
(12) United States Patent
Connery et al.

(54) RECEIVE PROCESSING WITH NETWORK
PROTOCOL BYPASS

(75)

(73)

Inventors: Glenn William Connery, Sunnyvale;
Gary Jaszewski, Los Gatos; Richard
Reid, Mountain View, all of CA (US)

Assignee: 3Com Corporation, Santa Clara, CA
(US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

(21) Appl. No.: 09/071,692

(22) Filed: May 1, 1998

(51) Int. Cl? ... G08C 15/08
(52) U.S. Cl. 370/392; 370/395; 370/400;

370/412; 370/429; 709/250
(58) Field of Search 370/229, 253,

370/392, 338, 397, 349, 399, 412, 352,
389, 239, 401, 395, 400, 404, 428, 429,

351, 254, 258, 465, 469; 709/250

(56) References Cited

U.S. PATENT DOCUMENTS

5,917,820 * 6/1999 Rekhter 370/392

111111 111
US006246683Bl

(10) Patent No.:
(45) Date of Patent:

US 6,246,683 Bl
Jun.12,2001

6,046,979 * 4/2000 Bauman 370/229

* cited by examiner

Primary Examiner-Dang Ton
Assistant Examiner-Anthony Ton
(74) Attorney, Agent, or Firm-McDonnell
Hulbert & Berghoff

(57) ABSTRACT

Boehnen

An adapter is provided with intelligence that allows it to
separate the header parts of a packet being received from the
payload it carries, and in most cases move the payload
directly into a destination buffer at the application layer or
file system layer. Copies by the intermediate layers of the
protocol stack are bypassed, reducing the number of times
that the payload of a communication must be copied by the
host system. At the network interface, a plurality of packets
is received, and the payload of each is bypassed directly into
the target destination buffer. The network interface device
identifies the packets which are in the sequence of packets
carrying payload to be stored in the target buffer by the flow
specification carried with such packets. Also, the packets
carrying data payload for the file include a sequence number
or other identifier by which the network interface is able to
determine the offset within the target buffer to which the
packet is to be stored.

20 Claims, 4 Drawing Sheets

DATA APPLICATION
59

/
(eg. SMB)

/
/

/
I

I

63l/
I 60

1
I
I

' I
I
I
\PAYLOAD

SEND FLOW
SPEC,

\ REQ. PACKET,

\ BYPASSCMD,

\ TARGET BUFFER

\ 62 \
\ HEADEf}

SENDREQ. \
64

I PACKET,

' I BYPASSCMD,

' ' TARGET BUFFER

' ' ' SMARTNIC ' 56
57

U.S. Patent Jun.12,2001 Sheet 1 of 4 US 6,246,683 Bl

10

/
HOST CPU HOST 12

HOST 110,

11 MEMORY ETC 13

A : ; ; ~
HOST BUS 16

... t t --y
r-17

PROGRAM
~ MEMORY: NIC c::

TCPIIP W/ 0
RECVBYPASS (RECEIVE ~ MAC DRIVER W/ BYPASS z
BYPASS SUPPORT) 0
SUPPORT 15 1-

ETC. 14

FIG. 1

4 ~--1

w

~ (!)
z

0::: 22 UJ 18 UJ 1- u.
~ u.
en ::::>
::I CD
CD 25

l2o

TCP/IP
CHECKSUM

LOGIC
34

FIG. 2

PAYLOAD

RAM

CONTROL
21 DATA

DATA PATH AND
BUFFERING

27
;

MAC

22

w z
a z w
<(
:E c

33-

28

CPU

PROGRAM
MEMORY:
XMIT
RCV
RECIEVE

30

BYPASS
ETC. 31

15

--------------------------1

TO NETWORK
MEDIUM

U.S. Patent Jun.12,2001 Sheet 2 of 4

631/
I
I
I
I
I
I

/
I

I
I

\PAYLOAD

\
\
\
\
\

/
/

/

DATA APPLICATION
(eg. SMB)

FILE SYSTEM
(SMB/CIFS)

48

50

TCPIIP STACK

52

\ HEADEf} ' ~--~~~----~
64 ' I . ' ' ' \ ' ' ' ' SMARTNIC

(FIG. 2)
56

57

US 6,246,683 Bl

..---59

READ(LENGTH)

SEND READ
RAWREQ,

BYPASSCMO

SEND FLOW
SPEC,

REO. PACKET,
BYPASSCMD,
TARGET BUFFER

SENDREQ.
PACKET,
BYPASSCMD,
TARGET BUFFER

FIG. 3

1130 J

I ETH I IP I TCP I PAYLOAD(-1.5k) I P.

ETH IP TCP

HEADER FRAGMENT
101

--------1
~------~----~

CONTROL HEADER 110 I
BUFFER I

I
I DRIVER MANAGED :
I MEMORY ________________ J

PAYLOAD FRAGMENT ~ 120

107

PAYLOAD (-1.5k)

PAYLOAD (-1.5k- HEADER LENGTH)

PAYLOAD FRAGMENT
102

-----1

TARGET BUFFER
(-32k)

I
I

I I 111

I
I HIGHER LAYER I
~MANAGED~EMORY _______ J

H
/:L=!/100

FIG. 4

d •
\Jl •
~
~
~ =

~

= ?

'"""' ~N

N c c
'"""'

'JJ.

=-~
~
~

0,
~

e
rJ'l

-..a-..
N
~

-..a-..
a-..
00
~

~
1--"

U.S. Patent Jun.12,2001 Sheet 4 of 4

BYPASS SETUP
(SEQ. RANGE, SOCKET,

SOURCE, DEST., TARGET
BUFFER)

YES

STORE HEADER
IN WORKING

BUFFER (SEQ.
NO., LENGTH)

MOVE PAYLOAD
TO TARGET

BUFFER

UPDATE BYPASS
SETUP DATA
(SEQ. RANGE,

ETC.)

FIG. 5

RECIEVE READ
RAW RESPONSE

PACKET

205

206

207

NO

US 6,246,683 Bl

200

201

NORMAL
PROCESS

204

203

US 6,246,683 Bl
1

RECEIVE PROCESSING WITH NETWORK
PROTOCOL BYPASS

BACKGROUND OF THE INVENTION

2
Accordingly, it is desirable to provide techniques which

avoid one or more of these copies of the packets as they pass
up the protocol stacks. By eliminating multiple copies of the
packet, the raw performance of the receiving end station can

1. Field of the Invention
The present invention relates to processing of data in

communication networks, and more particularly to the pro­
cess of receiving a plurality of packets of data which relate
to a common block of data, and efficiently providing such
data to an application.

5 be increased, and the scalability of the receive process can
be improved.

SUMMARY OF THE INVENTION

2. Description of Related Art
Network communications are often described with

respect to layers of network protocols. According to a
standard description, the layers include the physical layer,
the datalink layer, the network layer (also called routing
layer), the transport layer, and the application layer. Thus
modem communication standards, such as the Transport
Control Protocol TCP, the Internet Protocol IP, and IEEE
802 standards, can be understood as organizing the tasks
necessary for data communications into layers. There are a 20
variety of types of protocols that are executed at each layer
according to this model. The particular protocols utilized at
each layer are mixed and matched in order to provide so
called protocol stacks or protocol suites for operation of a
given communication channel.

According to the present invention, an adapter is provided
10 with intelligence that allows it to separate the header parts of

a packet being received from the payload it carries, and in
most cases move the payload directly into a destination
buffer at a higher layer, such as the application layer. Thus
reducing the number of times that the payload of a commu-

15 nication must be copied by the host system.
Accordingly, the invention can be characterized as a

method for transferring data on a network from the data
source to an application executing in an end station. The
application operates according to a multi-layer network
protocol which includes a process for generating packet
control data (e.g. headers) for packets according to the
multi-layer network protocol. Packets are received at the
network interface in a sequence carrying respective data

25 payloads from the data source. Upon receiving a packet, the
control data of the packet is read in the network interface,
and if the packet belongs to a flow specification subject of
the bypass, the data payload of the packet is transferred to

The protocol stacks typically operate in a host system
which includes a network adapter comprised of hardware
that provides a physical connection to a network medium,
and software instructions referred to as medium access
control MAC drivers for managing the communication 30
between the adapter hardware and the protocol stack in the
host system. The adapter generally includes circuitry and
connectors for communication over a communication
medium, and translates the data to and from the digital form
used by the protocol stack and the MAC driver, and a form 35
that may be transmitted over the communication medium.

Generally according to this model, processes at the appli­
cation layer, including applications and file systems, rely on
the lower layers of the communication protocol stack for
transferring the data between stations in the network. The 40

application layer requests services from the protocol stack
which includes transport layer, network layer and datalink
layer processes distributed between the MAC driver and
other components of the stack. In a similar way, data which
is received across the network is passed up the protocol stack 45

to the application layer at which actual work on the data
involved is accomplished.

In current implementations, received packets are gener­
ally moved sequentially into host buffers allocated by the
MAC driver for the adapter, as they arrive. These buffers are 50

then provided to the host protocol stack, which generally
copies them once or twice to internal buffers of its own
before the payload data finally gets copied to the application
or the file system buffer. This sequential passing of the data
up the protocol stack is required so that the processes in the 55

particular protocol suite are able to individually handle the
tasks necessary according to the protocol at each layer.
However, these multiple copies of the data hurt performance
of the system. In particular, the CPU of the computer is used
for each copy of the packet, and a significant load is placed 60

on the memory subsystem in the computer. With technolo­
gies like gigabit Ethernet, and other technology in which the
data rates of the physical layer of the network is increasing,
these copy operations may become an important limiting
factor in improving performance of personal computer 65

architectures to levels approaching the capability of the
networks to which they are connected.

a buffer assigned by a layer higher in the stack, preferably by
the application or file system, bypassing one or more inter­
mediate buffers of the protocol stack.

Typically, to initiate the process of receiving a plurality of
packets which make up a block of data for a particular
application, the process involves establishing a connection
between the end station and the source of data, such as a file
server on a network, for example according to the TCP/IP
protocol suite. A request is transmitted from the application
through the network interface which asks for transfer of the
data from the data source. The request and the protocol suite
provide a flow specification to identify the block of data and
an identifier of the target buffer. At the network interface, the
plurality of packets is received, and their control fields, such
as TCP/IP headers, are read. If they fall within the set up
flow specification, the payloads are bypassed directly into
the target buffer. The network interface device identifies the
packets which are in the sequence of packets carrying
payload to be stored in the target buffer by the control data
in headers carried with such packets. Also, according to a
preferred aspect of the invention, the packets carrying data
payload for the block of data include a sequence number or
other identifier by which the network interface is able to
determine the offset within the target buffer to which the
payload of the packet is to be stored. In this case, the flow
specification includes a range of sequence numbers for the
block of data, such as by a starting number and a length
number.

According to yet another aspect of the invention, the
network protocol executed by the protocol stack includes
TCP/IP, and the process for requesting the transfer of a file
from a data source involves issuing a read request according
to higher layer protocol, such as the READ RAW SMB
(server message block) command specified according to the
Common Internet File System protocol (See, paragraph
3.9.35 of CIFS/1.0 draft dated Jun. 13, 1996) executed in
Windows platforms. The target buffer is assigned by the host
application using an interface like WINSOCK, or a file
system, in a preferred system. In alternatives, the target

US 6,246,683 Bl
3

buffer is assigned by a transport layer process like TCP, to
provide for bypassing of a copy in a network layer process
like IP.

Accordingly, the present invention provides a technique
by which the performance and scalability of a network
installation, like a TCP liP installation, can be improved,
especially for high physical layer speeds of 100 megabits per
second or higher. Also, the invention is extendable to other
protocol stacks in which a read bypass operation could be
executed safely.

Other aspects and advantages of the present invention can
be seen upon review of the figures, the detailed description
and the claims which follow.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 is a simplified diagram of an end station in a
network including receive bypass support according to the
present invention.

FIG. 2 is a simplified diagram of a network interface card
supporting the receive bypass processes of the present
invention.

FIG. 3 is a heuristic diagram of a protocol stack including
the read bypass process of the present invention.

FIG. 4 is a diagram illustrating the packet structure and
processing according to the read bypass operation of the
present invention.

FIG. 5 is a flow diagram of the process executed for
setting up and receiving packets in response to a READ
RAW request.

DETAILED DESCRIPTION

4
which is coupled to the network medium 17. In the path from
the host bus interface 20 to the RAM 21 includes appropriate
buffering 25 and a direct memory access (DMA) engine 26
in order to offload processing from the host system for

5 transferring data packets into the RAM 21. Also the data
path from the RAM 21 to the medium access control unit 22
includes appropriate data path and buffering logic 27 to
support efficient transmission and reception of packets. A
DMA engine 28 is also included on this path to provide for

10 efficient transferring of data between the network medium
17 and the RAM 21. Also included on the card 15 is a central
processing unit 30 having a program memory 31. The CPU
30 is coupled to the host bus 16 and to the RAM 21 on line
32. Also the CPU 30 generates control signals represented

15 by the arrow 33 for controlling other elements in the network
interface card 15. According to this embodiment, TCPIIP
checksum logic 34 is coupled to the data path and the
buffering logic 27 in the path from the RAM 21 to the
network medium 17. The program memory for the CPU 30

20 includes transmit, receive, TCPIIP receive bypass control
and other processes which manage the operation of the smart
network interface card.

The block diagram illustrated in FIG. 2 provides a sim­
plified overview of the functional units in a network inter-

25 face according to the present invention. A variety of other
architectures could be implemented to achieve similar func­
tions. For example, DMA engines 26, 28 are not strictly
required here. State machines hand-shaking with each other,
or other data processing resources could move data from one

30 block to the next.

A detailed description of the present invention is provided
with respect to FIGS. 1-5, in which FIGS. 1 and 2 illustrate 35

a hardware system environment.

In one embodiment, all of these elements are imple­
mented on a single integrated circuit. In another
embodiment, all elements of the network interface card
except for the RAM 21 are implemented on a single inte­
grated circuit. Other embodiments include discreet compo­
nents for all of the major functional blocks of the network

FIG. 1 shows a data processing system 10 which includes
a host central processing unit 11, host memory 12, host
input/output 13, such as keyboards, displays, printers, a
pointing device and the like. The system also includes 40

program memory 14 (usually part of the host memory block)
and a network interface card 15. All of these elements are
interconnected by a host system bus 16. The network
interface card 15 provides for connection to a network
medium as indicated at line 17. 45

FIG. 1 is a simplified diagram of a computer such as a
personal computer or workstation. The actual architecture of
such system is quite varied. This system for one example
corresponds to a personal computer based on the Intel

50
microprocessor running a Microsoft Windows operating
system. Other combinations of processor and operating
system are also suitable.

interface card.

FIG. 3 is a simplified diagram of the network protocol
layers implemented according to the present invention. The
protocol layers in this example include a data application 48
such as an application layer program, coupled by path 49 to
a file system 50 running CIFS in an end station. The file
system 50 is coupled by a path 51 to the TCP/IP stack 52.
The TCPIIP stack 52 is coupled by path 53 to the MAC
driver 54. The MAC driver is coupled by path 55 to the
smart network interface card 56. The smart network inter­
face card 56 is coupled by path 57 to the network medium.

In alternative systems, application layer processes (like
process 48) issue read requests through an application
program interface (API) like WINSOCK for Windows
platforms, rather than a file system (like CIFS).

According to the example in FIG. 3, the application layer
process 48 (such as Lotus Notes or others), issues a request According to the present invention, the program memory

includes a TCP liP protocol stack with a receive bypass mode
according to the present invention. A MAC driver is also
included in the program memory which supports the receive
bypass mode. Other programs are also stored in program
memory to suit the needs of a particular system. The network
interface card 15 includes resources to manage TCPIIP
processing and bypass according to the present invention.

55 59 to read a file of data across the network from a data source
such as by the equivalent of fget (buffer length), in the "C"
programming language. The file system 50 sets up a bypass,
then formats the READ RAW SMB request 60 and passes it
down. Such a request 25 corresponds for example to the

FIG. 2 provides a simplified block diagram of a network
interface card 15 capable of supporting the present inven­
tion. The network interface card 15 includes a bus interface
20 coupled to the host bus 16. A memory composed of
random access memory RAM 21 is included on the card 15.
Also, a medium access control unit 22 is coupled to the card

60 READ RAW SMB command found in the CIFS protocol. Of
course, analogous commands and other application layer
processes could be utilized. The READ RAW request is
passed down the protocol stack to the driver and transferred
across the network to the file server or other data source

65 which is the source of the file to be retrieved. The file server
then sends a sequence of packets according to the SMB
READ RAW response protocol.

US 6,246,683 Bl
5

The TCP/IP stack according to the present invention
makes a call 61 to the MAC driver, passing to it the
identification of a target buffer assigned by the application
layer process, or by another process above the network layer.
This identification may be an array of physical or virtual
addresses, such as an address and a length, which can be
utilized by the MAC driver to copy the data directly from the
memory on the smart network interface card into the target
buffer. Also, the call made by the TCP!IP stack sends down

6
flow specification provided to the adapter. Thus, the problem
of calculating the offset into the target buffer is complicated.
However, if all packets in the read request are constrained to
the same size, except for the last packet, the target buffer

5 offset can be easily determined. Alternatively, the bypass
might only be performed on packets received in order.
Additional calculations on the smart network adapter card
can also provide the memory offsets. Similarly file system
protocols other than CIFS are possible, such as FTP or NFS.

to the MAC driver the flow specification established for this 10
read beforehand, including the source and destination IP
addresses, and the source and destination port numbers (i.e.
sockets). Also the flow specification includes a SEQorigin
and a SMBfirst flag in this example. In turn, the MAC driver
provides the request and associated control information by a 15
transfer 62 to the smart adapter 56. The target buffer
specifies where the payload should be stored when possible

According to some embodiments of the present invention,
the network adapter has resources which enable it to deter­
mine that a received packet has good data, such as checksum
checking logic and the like, before transferring it up to the
target buffer. The smart network adapter has the capability to
maintain a record of the parts of the target buffer which have
been filled in with good packets and not overwrite them.
This addresses a feature of the TCP!IP protocol by which
there is no guarantee that payload bytes will arrive in order,
or that if they are retransmitted that they will be retransmit­
ted in the same size chunks. Thus, the file server might send
part of a previous packet along with some new data. The

by the network interface card. The flow specification speci­
fies how to identify packets that are part of this session. The
SEQorigin specifies the sequence number of the first byte of 20
the payload (excluding any SMB header) that should be
stored in the target buffer. The SMBfirst flag tells the driver
whether the first packet with that sequence SEQorigin will
have a SMB header following its TCP header. This infor­
mation is used so that the control data can be cut from the 25

adapter in this embodiment is capable of properly handling
this condition because of its record of the good data already
stored in the target buffer.

FIG. 4 illustrates the packet structure and the process of
first packet in the plurality of packets which are received in
response to the read request.

Using this information, when the adapter receives packets
in the session, it puts the payload data directly (line 63) into
the target buffer. There is no guarantee that the adapter will
always do this; however it will be done most of the time
when a target buffer has been supplied. Such received
packets are passed up to the protocol one at a time as always,
using the same interfacing data structures as always. The
only difference is that the packet will be split across two
fragments. The header (Ethernet, IP, TCP and possible SMB
headers) will be the first fragment on line 64, and will
occupy a driver allocated buffer as always for use in iden­
tifying the packet, and for protocol maintenance functions.
However, the payload will occupy a second fragment on line

the present invention as the packets are received for a
response to a READ RAW SMB request according to the
CIFS protocol. As can be seen in FIG. 4, there is a first
packet in the sequence generally 100 which carries a header

30 fragment 101 and a payload fragment 102. The header
fragment includes in this example an Ethernet header 103,
an Internet Protocol header 104, a TCP header 105, and a
SMB header 106. The data payload 107 makes up the
payload fragment 102. For a standard Ethernet style packet,

35 the payload will have about 1.5 kilobytes of data. According
to the present invention, the smart network adapter receives
the packet 100 and ensures that it is a good packet by
performing the IP and TCP checksum processes. Also, the
header fragment 101 is cut off of the packet 100 and

40 transferred to a control header buffer 110 which is stored in
driver managed memory. The payload fragment 102 is
transferred to the target buffer 111 in the application man­
aged memory according to the target buffer addresses stored
in the network interface card.

63 which has been copied to the offset within the target
buffer determined by the SEQ parameter in the header. The
driver figures out the offset in the target buffer from the SEQ
number in the header of the incoming packet. The offset into
the target buffer is simply determined by the SEQ in the 45
packet less the SEQorigin parameter which is provided with
the READ RAW request. According to one implementation,

According to the READ RAW SMB process, subsequent
packets in the sequence, including packet 120 and packet
130 do not carry SMB headers like the header 106 in the first
packet 100. The subsequent packets are received by the
smart network interface card and the TCP!IP flow specifi-

if the packets which are responsive to the read request come
to the adapter out of order, they will not be redirected to the
target buffer until the first packet with the SMB header
carried in is received. At that point, the size of the SMB
header is easily calculated, and the amount to adjust the
calculation for directly loading into the target buffer can be
readily determined.

This approach allows both data that is targeted at the file
system cache buffers to skip one or more copies or appli­
cation layer reads. However, it need not be used to its full
potential to be worthwhile. Even if one copy operation can
be skipped the invention might be useful. Thus, according to
an alternative embodiment the target buffers are assigned at
the TCP layer rather than at the application layer. The TCP
buffer target address is passed down to the MAC driver,
allowing the packet to skip the copy at the IP layer.

Other protocols can be handled as well, such as the IPX
and the NetBEUI/Data Link Control (DLC) protocols.
Although these protocols do not use SEQ numbers which act
as byte counters, but rather use packet numbers as part of the

50 cation is used to identify them as part of the READ RAW
response. Once they are identified by the network interface
card as part of the response, they are uploaded into the target
buffer 111 at an offset determined by the SEQ parameter in
the TCP header. The header fragments of the packets 120

55 and 130 can be passed up the protocol stack to ensure that
the protocol stack is properly apprised of the sequence of
packets being received.

Normally a received packet is placed in a buffer allocated
by the driver and then passed up to the protocol stack in a

60 data structure that consists of one or more fragments iden­
tified by respective pointers and lengths. The total sum of the
fragments in order makes up the entire packet. Often, the
packet is passed up in one piece, and there is not a second
fragment. But in some cases, such as in a transmit loop back,

65 the packet is divided into several fragments which are
passed back up to the protocol stack. Thus the protocol stack
is normally configured to handle packets which are passed

US 6,246,683 Bl
7

up in several fragments. According to the present invention,
the packet is divided into two fragments, including the
header which is placed in the buffer allocated by the driver
identified by a pointer to the buffer location, and the payload
which is placed in the target buffer and identified by a 5
pointer to the target buffer. The identifiers of the two
fragments are passed up the protocol stack by making a call
to the receive function in the next layer, and passing the
fragment identifiers up with the call. This allows the packet
to be processed normally through the protocol stack. At the 10
application layer, or at the layer of the target buffer, the
protocol or the application would be modified according to
one implementation of the invention to compare the address

8
protocol, including a network layer and at least one higher
layer, through a network interface on the end station, com­
prising:

receiving in the network interface a packet which carries
a data payload from a block of data in the data source,
and a control field identifying the packet;

determining based on the control field in the network
interface whether the packet matches a flow
specification, and if so transferring the data payload in
the packet directly to a target buffer assigned by a
process at a layer higher than the network layer.

2. The method of claim 1, wherein the control field in the
packet includes a packet header.

3. The method of claim 1, wherein the multi-layer net­
work protocol comprises TCP/IP, and the control field
comprises a TCP /IP header.

of the fragment with the address of the buffer into which this
layer of the stack intends to copy the fragment. If these two 15
addresses match, then the copy is not executed. The copy
would not be necessary because the adapter had already
copied the payload into the target buffer. Thus, very little
modification of the protocol stack is necessary in order to
execute the present invention.

FIG. 5 illustrates the process executed by the network
interface card and MAC driver according to the present
invention. In the network adapter the bypass is set up by
storing a flow specification for the block of data that will be
subject of the receive bypass. The flow specification 25

4. The method of claim 1, including prior to receiving the
packet, allocating the target buffer for the plurality of
packets, and notifying the network interface of the allocated

20 target buffer.

includes for example a sequence number range, socket
numbers, and source and destination addresses, of packets
which will be part of the flow, and a target buffer to which
the payload is to be written (block 200). This data is
provided to the network adapter from a higher layer in the
protocol stack. Once the bypass is set up, the adapter is able
to receive packets which are part of that flow specification.
For example, in one example the packets are expected to be
responses from a READ RAW request for a block of data
(block 201). The network adapter upon receiving the packet,
and before passing the packet up the stack determines
whether the packet falls within the set up that defines the
flow specification for this read bypass session (block 202).
If not, then the packet is processed normally (block 203) and
the algorithm ends (block 204). If the packet falls within the
set up parameters at block 202, then the header of the packet
is stored in a working buffer accessible by the driver,
including the sequence number and length parameters from
the header (block 205). Using this data, the protocol stack is
capable of performing protocol maintenance functions nec­
essary for maintaining the session. Also the payload is
moved directly to the target buffer (block 206). The payload
move process may occur before, after or in parallel with
storing the header in the working buffer. Next, if necessary
for a given implementation, the set up data for the receive
bypass is updated based on the information in the header
(block 207). Finally the process ends (block 204).

5. The method of claim 1, the network interface is coupled
to a network medium supporting a maximum packet size,
and including transmitting a request from an application for
transfer of a block of data from the data source, the block of
data having a length potentially greater than the maximum
packet size for the medium.

6. The method of claim 5, including notifying the network
interface in response to the request of a flow specification for

30 the block of data according to the multi-layer network
protocol, and wherein the step of receiving the packet
includes identifying packet using the flow specification.

7. The method of claim 6, wherein the network protocol
comprises TCP/IP, and the flow specification includes a

35 sequence number of a first byte from the plurality of packets
to be stored in the target buffer.

8. The method of claim 1, wherein the flow specification
includes a sequence number for the block of data.

9. The method of claim 8, wherein the flow specification
40

includes IP source and destination addresses and TCP port
numbers.

10. A method for transferring data on a network from a
data source to an end station executing a multi-layer network

45 protocol through a network interface on the end station,

50

55

including medium access control layer processes, compris­
ing:

establishing a connection with a destination for a session
according to a network protocol;

transmitting a request for transfer of a block of data from
the data source, and providing a flow specification and
an identifier of a target buffer to the network interface;

receiving in the network interface a plurality of packets
which carry respective data payloads, packets in the
plurality of packets including control fields identifying
whether the packet falls within the flow specification of
the block of data,

The foregoing description of a preferred embodiment of
the invention has been presented for purposes of illustration
and description. It is not intended to be exhaustive or to limit
the invention to the precise forms disclosed. Obviously,

60
many modifications and variations will be apparent to prac-

upon receiving a packet, determining in the network
interface whether the packet falls within the flow
specification, and if so transferring the data payload to
the target buffer. titioners skilled in this art. It is intended that the scope of the

invention be defined by the following claims and their
equivalents.

What is claimed is:
1. A method for transferring data on a network from a data

source to an end station executing a multi-layer network

65

11. The method of claim 10, wherein the control field in
the first packet includes a packet header.

12. The method of claim 10, wherein the network protocol
comprises TCP/IP, and the packet control data comprises a
TCP/IP header.

US 6,246,683 Bl
9

13. The method of claim 10, wherein the network protocol
comprises TCP/IP, and the flow specification includes a
sequence number of a first byte from the plurality of packets
to be stored in the target buffer.

10
receiving in the network interface a plurality of packets

which carry respective data payloads from the block of
data in the data source, and each packet in the plurality
of packets including a TCP/IP header,

14. The method of claim 10, wherein the flow specifica- 5

tion includes a sequence number for the block of data.

upon receiving each packet, determining in the network
interface whether the packet falls within the flow
specification, and if so transferring a data payload to the
target buffer. 15. The method of claim 14, wherein the flow specifica­

tion includes IP source and destination addresses and TCP
port numbers.

16. A method for transferring data on a network from a
data source to an end station executing a TCP/IP network
protocol through a network interface on the end station
including medium access control layer processes below
TCP liP, comprising:

establishing a connection with a destination for a session
according to the TCP/IP network protocol;

transmitting a request from a application, for transfer of a
block of data from the data source, and providing a flow
specification for the block of data and an identifier of a
target buffer to the network interface;

17. The method of claim 16, wherein the flow specifica-

10 tion includes a sequence number for bytes of data in the
block of data.

15

18. The method of claim 17, wherein the flow specifica­
tion includes IP source and destination addresses and TCP
port numbers.

19. The method of claim 16, wherein the target buffer
comprises a buffer assigned at the TCP layer or higher.

20. The method of claim 16, wherein the target buffer
comprises a buffer assigned at a layer higher than the TCP

20 layer.

* * * * *

