps to accomplish the funds transfer are as
follows:

1. Referring to FIGS. 9, 11 and 12, using his computer, the 20

Merchant calls on a transaction script 44 in the Payee to
provide a random SALT. He reads this SALT from the output
object of the transaction group 40.

2. The Merchant copies the SALT and the amount of the
End User's purchase to the input data object of the Payer G1, 25
then calls on a transaction script 44 in the Payer to subtract
the amount of the purchase from the balance, combine the
Payee's SALT in a packet with the amount of the purchase,
encrypt the resulting package with the Service Provider's
private key, and return it in the output data object G2.

30

3. The Payer decrypts the packet with the Service Pro
vider's public key H3, extracts the Payer SALT, and com
pares it with the SALT that the Payer provided in step 1. If
they agree, the Payer subtracts the amount of the purchaser
from its balance H4 and generates a certificate consisting of
the amount of the purchase and the Payee's SALT, which it
encrypts with the Service Provider's private key and returns
to the Payee H5.

4. The Payee decrypts the packet with the Service Pro
vider's public key H6, extracts the Payee SALT, and com
pares it with the SALT that the Payee provided in step 2. If
they agree, the Payee adds the amount of the purchase to its
balance H7.

The exchange of SALTs allows each module to confirm
that it is communicating with another module, and that the
funds transfer requested is therefore legitimate. The SALT
comparison described in step 3 allows the Payer to confirm
that the Payee is a legitimate module 10 before the funds are
withdrawn, and the comparison described in step 4 allows
the Payee to confirm that the Payer is a legitimate module 10
before the funds are deposited. The transactions described
above provide the minimum necessary information in the
encrypted packets to confirm that the funds are being
transferred from one module 10 to another. Other
information, such as the unique lasered registration number,
could be included (at the cost of anonymity) to provide
additional information and greater control over the transac
tion.

3. The Merchant then reads this packet and copies it to the
input data object of the Payee, then calls on a transaction
script 44 in the Payee to decrypt the packet with the Service
Provider's public key G3 and check the SALT against the
one originally generated by the Payee. If they agree, the
Payee adds the amount of the purchase to its balance G4.

G. AN EXEMPLARY TECHNIQUE FOR SOFTWARE
35 AUTHORIZATION AND USAGE METERING

This completes the funds transfer. Note that this transac
tion effectively transferred the amount of the purchase from
the Payer to the Payee, and the steps of the transaction were
much simpler than the three-way transaction described in
II.C.2. The Merchant can transfer the balance to his bank 40

The module 10 is well-suited for the tasks of enabling
specific software features in a comprehensive software sys
tem and for metering usage of those features. (This usage
model parallels the previously described model for with
drawing money from a module 10.)

1. Preparation
Referring to FIGS. 11 and 12, the Service Provider creates

a transaction group 40 and stores a configuration object in
the group detailing which software within the module 10 the

account by a similar transaction in which the bank provides
a SALT to Merchant's module and the Merchant's module
prepares a certificate for the balance which it delivers to the
bank. Use of a module by the Merchant to collect funds
simplifies the transaction, eliminates the need for a database
to confirm uniqueness, and preserves the anonymity of the
End User that would normally result from a cash transaction.

F. EXEMPLARY TRANSACTIONS WITH A MODULE
OVER A NETWORK

45 End User is allowed to use. The Service Provider also
creates a money object containing the allowed usage credit
(which could be in units of time rather than the actual dollar
amount), and stores and privatizes a private RSAkey pair to
use for authentication. A transaction script 44 is stored to

The transactions described in section II.C.2., II.D. and
II.E. above could also be performed over a network, allow
ing a physical separation between the Merchant, End User,
and modules. However, this could produce a potential prob
lem because one of the communications to the module 10 is

50 receive a SALT and the amount to withdraw from the End
User, decrement the balance by the amount withdrawn, and
output an RSA signed certificate containing the amount
withdrawn, the sale, and the value of the configuration

unencrypted and therefore subject to falsification. To avoid 55

this problem, both parties must produce a SALT so that the
other can demonstrate its ability to encrypt the SALT with
the Service Provider's private key and therefore prove
authenticity. The operation of this protocol is described as
follows as it relates to the transfer of funds between modules 60

(section II.E. above). This method can be employed to allow
any of the transactions described above to take place over a
network. This clearly enables secure electronic commerce
over the Internet.

1. Referring to FIGS. 10, 11 and 12, the Payer generates 65

a random SALT and transmits it over the network to the
Payee Hl.

object.
2. Usage
At periodic intervals during the use of the software within

the module 10, the PC program generates a random SALT
and an amount to charge for the use of the module 10 and
transmits this information to the module 10. The module 10
decrements the balance and returns the certificate. The PC
decrypts the certificate and confirms that the SALT is the
same, the amount withdrawn is correct, and the use of the
software within the module 10 is authorized by the infor
mation stored in the configuration object. If all of these tests
are successful, the module 10 executes for a specified period
of time or for a given number of operations before asking the
module 10 for another certificate.

US 6,237,095 Bl
13

There are many possible variations on this usage model.
For example, the transaction script 44 could also bind up the
true time in the certificate so that the application program
running on the PC could guarantee that the execution time

14
encrypts this packet with the private key, subtracts the
amount withdrawn from the balance, and places the
encrypted certificate in the output object where it can be read
by the PC.

is accurately measured. (This would require the Service 5

Provider to create a clock offset object during initialization
The Service Provider initializes the balance with a spe-

cific amount of money, locks the balance and script 44,
privatizes the RSA key objects, and locks the group so that
no more scripts can be added. The modules prepared in this
way can then be sold over the counter for use with PC-based

to provide a reference for measuring time.)
H. SIMULATION OF TRANSACTION TOUCH

MEMORY™
This usage model describes how the module 10 can be

used to simulate the behavior of the simpler Transaction
Touch Memory™ (DS 1962) (hereinafter "TTM") or any
similar device or substitute that can operate in a nearly
equivalent or similar fashion. The principal feature of the
TTM is that there is a counter associated with a block of
memory in such a way that the counter is incremented
automatically whenever the contents of the memory block
are changed.

1. Preparation
This simple feature can be programmed into the module

10 postage metering programs.
2. Usage
When the first envelope is to be printed, the PC program

prepares the first SALT by calculating a one-way hash (e.g.,
the Secure Hash Standard, FIBS PUB 180) of the date and

15 the unique lasered registration number of the part. This
information is passed to the module 10 along with the
amount of postage to be withdrawn. The resulting certificate
is printed in the two-dimensional barcode along with the
hash generation number (one for the first hash), the unique

20 lasered registration number, the plaintext denomination of
the stamp, the date, and other information as desired to
identify the End User. Subsequent SALTs are generated by
performing the one-way hash again on the previous SALT

10 by creating a configuration object, a transaction counter
object, and a transaction script object which combines the
contents of the input object with the value of the transaction
counter object and places them in the configuration object,
incrementing the counter automatically in the process. All 25

three objects 42 are locked, but none are privatized.

and incrementing the hash generation number.
When the Service Provider receives the envelopes, most

of them are taken at face value and the digital barcode is not
read. However, a statistical sampling of the barcodes are
read and the information provided is decrypted with the
public key and verified. Discrepancies are investigated, and

2. Usage
To add or remove money, the End User reads the values

30 fraud is prosecuted under existing law. Verification is pos
sible because the Service Provider can recreate the SALT

of the configuration object and the transaction counter object
directly, then decrypts the configuration object and checks
the transaction count from the decrypted package against the
value of the counter object. The End User also checks the
unique lasered registration number from the encrypted
packet against the registration number of the module 10. If
these both agree, the balance is considered valid. An amount 35

is added to or subtracted from the balance, the transaction
count is incremented, and the packet is re-encrypted and
stored in the input data object. The transaction script 44 is
then invoked to move the data and the transaction counter
value to the configuration object, automatically increment
ing the counter value in the process. (The transaction script

from the unique lasered registration number, date, and hash
generation number, and thereby verify that the transaction is
not only current but also linked to a specific module 10.

Note that there are many possible variations on the
method described above, leading to similar results. The most
likely fraud would be duplication, in which a user captures
the digital information sent to the printer to produce the
postage certificate and makes many duplicate copies of the

40 same certificate. This could be detected easily by the Service
Provider simply by reading the hash generation number and
unique registration number and looking them up in a data
base to make sure that the user is not duplicating the same
certificate. (This check could be performed more often than

44 guarantees that the counter object's value will be incre
mented anytime data in the configuration object is changed.)

This simple operation can be performed relatively quickly
since the module 10 does not have to perform any encryption
itself. However, as with the TTM, the End User must now
use a secure computing facility to perform the encryption
and decryption operations. This usage is therefore less
protected than those which depend on the module's encryp
tion capabilities.

I. EXEMPLARY TECHNIQUE FOR POSTAL METER
ING SERVICE

This usage model describes an application in which the
module 10 is used to dispense postage certificates. The
digital information which constitutes the certificate is
printed on the envelope in the form of a two-dimensional
barcode which can be read and authenticated by the Service
Provider (U.S.P.S.). A computer program running on an
ordinary PC attached to a laser printer in combination with
the module 10 can be used to print the postage certificates.

1. Preparation

45 full certificate verification, which would require RSA
decryption.)

1. SUBSCRIPTION INFORMATION SERVICE
This usage model describes an application in which a

Service Provider makes available information in encrypted
50 form over the internet to users who have agreed to pay for

such information. This application works exactly the same
way as the Secure E-mail usage model described in section
A above, except that the Service Provider bills the user for
the encrypted information that the Service Provider e-mails

55 to him. The billing information is obtained from a registry of
pubic RSA keys which allows the Service Provider to
identify and bill a user, based on his public key or on the
unique lasered serial number of his module 10.

K. REGISTRY WITH GUARANTEED PRIVATE KEY
60 SECURITY

The Service Provider creates a group containing a money
register, a private RSA key (exponent object and modulus
object) common to every module, and a transaction script
44. The script 44 combines the SALT and the amount to be 65

withdrawn (provided by the End User's computer) with the
unique lasered registration number of the module 10,

In order to provide Merchants with an independent con
firmation of the identity of an End User, a Service Provider
may wish to maintain a registry containing the pubic key of
a particular module 10 along with the name, address, and
other identifying information of the person to whom the
module 10 is issued. For this purpose, it is essential for the
Service Provider to make sure that the public key in the

US 6,237,095 Bl
15

registry corresponds to a private key which is known only to
the module 10. In order to guarantee this, the module 10
must be in the possession of the Service Provider at the time
the public key is extracted from the module 10 and placed

16
The model described here is one in which the authority to

perform financial transactions derives from the registry
maintained by the Service Provider. It is therefore essential
that this information be accurate and that the private key in

in the registry. After recording this information in the
registry, the Service Provider can ship the module 10 to the
End User named in the registry.

It is also important for the End User to be able to confirm,
when he receives the module 10, that the private key is not
known to the Service Provider or any of the Service Pro
vider's employees. This is important because an ideal reg
istry system should not require that any party trust any other
party. The system works to everyone's satisfaction only
when each party can be convinced that none of the other
parties could possibly know the private key.

5 the module 10 can be secure from all parties. Because each
module 10 has its own unique RSA key set, there is no
provision in this model for the module 10 to represent
money independently of the registry maintained by the
Service Provider. Instead, the registry and the ability of the

10 module 10 to sign with its private key together serve as a
definitive means of identifying the End User remotely to any
other party.

One way to accomplish this, the Service Provider sends a 15

command to the module 10 to cause it to generate a complete
RSA key set using random numbers, and then to automati
cally make one of the exponents private, so that there is no
way any person can discover the value of the private key.
This key set has a special type, different from that of a key 20

set programmed into the can by a Service Provider, so that
anyone doing business directly with the module 10 can
determine for themselves that the private key is known only
to the module 10.

L. TAXATION OF TRANSACTION VOLUME
This usage applies to a business model in which the

Service Provider intends to collect a service charge from the
End User that is a percentage of the total amount of money
transferred by the module 10. This model is similar to those
described in sections C D, E, and F above, but with the
addition of a destructor object that can cause any particular
transaction script 44 to expire at a predetermined date and
time. This model also requires the use of an additional
money object which is programmed (with a suitable trans
action script 44) to accumulate the total value of all the

1. Preparation 25 money passed out of the module 10.
1. Preparation The Service Provider creates a password-protected trans

action group 40 for the application, and then creates an RSA
key set in the group that is generated by the module 10.
(After generating the key set, the modulus and one exponent
will be locked automatically, while the second exponent will 30

be privatized automatically by the firmware of the module
10. The Service Provider then creates a transaction script 44
which will encrypt data from the input object with the
private key and place the encrypted result in the output
object. The transaction script 44 might optionally append 35

additional information (e.g., the transaction counter) to the
data from the input object, in order to satisfy any additional
objectives of the application. Other objects 42 and transac
tion scripts 44 may also be added at the discretion of the
Service Provider. The transaction group 40 is locked by the 40

Service Provider when it is complete.
Next, the Service Provider reads the RSA modulus and

public exponent from the transaction group 40 and records
them in the registry along with the information identifying
the End User. Finally, the Service Provider ships the module 45

10 to the End User, and later conveys to the End User the
password that can be used to access the transaction group 40.

2. Usage
When a Merchant wishes to obtain positive identification

of an End User over the Internet or other network, the 50

Merchant generates a unique packet of data and transmits it
to the End User, and the End User passes the data into the
input object and invokes the transaction script 44 which
causes it to be encrypted with the private key generated by
the module 10. The resulting encrypted packet is transmitted 55

back to the Merchant. The Merchant then accesses the data
base provided by the Service Provider to obtain the public
key belonging to the End User, and attempts to decrypt the
encrypted packet using the End User's public key. If the
decryption succeeds, the Merchant has proven the physical 60

presence of the End User's module 10 at the remotely
networked location. By guaranteeing the presence of the
End User's module 10 at the remote site, this identification
validates and legitimizes the contents of the data packet and
therefore also any financial transactions, represented by the 65

contents of the packet, that may be requested by the End
User.

The Service Provider creates a transaction group 40
containing money objects, etc. as described in sections D
and E above. The Service Provider also creates an additional
money object to serve as the volume accumulator. The
Service Provider also creates transaction scripts 44 for
withdrawing or depositing money as in D and E, except that
the transaction script for adding money to the module 10
includes a destructor object set to expire at a predetermined
time in the future, and the transaction script 44 for with
drawing money includes an instruction to add the amount of
the withdrawal to the money object serving as the volume
accumulator. The service provider then locks the group and
ships the module 10 to the End User.

2. Usage.
The End user uses the module 10 for deposits and

withdrawals as described in sections D and E above. During
the time that the module 10 is used, the cumulative total of
all the money spent from the module 10 is accumulated in
the money object serving as the volume accumulator. When
the time limit expires, the End User can no longer add
money to his module 10, although he can continue to
withdraw money if desired until there is none left. The End
User then returns the module 10 to the Service Provider to
be restored. The Service Provider reads the remaining
amount of money and also the amount of money recorded in
the volume accumulator. The Service Provider bills the End
User a service charge that is a percentage of the amount in
the volume accumulator. If the End User is willing to pay
this amount to continue his service, the transaction group 40
is destroyed and rebuilt, then the amount of money remain
ing in the module 10 when the End User returned it is
programmed back into the money object of the transaction
group 40. The Service Provider then returns the restored
module to the End User, provided that the End User pays the
service charge.

The system described above allows a Service Provider to
collect periodic fees for service without having to monitor
and be involved in every financial transaction performed by
the End user. The fee is based on actual usage, as determined
by the contents of the volume register.

US 6,237,095 Bl
17

Exemplary Firmware Definitions for Use with the
Module

Object

Group

Group ID

Object ID

Object Type

PIN

Common PIN

Group PIN

Audit Trail

Locked Object

Private Object

Locked Group

Composite Object

The most primitive data structure
accepted by and operated on by the
modules firmware. A list of valid
objects and their definitions is
provided in the next section.
A self-contained collection of
objects. An object's scope is
restricted to the group of which it
is a member.
A number preferably between 0 and
255 representing a specific group.
A number preferably between 0 and
255 representing a specific object
within a specific group.
Preferably a 1-byte type specifier
that describes a specific object.
An alphanumeric Personal
Identification number that is
preferably eight bytes in length.
The PIN that controls access to
shared resources such as the audit
trail. It is also used to control
the host's ability to create and
delete groups.
The PIN that controls access to
operations specific to objects
within a group.
A record of transactions occurring
after the module has been locked.
An object which has been locked by
executing the lock object command.
Once an object is locked it is not
directly readable.
An object which has been privatized
by executing the privatize object
command. Once an object is private,
it is not directly readable or
writable.
A group which has been locked using
the locked group command. After a
group has been locked it will not
allow object creation.
A combination of several objects.
The individual objects inherit the
attributes of the composite object.

Exemplary Object Definitions

RSAModulus

(1)
(2)

RSA Exponent

A large integer preferably of at
most 1024 bits in length. It is the
product of 2 large prime numbers
that are each about half the number
of bits in length of the desired
modulus size. The RSA modulus is
used in the following equations for
encrypting and decrypting a message
M:

Encryption: C ~ M' (mod N)
Decryption: M ~ cct (mod N)

where C is the cyphertext, d and e
are the RSA exponents (see below),
and N is the RSA modulus.
Both e and d (shown in equations 1
and 2 above) are RSA exponents.
They are typically large numbers but
are smaller than the modulus (N).
RSA exponents can be either private
or public. When RSA exponents are
created in the module, they may be
declared as either. Once created an
exponent may be changed from a

5

Transaction Script

10

15

Transaction Counter

20

25

Money Register

30

35

Clock Offset

40

45

SALT

50

55

Configuration Data

60

65

18

-continued

public exponent to a private
exponent. After an exponent has
been made private, however, it will
remain private until the transaction
group 40 to which it belongs is
destroyed.
A transaction script is a series of
instructions to be carried out by
the module. When invoked the module
firmware interprets the instructions
in the script and places the results
in the output data object (see
below). The actual script is simply
a list of objects. The order in
which the objects are listed
specifies the operations to be
performed on the objects.
transaction scripts 44 preferably
may be as long as 128 bytes.
The transaction counter object is
preferably 4 bytes in length and is
usually initialized to zero when it
is created. Every time a
transaction script, which references
this object, is invoked, the
transaction counter increments by 1.
Once a transaction counter has been
locked it is read only and provides
an irreversible counter.
The money register object is
preferably 4 bytes in length and may
be used to represent money or some
other form of credit. Once this
object has been created, it must be
locked to prevent a user from
tampering with its value. Once
locked the value of this object can
be altered only by invoking a
transaction script. A typical
transaction group 40 which performs
monetary transactions might have one
script for withdrawals from the
money register and one for deposits
to the money register.
This object is preferably a 4 byte
number which contains the difference
between the reading of the module's
real-time clock and some convenient
time (e.g., 12:00 a.m., January 1,
1970). The true time can then be
obtained from the module by adding
the value of the clock offset to the
real-time clock.
A SALT object is preferably 20 bytes
in length and should be initialized
with random data when it is created.
When a host transmits a generate
random SALT command, the module
combines the previous SALT with the
module's random number (produced
preferably by randomly occurring
power-ups) to generate a new random
SALT. If the SALT object has not
been privatized it may subsequently
be read by issuing a read object
command.
This is a user defined structure
with preferably a maximum length of
128 bytes. This object is typically
used to store configuration
information specific to its
transaction group 40. For example,
the configuration data object may be
used to specify the format of the
money register object (i.e., the
type of currency it represents).
Since this object has no pre-defined
structure, it may never be used by a
transaction object.

US 6,237,095 Bl

Input Data

Output Data

Random Fill

Working Register

ROM Data

19

-continued

An input data object is simply an
input buffer with preferably a
maximum length of 128 bytes. A
transaction group may have multiple
input objects. The host uses input
data objects to store data to be
processed by transaction scripts 44.
The output data object is used by
transaction scripts as an output
buffer. This object is
automatically created when the
transaction group is created. It is
preferably 512 bytes in length and
inherits password protection from
its group.
When the script interpreter
encounters this type of object it
automatically pads the current
message so that its length is 1 bit
smaller than the length of the
preceding modulus. A handle to this
object is automatically created when
the transaction group is created.
It is a private object and may not
be read using the read object
command.
This object is used by the script
interpreter as working space and may
be used in a transaction script. A
handle to this object is
automatically created when the
transaction group is created. It is
a private object and may not be read
using the read object command.
This object is automatically created
when the transaction group is
created. It is a locked object and
may not be altered using the write
object command. This object is 8
bytes and length and its contents
are identical to the 8 by ROM data
of the Micro-In-A-Can TM.

Preferred Module Firmware Command Set

Set Common PIN (OlH)

Transmit (to module)
OlH, old PIN, new PIN, PIN option byte

Receive data
CSB (command status byte) ~ 0 if successful,

appropriate error code otherwise
Output length ~ 0
Output Data ~ 0

Notes:

The PIN option byte may be the bitwise--{)r of any of the
following values:

PIN_TO ERASE
PIN_TO CREATE

OOOOOOOlb (require PIN for Master Erase)
00000010b (require PIN for group creation).

Initially the module has a PIN (Personal Identification
Number) of 0 (Null) and an option byte of 0. Once a PIN has
been established it can only be changed by providing the old
PIN or by a Master Erase. However, if the PIN TO ERASE
bit is set in the option byte, the PIN can only be changed
through the set common PIN command.

5

20
Possible error codes for the set common PIN command:

ERR BAD COMMON_PIN
ERR BAD PIN_LENGTH
ERR BAD OPTION_BYTE

(Common PIN match failed)
(New PIN length > 8 bytes)
(Unrecognizable option byte)

For all commands described in this section, data received
10 by the host will be in the form of a return packet. A return

packet has the following structure:

Command status byte (0 if command successful, error
code otherwise, 1 byte)

15 Output data length (Command output length, 2 bytes)
Output data (Command output, length specified above).
Master Erase (02H)

20

25

Notes:

Transmit data
02H, Common PIN

Receive data
CSB = 0 if command was successful,

ERR_BAD COMMON_PIN otherwise
Output length ~ 0
Output data ~ 0

If the LSB (least significant bit) of the PIN option is clear
30 (i.e. PIN not required for Master Erase) then a 0 is trans

mitted for the Common PIN value. In general this text will
always assume a PIN is required. If no PIN has been
established a 0 should be transmitted as the PIN. This is true
of the common PIN and group PINS (see below). If the PIN

35 was correct the firmware deletes all groups (see below) and
all objects within the groups. The common PIN and common
PIN option byte are both reset to zero.

After everything has been erased the module transmits the
return packet. The CSB is as described above. The output

40 data length and output data fields are both set to 0.

45

50

Create Group (03H)

Transmit data
03H, Common PIN, Group name, Group PIN

Receive data
CSB ~ 0 if command successful, appropriate

error code otherwise
Output length ~ 1 if successful, 0 otherwise
Output data ~ Group ID if successful, 0

otherwise

Notes:
The maximum group name length is 16 bytes and the

maximum PIN length is eight bytes. If the PIN_TO_
55 CREATE bit is set in the common PIN option byte and the

PIN transmitted does not match the common PIN the
module will set the OSC to ERR_BAD COMMON_PIN.

Possible error return codes for the create group command:

60

ERR_BAD COMMON_PIN
ERR_BAD NAME_LENGTH
ERR_BAD PIN_LENGTH
ERR_MIAC_LOCKED

65 ERR_INSUFFICIENT_RAM

(Incorrect common PIN)
(If group name length > 16 bytes)
(If group PIN length > 8 bytes)
(The module has been locked)
(Not enough memory for new group)

US 6,237,095 Bl
21 22

Set Group PIN (04H)
-continued

Transmit data
04H, Group ID, old GPIN, new GPIN

Receive data

Input data object
Output data object

5 Object Attributes:

8
9

CSB ~ 0 if command successful, appropriate

error code otherwise

Output length ~ 0

Output data ~ 0

Notes:

10

The Group PIN only restricts access to objects within the
15

group specified by the group ID transmitted in the command
packet.

Possible error codes for the set group PIN command:

ERR BAD GROUP PIN
ERR BAD PIN_LENGTH

Create Object (OSH)

Transmit data

(Group PIN match failed)
(New group PIN length > 8 bytes)

05H, Group ID, Group PIN, Object type, Object
attributes, Object data

Receive data

20

25

30

Locked
Privatized

OOOOOOOlb
00000010b

Objects may also be locked and privatized after creation
by using the Lock Object and Privatize Object commands
described below.

Lock Object (06H)

Transmit data
06H, Group ID, Group PIN, Object ID

Receive data
CSB ~ 0 if command successful, appropriate

error code otherwise
Output length ~ 0
Output data ~ 0

Notes:

If the Group ID, Group PIN and Object ID are all correct,
the module will lock the specified object.

Locking an object is an irreversible operation.

Possible error return codes for the lock object command:

CSB ~ 0 if command successful, appropriate
error code otherwise

Output length ~ 1 if successful, 0 otherwise
Output data ~ object ID if successful, 0

otherwise

ERR_BAD GROUP PIN
ERR_GROUP LOCKED

35 ERR_MIAC_LOCKED
ERR_BAD GROUP ID
ERR_BAD OBJECT_ID

(Incorrect group PIN)
(The group has already been locked)
(The module has been locked)
(Specified group does not exist)
(Specified object does not exist)

Notes:

If the Create Object command is successful the module
firmware returns the object's ID within the group specified 40

by the Group ID. If the PIN supplied by the host was
incorrect or the group has been locked by the Lock Group
command (described below) the module returns an error
code in the CSB. An object creation will also fail if the 45
object is invalid for any reason. For example, if the object
being created is an RSA modulus (type 0) and it is greater
than 1024 bits in length. transaction script creation will
succeed if it obeys all transaction scripts rules.

Possible error return codes for the create object command: 50

(Incorrect group PIN)

Privatize Object (07H)

Transmit data
07H, Group ID, Group PIN, Object ID

Receive data
CSB = 0 if successful, appropriate error code

otherwise

Notes:

If the Group ID, Group PIN and Object ID were valid the
object will be privatized. Privatized objects share all the
properties of locked objects but are not readable. Privatized
objects are only modifiable through transaction scripts. Note
that locking a privatized object is legal, but has no meaning ERR BAD GROUP PIN

ERR GROUP LOCKED
ERR MIAC_LOCKED
ERR INVALID_TYPE
ERR BAD SIZE

(The group has been locked)
(The module has been locked)
(The object type specified is invalid)
(The objects length was invalid)

55 since object privatization is a stronger operation than object
locking. Privatizing an object is an irreversible operation.

ERR INSUFFICIENT_RAM
Object types:

RSAmodulus
RSA exponent
Money register
Transaction counter
Transaction script
Clock offset
Random SALT
Configuration object

(Not enough memory for new object)

0
60

2
3
4
5

65

7

Possible error return codes for the privatize object com
mand:

ERR _BAD GROUP PIN (Incorrect group PIN)
ERR _GROUP LOCKED (The group has already been locked)
ERR _MIAC_ LOCKED (The module has been locked)
ERR _BAD GROUP ID (Specified group does not exist)
ERR _BAD OBJECT_ID (Specified object does not exist)

US 6,237,095 Bl
23 24

Make Object Destructable (08H) Possible error codes for the lock module command:

Transmit data
OSH, Group ID, Group PIN, Object ID

Receive data

5 ERR_BAD COMMON_PIN (Supplied common PIN was incorrect)

CSB = 0 if successful, appropriate error code
otherwise

Notes: 10

If the Group ID, Group PIN and Object ID were valid the
object will be made destructable. If an object is destructable
it becomes unusable by a transaction script after the groups
destructor becomes active. If no destructor object exists 15
within the transaction group the destructible object attribute
bit has no affect. Making an object destructable is an
irreversible operation.

Possible error return codes for the make object destruc
table command:

(Incorrect group PIN)

20

ERR_MIAC_LOCKED (Module was already locked)

Lock Group (OAH)

Transmit data
OAH, Group ID, Group PIN

Receive data
CSB ~ 0 if command successful, appropriate

error code otherwise
Output length ~ 0
Output data ~ 0

Notes:

If the group PIN provided is correct the module BIOS will
not allow further object creation within the specified group.
Since groups are completely self-contained entities they may
be deleted by executing the Delete Group command ERR BAD GROUP PIN

ERR GROUP LOCKED
ERR MIAC_LOCKED
ERR BAD GROUP ID
ERR BAD OBJECT_ID

(The group has already been locked)
(The module has been locked)
(Specified group does not exist)
(Specified object does not exist)

25 (described below).

Possible error return codes for the lock group command:

Lock Module (09H)
30 ERR_BAD GROUP PIN

ERR_GROUP LOCKED
ERR_MIAC_LOCKED
ERR_BAD GROUP ID

(Incorrect group PIN)
(The group has already been locked)
(The module has been locked)
(Specified group does not exist)

Transmit data
09H, Common PIN

Receive data
CSB = 0 if successful, appropriate error code

otherwise
Output length ~ 2 if successful, 0 otherwise
Output data = audit trail size if successful,

0 otherwise

Notes:

35

40

If the host supplied Common PIN is correct and the
module has not previously been locked, the command will
succeed. When the module is locked it will not accept any

45
new groups or objects. This implies that all groups are
automatically locked. The RAM not used by the system or
by groups will be used for an audit trail. There is no audit
trail until the module has successfully been locked!

Invoke Transaction Script (OBH)

Transmit data
OBH, Group ID, Group PIN, Object ID

Receive data
CSB ~ 0 if command successful, appropriate

error code otherwise

Notes:

Output length ~ 1 if successful, 0 otherwise
Output data ~ estimated completion time

The time estimate returned by the module is in sixteenths
of a second. If an error code was returned in the CSB, the

An audit trail record is six bytes long and has the 50 time estimate will be 0.

following structure:

Group ID I Object ID I Date(fime stamp. 55

Once an audit trail has been established, a record of the
form shown above will be stored in the first available size
byte location every time a transaction script is executed.
Note that since the module must be locked before the audit

60

trail begins, neither the group ID nor any object ID is subject
to change. This will always allow an application processing
the audit trail to uniquely identify the transaction script that
was executed. Once the audit trail has consumed all of its 65

available memory, it will store new transaction records over
the oldest transaction records.

Possible error return codes for the execution transaction
script command:

ERR_BAD GROUP PIN
ERR_BAD GROUP ID
ERR_BAD OBJECT_ID

Read Object (OCH)

Transmit data

(Incorrect group PIN)
(Specified group does not exist)
(Script object did not exist in group)

OCH, Group ID, Group PIN, Object ID
Receive data

CSB ~ 0 if command successful, appropriate

US 6,237,095 Bl
25

-continued

error code otherwise
Output length ~ object length if successful, 0

otherwise
Output data ~ object data if successful, 0

otherwise

Notes:

5

If the Group ID, Group PIN and Object ID were correct, 10

the module checks the attribute byte of the specified object.
If the object has not been privatized the module will transmit
the object data to the host. If the Group PIN was invalid or
the object has been privatized the module will return a 0 in
the output length, and data fields of the return packet. 15

Possible error codes for the read object command:

ERR BAD GROUP PIN
ERR BAD GROUP ID
ERR BAD OBJECT_ID
ERR OBJECT_PRIVATIZED

(Incorrect group PIN)
(Specified group does not exist)
(Object did not exist in group)
(Object has been privatized)

20

26
Notes:

The group name length is a maximum of 16 bytes. All
byte values are legal in a group name.

Delete Group (OFH)

Transmit data

OFH, Group ID, Group PIN

Receive data

CSB = 0 if successful, appropriate error code

otherwise

Notes:

Output length ~ 0

Output data ~ 0

If the group PIN and group ID are correct the module will
delete the specified group. Deleting a group causes the
automatic destruction of all objects within the group. If the
module has been locked the Delete Group command will

Write Object (ODH)
25 fail.

Transmit data
ODH, Group ID, Group PIN, Object ID, Object

size, Object Data
Receive data

CSB = 0 if successful, appropriate error code
otherwise

Notes:

Output length ~ 0
Output data ~ 0

If the Group ID, Group PIN and Object ID were correct,
the module checks the attribute byte of the specified object.

30

35

If the object has not been locked or privatized the module
will clear the objects previous size and data and replace it 40

with the new object data. Note that the object type and
attribute byte are not affected.

Possible error codes for the write object command:

ERR_ BAD GROUP PIN (Incorrect group PIN)
ERR_ BAD GROUP ID (Specified group does

not exist)
ERR_ BAD OBJECT_ ID (Object did not exist

in group)
ERR BAD OBJECT_SIZE (Illegal object size

specified)
ERR _OBJECT_ LOCKED (Object has been

locked)
ERR_ OBJECT_ PRIVATIZED (Object has been

privatized)

Read Group Name (OEH)

Transmit data
OEH, Group ID

Receive data
CSB ~ 0
Output Length ~ length of group name
Output data ~ group name

45

50

55

60

65

Possible error codes for the delete group command:

ERR_BAD GROUP PIN (Incorrect group PIN)
ERR_BAD GROUP ID (Specified group does

not exist)
ERR MIAC LOCKED (Module has been

locked)

Get Command Status Info (lOH)

Notes:

Transmit data
10H

Receive data
CSB ~ 0
Output length ~ 6
Output data ~ module status structure (see

below)

This operation requires no PIN and never fails. The status
structure is defined as follows:

Last command executed
Last command status

Time command received

Get Module Configuration Info (llH)

Transmit data
11H

Receive data
CSB ~ 0
Output length ~ 4

(1 byte)
(1 byte)
(4 bytes)

Output data = module configuration structure

US 6,237,095 Bl
27

Notes:
This operation requires no PIN and never fails. The

configuration structure is defined as follows:

Number of groups
Flag byte (see below)
Audit trail size/Free RAM

(1 byte)
(1 byte)
(2 bytes)

The flag byte is the bitwise---{)r of any of the following
values:

00000001b
00000010b

(Module is locked)
(Common PIN required for access)

Read Audit Trail Info (12H)

Transmit data
12H, Common PIN

Receive data
CSB ~ 0 if command successful, appropriate

error code otherwise
Output length ~ audit trail structure size (5)

if successful, 0 otherwise
Output data ~ audit trail info structure if

successful, 0 otherwise

Notes:
If the transmitted Common PIN is valid and the module

has been locked, it returns audit trail configuration inform a-

28
Possible error codes for the read audit trail command:

5
incorrect)

ERR_BAD COMMON_PIN (Common PIN was

10

15

ERR_MIAC_NOT_LOCKED module is not locked

Read Group Audit Trail (14H)

Transmit data
14H, Group ID, Group

Receive data
CSB ~ 0 if command successful, appropriate

error code otherwise
Output length ~ # or records for group * 6 if

successful, 0 otherwise
Output data ~ audit trail records for group

20 Notes:
This command 1s identical to the read audit trail

command, except that only records involving the group ID
specified in the transmit data are returned to the host. This
allows transaction groups to record track their own activities

25 without seeing other groups records.

30

Possible error codes for the read group audit trail com
mand:

ERR BAD GROUP _ID
ERR BAD GROUP _PIN
ERR MIAC_NOT_LOCKED

(Group ID does not exist)
(Common PIN was incorrect)
(The module is not locked)

tinn~fulli~: ~
Read Real Time Clock (15H)

Number of used transaction records
Number of free transaction records
A boolean specifying whether or

not the audit trail rolled
since previous read command

(2 bytes)
(2 bytes)
(1 byte)

Possible error codes for the read audit trail info command:

ERR_BAD COMMON_PIN
incorrect)

ERR_MIAC_NOT_LOCKED

(Common PIN was

(Module is not locked)

Read Audit Trail (13H)

Notes:

Transmit data
13H, Common PIN

Receive data
CSB ~ 0 if command successful, appropriate

error code otherwise
Output length ~ # of new records * 6 if

successful, 0 otherwise
Output data ~ new audit trail records

40

45

50

55

60

If the transmitted common PIN is valid and the module 65

has been locked, it will transfer all new transaction records
to the host.

Transmit data
15H, Common PIN

Receive data
CSB ~ 0 if the common PIN matches and

ERR_BAD COMMON_PIN otherwise
Output length ~ 4
Output data ~ 4 most significant bytes of the

real time clock

Notes:
This value is not adjusted with a clock offset. This

command is normally used by a service provider to compute
a clock offset during transaction group creation.

Read Real Time Clock Adjusted (16H)

Transmit data
16H, Group ID, Group PIN, ID of offset object

Receive data
CSB = 0 if successful, appropriate error code

otherwise

Notes:

Output length ~ 4 if successful, 0 otherwise
Output data ~ Real time clock + clock offset ID

This command succeeds if the group ID and group PIN
are valid, and the object ID is the ID of a clock offset. The
module adds the clock offset to the current value of the 4
most significant bytes of the RTC and returns that value in
the output data field. Note that a transaction script may be
written to perform the same task and put the result in the
output data object.

US 6,237,095 Bl
29

Possible error codes for the real time clock adjusted
command:

ERR BAD GROUP PIN
ERR BAD GROUP ID
ERR BAD OBJECT_TYPE

(Incorrect group PIN)
(Specified group does not exist)
(Object ID is not a clock offset)

Get Random Data (17H)

Transmit data
17H, Length (L)

Receive data
CSB = 0 if successful, appropriate error code

otherwise
Output length ~ L if successful, 0 otherwise
Output data ~ L bytes of random data if

successful

Notes:
This command provides a good source of cryptographi

cally useful random numbers.
Possible error codes for the get random data command

are:

ERR BAD SIZE (Requested number of bytes > 128)

Get Firmware Version ID (18H)

Transmit data
18H

Receive data
CSB ~ 0
Output length ~ Length of firmware version ID

string
Output data = Firmware version ID string

Notes:
This command returns the firmware version ID as a Pascal

type string (length+data).
Get Free RAM (19H)

Transmit data
19H

Receive data
CSB ~ 0
Output length ~ 2
Output data ~ 2 byte value containing the

amount of free RAM

Notes:
If the module has been locked the output data bytes will

both be 0 indicating that all memory not used by transaction
groups has been reserved for the audit trail.

Change Group Name (1AH)

Transmit data
1AH, Group ID, Group PIN, New Group name

Receive data
CSB = 0 if successful or an appropriate error

5

30

-continued

code otherwise

Notes:

Output length ~ 0
Output data ~ 0

If the group ID specified exists in the module and the PIN

10
supplied is correct, the transaction group name is replaced
by the new group name supplied by the host. If a group ID
of 0 is supplied the PIN transmitted must be the common
PIN. If it is correct, the module name is replaced by the new
name supplied by the host.

Possible error codes for the change group name com-15
mand:

ERR_BAD GROUP PIN (Incorrect group PIN)
20 ERR_BAD GROUP ID

ERR_BAD NAME_LENGTH
(Specified group does not exist)
(New group name > 16 bytes)

25

30

ERROR CODE DEFINITIONS

ERR_BAD_COMMAND (SOH)

This error code occurs when the module firmware does
not recognize the command just transmitted by the host.

ERR_BAD_COMMON_PIN (81H)

This error code will be returned when a command
requires a common PIN and the PIN supplied does not match
the module's common PIN. Initially the common PIN is set

35 to 0.

ERR_BAD_GROUP _PIN (82H)

Transaction groups may have their own PIN, FIG. 11. If

40
this PIN has been set (by a set group PIN command) it must
be supplied to access any of the objects within the group. If
the Group PIN supplied does not match the actual group
PIN, the module will return the ERR_BAD_GROUP _PIN
error code.

45 ERR_BAD_PIN_LENGTH (83H)

There are 2 commands which can change PIN values. The
set group PIN and the set common PIN commands. Both of
these require the new PIN as well as the old PIN. The

50 ERR_BAD_PIN_LENGTH error code will be returned if
the old PIN supplied was correct, but the new PIN was
greater than 8 characters in length.

55

ERR_BAD_OPTION_BYTE (84H)

The option byte only applies to the common PIN. When
the set common PIN command is executed the last byte the
host supplies is the option byte (described in command
section). If this byte is unrecognizable to the module, it will

60
return the ERR_BAD OPTION_BYTE error code.

ERR_BAD_NAME_LENGTH (85H)

When the create transaction group command is executed,
one of the data structures supplied by the host is the group's

65 name. The group name may not exceed 16 characters in
length. If the name supplied is longer than 16 characters, the
ERR_BAD_NAME_LENGTH error code is returned.

US 6,237,095 Bl
31

ERR_INSUFFI CIENT _RAM (86H)

The create transaction group and create object commands
return this error code when there is not enough heap avail
able in the module.

ERR_MIAC_LOCKED (87H)

32
ERR_OBJECT_PRIVATE (91H)

Private objects are not directly readable or writable. If a
read object command or a write object command is

5
attempted, and it specifies the object ID of a private object,
the module will return an ERR OBJECT_PRIVATE error
code.

When the module has been locked, no groups or objects
can be created or destroyed. Any attempts to create or delete
objects will generate an ERR_MIAC_LOCKED error

10
code.

ERR_OBJECT_DESTRUCTED (92H)

If an object is destructible and the transaction group's
destructor is active the object may not be used by a script.

ERR_MIAC_NOT_LOCKED (88H)

If the module has not been locked there is no audit trail.
If one of the audit trail commands is executed this error code 15

If a script is invoked which uses an object which has been
destructed, an ERR_OBJECT_DESTRUCTED error code
will be returned by the module.

The exemplary embodiment of the present invention is
preferably placed within a durable stainless steel, token-like
can. It is understood that an exemplary module can be placed
in virtually any articulatable item. Examples of articulatable
items include credit cards, rings, watches, wallets, purses,

will be returned.

ERR_ GROUP _LOCKED (89H)

Once a transaction group has been locked object creation
within that group is not possible. Also the objects attributes
and types are frozen. Any attempt to create objects or modify
their attribute or type bytes will generate an ERR
GROUP _LOCKED error code.

ERR_BAD_OBJECT_TYPE (8AH)

When the host sends a create object command to the
module, one of the parameters it supplies is an object type
(see command section). If the object type is not recognized
by the firmware it will return an ERR_BAD_OBJECT_
TYPE error code.

ERR_BAD_OBJECT_ATTR (8BH)

When the host sends a create object command to the
module, one of the parameters it supplies is an object
attribute byte (see command section). If the object attribute
byte is not recognized by the firmware it will return an
ERR_BAD OBJECT_ATTR error code.

ERR_BAD_SIZE (8CH)

20 necklaces, jewelry, ID badges, pens, clipboards, etc.

The module preferably is a single chip "trusted com
puter". By the word "trusted" it is meant that the computer
is extremely secure from tampering by unwarranted means.
The module incorporates a numeric coprocessor optimized

25 for math intensive encryption. The BIOS is preferably
immune to alteration and specifically designed for very
secure transactions.

Each module can have a random "seed" generator with

30
the ability to create a private/public key set. The private key
never leaves the module and is only known by the module.
Furthermore, discovery of the private key is prevented by
active self-destruction upon wrongful entry into the module.
The module can be bound to the user by a personal identi-

35 fication number (PIN).
When transactions are performed by the module certifi

cates of authentication are created by either or both the
module and a system the module communicates with. The
certificate can contain a variety of information. In particular,

An ERR_BAD_SIZE error code is normally generated 40

when creating or writing an object. It will only occur when
the object data supplied by the host has an invalid length.

the certificate may contain:

1) who is the module user via a unique registration
number.

ERR_BAD_GROUP _ID (8DH)

All commands that operate at the transaction group level 45

require the group ID to be supplied in the command packet.
If the group ID specified does not exist in the module it will
generate an ERR_BAD_GROUP _ID error code.

ERR_BAD_OBJECT_ID (8EH)
50

2) when the transaction took place via a true-time stamp
ing of the transaction.

3) where the transaction took place via a registered
module interface site identification.

4) security information via uniquely serialized transac
tions and digital signitures on message digests.

5) module status indicated as valid, lost, or expired.
Although a preferred embodiment of the method and

apparatus of the present invention has been illustrated in the
accompanying Drawings and described in the foregoing
Detailed Description, it will be understood that the invention

All commands that operate at the object level require the
object ID to be supplied in the command packet. If the object
ID specified does not exist within the specific transaction
group (also specified in the command packet) the module
will generate an ERR_BAD_OBJECT_ID error code.

ERR_INSUFFICIENT_FUNDS (8FH)

55
is not limited to the embodiment disclosed, but is capable of
numerous rearrangements, modifications and substitutions
without departing from the spirit of the invention as set forth
and defined by the following claims. If a script object that executes financial transactions is

invoked and the value of the money register is less than the
withdrawal amount requested an ERR_INSUFFICIENT_ 60

FUNDS error code will be returned.

ERR_OBJECT_LOCKED (90H)

Locked objects are read only. If a write object command
is attempted and it specifies the object ID of a locked object 65

the module will return an ERR OBJECT_LOCKED error
code.

What is claimed is:
1. An apparatus for receiving and transmitting encrypted

data, comprising:
an input/output interface for receiving a challenge number

from an electronic device;
a microprocessor circuit connected to said input/output

interface;
a coprocessor circuit, connected to said microprocessor

circuit;

US 6,237,095 Bl
33

a tlmmg circuit connected to the microprocessor, the
timing circuit for generating a time stamp;

34
4. The apparatus of claim 1, wherein said apparatus is

capable of producing random encryption key pairs.
5. The apparatus of claim 1, further comprising memory a first memory connected to said microprocessor circuit,

said first memory for storing a first data object; and

a second memory connected to said microprocessor
circuit, said second memory including instructions
readable by said microprocessor circuit to thereby
cause said microprocessor circuit to:

means for storing a predetermined program, said memory
5 means being connected to said microprocessor.

initiate generation of a certificate, said certificate
including said challenge number and a second data 10

object; and
adjust said first data object according to said second

data object responsive to a verification signal from
said electronic device;

store a transaction script, the transaction script includ- 15

ing at least a representation of the time stamp gen
erated by the timing circuit.

2. The apparatus of claim 1, wherein said apparatus is
programmable.

3. The apparatus of claim 2, wherein said apparatus is 20

programmable via object oriented software.

6. The apparatus of claim 1, further comprising a trans-
action counter for counting a number of transactions that
said apparatus performs, said transaction counter being
connected to said microprocessor.

7. The apparatus of claim 1 wherein said first data object
includes a base monetary amount and wherein said second
data object includes a transaction monetary amount.

8. The apparatus of claim 6 wherein the second memory
further comprises instructions readable by said micropro
cessor circuit to thereby cause said microprocessor circuit to
store a verification for one of said transactions, said verifi
cation including a value of said transactions counter for said
one of said transactions and an encrypted signature.

* * * * *

