
111111 111

(12) United States Patent
Delaney et al.

(54) DISTRIBUTED CLIENT-BASED DATA
CACHING SYSTEM

(75) Inventors: Hubert Delaney, Wilton, CT (US); Adi
Ruppin, Ramat Gan (IL); Lior Hass,
Tel Aviv (IL); Ofer Faigon, Jerusalem
(IL)

(73) Assignee: Backweb Technologies, Ltd., Ramat
Gan (IL)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

(21) Appl. No.: 09/817,953

(22) Filed: Mar. 26, 2001

Related U.S. Application Data

(63) Continuation of application No. 09/166,686, filed on Oct. 5,
1998, now abandoned.

(51) Int. Cl? .. G06F 13/00
(52) U.S. Cl. .. 709/203; 709/238
(58) Field of Search 709/200--253

(56) References Cited

U.S. PATENT DOCUMENTS

5,151,989 A 9/1992 Johnson eta!. 707/10

Data

US006374289B2

(10) Patent No.: US 6,374,289 B2
Apr.16, 2002 (45) Date of Patent:

5,261,069 A 11/1993 Wilkinson et a!. 711!145

5,689,708 A 11/1997 Regnier et a!. 709/229

5,729,689 A 3/1998 Allard eta!. 709/228

5,835,720 A 11/1998 Nelson eta!. 709/224

5,864,854 A 1!1999 Boyle 707/10

5,884,046 A 3/1999 Antonov 709/238

6,002,852 A 12/1999 Birdwell et a!. 395/200.363

6,003,087 A 12/1999 Housel, III et a!. 709/229

6,018,766 A 1!2000 Samuel eta!. 709/218

6,021,426 A 2/2000 Douglis et a!. 709/200

Primary Examiner-David Wiley
(74) Attorney, Agent, or Firm---Fliesler, Dubb, Meyer &

Lovejoy LLP

(57) ABSTRACT

A system and method for enabling data package distribution
to be performed by a plurality of peer clients connected to
each other through a network, such as a LAN (local area
network). Each peer client can obtain data packages from
each other or from an external server. However, each peer
client preferably obtains data packages from other peer
clients, rather than obtaining data packages from the external
server.

23 Claims, 9 Drawing Sheets

Look for data
package locally

(step 1)

Data ~1 package
not found

Distribute request
message to other

peer clients
(step2)

package 1
Do not reply not found Peer clients look

for data package
locally

(step 4a) (step 3)

Data 1
package
found

Distribute
response message

(step 4b)

1
Download data

package

(step 5)

U.S. Patent Apr. 16, 2002 Sheet 1 of 9 US 6,374,289 B2

External Server
{16)

External
Connection {18)

r12 r12

Peer Client 1 (20)

_14
Peer Client 2 (22)

FIGURE 1A

U.S. Patent Apr. 16, 2002 Sheet 2 of 9

Look for data
packages in

memory or disk
cache

(step 1)

Not Found

Found

Download data
package from

peer client

{step 3a)

Neighbor Search
stage data

packages in
network

neighborhood

{step 2)

US 6,374,289 B2

Not Found

Down load data
package from

server

{step 3b)

FIGURE 1 B: Downloading Process

U.S. Patent Apr. 16, 2002 Sheet 3 of 9 US 6,374,289 B2

24"'
26

1----12

12 12

28

FIGURE 2A: Request-response example

U.S. Patent Apr. 16, 2002 Sheet 4 of 9 US 6,374,289 B2

Look for data
package locally

(step 1)

Data
package
not found~

Distribute request
message to other

peer clients
(step 2)

Data
package

,,
Do not reply not found Peer clients look

.... for data package
locally

(step 4a) (step 3)

Data
package
found

1lr

Distribute
response message

(step 4b)

1lr

Download data
package

(step 5)

FIGURE 28

U.S. Patent Apr. 16, 2002 Sheet 5 of 9 US 6,374,289 B2

PVN Digest 1, Digest 2

FIGURE 2C: Request message

PVN Digest 1, Digest 2, ... Digest N TCP Port

FIGURE 20: Response message

U.S. Patent Apr. 16, 2002 Sheet 6 of 9

Transmit request

(step 1)

No Response

Transmit response

(step 2)

Obtain data package
from server

(step 3)

Create entry in
hash table

(step 4)

FIGURE 2E

US 6,374,289 B2

U.S. Patent Apr. 16, 2002 Sheet 7 of 9

12

US 6,374,289 B2

12

12

12

12

12

Number of
data package
transfers

FIGURE 3: Tree-shaped data-flow (optimal)

U.S. Patent Apr. 16, 2002 Sheet 8 of 9

Look for the
required URL
in local cache

(step 1)

Attempt to
download the URL
from neighboring

browsers

(step 2)

Download the URL
from the web server

(step 3)

FIGURE 4

US 6,374,289 B2

U.S. Patent Apr. 16, 2002 Sheet 9 of 9 US 6,374,289 B2

PVN I REQ I

FIGURE SA

PVN I RSP I

FIGURE 58

US 6,374,289 B2
1

DISTRIBUTED CLIENT-BASED DATA
CACHING SYSTEM

This application is a continuation of Ser. No. 09/166,686,
filed Oct. 5, 1998, now abandoned.

FIELD AND BACKGROUND OF THE
INVENTION

The present invention relates to a distributed client-based
data caching system. Specifically, the system of the present
invention enables data packages to be served to a client
through a flexible, non-deterministic distributed system of
peer clients which cache the data packages, in order to
maximize efficiency and speed for serving the data package
to the client.

Networks which connect two or more computers, such as
the Internet or intranets, enable client computers to obtain
data packages, such as documents, images, messages, data
packages or other types of data, from remote storage media
which are not installed on the client computer itself. Instead,
these remote storage media are managed and operated
through a remote computer, known as a server computer or
simply as a "server" (in the same vein, the client computer

2
caching entities, in order to maximize efficiency and speed
for serving the document to the client. The caching entities
are peer clients which serve the data to each other, thereby
reducing the amount of bandwidth required to obtain data

5 from an external server.

According to the present invention, there is provided a
method for distributing data packages across a network, the
network featuring an external server for serving at least one

10 data package, the external server being a dedicated server,
the steps of the method being performed by a data processor,
the method comprising the steps of: (a) providing a plurality
of peer clients attached to the network and a list of data
packages being stored by each of the plurality of peer

15 clients, each data package on the list of data packages having
an entry, the entry indicating a unique identifier for the data
package and a location of the data package in at least one of
the plurality of peer clients; (b) examining the list of data
packages by a first peer client to find an entry for a data

20 package; and (c) if the entry for the data package is present
on the list of data packages of the first peer client, retrieving
the data package from the location at another of the plurality
of peer clients according to the entry for the data package.

is also often termed only a "client"). The advantage of such
Alternatively, the list of data packages is stored on the

external server.

According to preferred embodiments of the present
invention, the list of data packages is stored on at least the

a system is that the client computer can potentially obtain 25

data from any server on the network. The disadvantage of
the system is the requirement for sufficient bandwidth on the
network to enable data to be transmitted from the server to
the client. Furthermore, if the load is not evenly distributed
between servers on the network, one server may become
overwhelmed with requests, thereby decreasing the speed
and efficiency of retrieval. Thus, currently many networks
cannot provide rapid and efficient data retrieval due to the
heavy demands placed upon the available bandwidth.

30
first peer client. Preferably, if alternatively the entry for the
data package is absent from the list of data packages of the
first peer client, the method further comprises the steps of:
(d) sending a request message for the data package by the
first peer client to at least one other peer client; and (e) if a

35
response message is received by the first peer client from the
at least one other peer client, retrieving the data package
from the at least one other peer client by the first peer client.

Proxy servers are often installed to conserve bandwidth
on an Internet connection or on connections to other LANs
(local area networks). These proxy servers cache frequently
accessed data, thereby reducing the load on the main server,
and distributing demand for bandwidth more evenly across

40
the network. Unfortunately, such proxy servers are typically
expensive to maintain. Furthermore, proxy servers require
dedicated computers to be installed and configured. Each
computer on the LAN has to be separately configured in
order to communicate with the proxy server. Such configu-

45
ration is deterministic, such that each client must be con
figured to communicate with each proxy server separately.
Thus, proxy servers have many drawbacks.

Preferably, the request message and the response message
are transmitted to the plurality of peer clients by broadcast
ing. Alternatively, the request message and the response
message are transmitted to the plurality of peer clients by
multicasting. Also alternatively, the request message and the
response message are transmitted to the plurality of peer
clients by polling each peer client individually.

Also alternatively and preferably, if the response message
is not received from the at least one other peer client by the
first peer client, the method further comprises the step of: (f)
obtaining the data package by the first peer client from the A more useful solution would enable Intranets to reap the

benefits of the proxy server, without requiring dedicated
machines and without requiring any special installation or
configuration. Furthermore, such a solution would not be
deterministic, such that each client could communicate with
more than one server according to the load on each server,
rather than according to the configuration of the client itself.
Unfortunately, such a solution is not currently available.

Therefore, there is an unmet need for, and it would be
highly useful to have, a distributed client-based data caching
system which enables data to be stored and retrieved from a
plurality of peer clients, or "caching entities", yet which
does not require any special configuration or installation of
separate servers.

SUMMARY OF THE INVENTION

The present invention is of a distributed client-based data
caching system, which enables data to be served to a client
through a flexible, non-deterministic distributed system of

50
external server. Preferably, the method further comprises the
step of sending a response message by the first peer client to
the at least one other peer client substantially before the first
peer client obtains the data package from the external server.
More preferably, the list of data packages is stored on each

55
of the plurality of peer clients, and the method further
comprises the steps of: (g) receiving the response message
from the first peer client by the at least one other peer client;
and (h) altering the list of data packages being stored by the
at least one other peer client for indicating the location of the

60
data package according to the response message.

Alternatively, the list of data packages is stored on each
of the plurality of peer clients, and the method further
comprises the steps of: (g) receiving the response message
from the first peer client by the at least one other peer client;

65 and (h) altering the list of data packages being stored by the
at least one other peer client for indicating the location of the
data package according to a probabilistic function.

US 6,374,289 B2
3

Preferably, the probabilistic function is performed accord
ing to a set of equations:

4
FIGS. lA and lB are schematic block diagrams of an

exemplary basic system and method according to the present
invention;

{I
Old location Po(x) =!/(generation+ 1)

New location=
New location Pn(x) =!-!/(generation+ 1)

FIGS. 2A-2E are schematic block diagrams of an exem-
5 plary request/response protocol and method according to the

present invention;

wherein Pn(x) is a probability that the new location is
substituted for the old location, Po(x) is a probability that the
old location is retained, and "generation" indicates how

10
many times the location had been previously changed.

Also preferably, an upper limit is predetermined for a
number of the plurality of peer clients served substantially
simultaneously by the at least one other peer client, such that
if a number of the plurality of peer clients served substan
tially simultaneously by the at least one other peer client is 15

greater than the upper limit, the method further comprises
the step of: (d) sending a busy message from the at least one
other peer client to the first peer client.

Preferably, the external server is a Web server, and the
plurality of peer clients is a plurality of Web browsers. 20

Also preferably, the external servis a BackWeb™ server,
and the plurality of peer clients is a plurality of Back Web™
clients.

Preferably, the unique identifier for the data package is an
MDS digest of the data package. 25

According to still other preferred embodiments of the
present invention, the step of retrieving the data package is
performed according to a protocol based on TCP/IP.
Preferably, the protocol is HTTP. Alternatively and
preferably, the protocol is FTP. 30

Hereinafter, the term "protocol based on TCP/IP"
includes any such protocol, including but not limited to the
HTTP (hypertext transfer protocol) and FTP (file transfer
protocol) protocols.

Hereinafter, the term "data package" refers to any 35

discrete, identifiable unit of data, including but not limited to
documents, images, messages, data packages or any other
type of data.

Hereinafter, the term "computing platform" refers to a
particular computer hardware system or to a particular 40

software operating system. Examples of such hardware
systems include, but are not limited to, personal computers
(PC), Apple Macintosh TM computers, mainframes, minicom
puters and workstations, which are also non-limiting
examples of data processors for operating a software appli- 45

cation under an operating system. Examples of such soft
ware operating systems include, but are not limited to,
UNIX, VMS, Linux, MacOS™, DOS, one of the Win
dows™ operating systems by Microsoft Inc. (Seattle, Wash.,
USA), including Windows NT™, Windows 3.x™ (in which 50

"x" is a version number, such as "Windows 3.1 ™"), Win
dows95™ and Windows98™.

For the present invention, a software application could be
written in a substantially suitable programming language,
which could easily be selected by one of ordinary skill in the 55

art. The programming language chosen should be compat
ible with the operating system according to which the
software application is executed. Examples of suitable pro
gramming languages include, but are not limited to, C, C++
and Java. 60

FIG. 3 is a schematic block diagram of an exemplary
preferred data-flow diagram according to the present inven
tion;

FIG. 4 is a flowchart of a method for operating the system
of the present invention with Web browsers; and

FIGS. SA and 5B are exemplary request and response
messages according to the present invention.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

The present invention is of a distributed client-based data
caching system, which enables data to be served to a client
through a flexible, non-deterministic distributed system of
caching entities, in order to maximize efficiency and speed
for serving the data to the client. The caching entities are
peer clients which serve the data to each other, thereby
reducing the amount of bandwidth required to obtain data
from an external server.

The system of the present invention enables clients to
share data packages among themselves across their local
network neighborhood, for example within a LAN, thereby
eliminating the need for a specialized proxy server.
Furthermore, the network traffic is not significantly affected,
since modern network architectures are well suited for
peer-to-peer communications. Most currently operating net-
works have a star topology, using switching hubs, in which
communication between two peers does not affect simulta
neous communication among other nodes on the network.
Thus, the system of the present invention overcomes the
drawbacks of a proxy server, yet does not add significant
loads to the traffic on the network itself.

For currently available client-server software applications
known in the art, whenever a client requires a data package,
the following algorithm is performed. First, the software
application attempts to locate the data package locally on the
memory or on the disk or disks of the client. Then, if the data
package is not found locally, the software application
retrieves the data package from the appropriate server.

By contrast, the operation of the system of the present
invention adds an intermediate step. For the present
invention, if the data package is not found locally, an attempt
is made to retrieve the data package from a peer client on the
local network "neighborhood" before resorting to retrieving
the data package from the server.

Thus, for the system of the present invention, every client
actually functions as a caching proxy. Once a client requires
a data package, it queries all the hosts, which are actually
peer clients, on the local network for that data package. If no
neighboring peer client has the data package, the client
retrieves the data package from the external server as usual.
However, if a neighboring client already has the required
data package, the requesting client will download this data
package from the peer client rather than from the external
server.

Hereinafter, the term "broadcast" may also include "mul
ticast" as well.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention is herein described, by way of example
only, with reference to the accompanying drawings,
wherein:

The principles and operation of the distributed client
based data caching system according to the present inven
tion may be better understood with reference to the drawings

65 and the accompanying description.
FIG. lA is a schematic block diagram of an exemplary

system according to the present invention, while FIG. lB is

US 6,374,289 B2
5

a flowchart of the operation of the system of FIG. lA. FIG.
lA shows a system 10 which includes a plurality of peer
clients 12 connected by a local network 14 of some type, for
example a LAN, indicated by the heavier line in FIG. lA.
Two peer clients 12, labeled as "peer client 1" 20 and "peer 5
client 2" 22, are shown for the purposes of illustration only
and without intending to be limiting in any way. Each peer
client 12 is also connected to an external server 16 of some
type by an external connection 18. Although only one
external server 16 is shown, a plurality of external servers

10
could also be implemented. External server 16 is a dedicated
server, in the sense that this server has a primary or at least
a substantially significant role as a server for data packages.
As shown for the purposes of illustration, external connec
tion 18 only connects to local network 14 at one point,

15
although multiple such external connections could also be
implemented (not shown). In addition, external connection
18 could also optionally connect each peer client 12 directly
to server 16 (not shown).

The operation of system 10 according to the present 20
invention is illustrated with reference also to FIG. lB. In

6
packages from peer client 28 or peer client 30 if the desired
data packages are available.

Preferably, two protocols are used for communication
between peer clients on a local area network (LAN), a data
package-exchange protocol and a control protocol.
Specifically, the data package exchange protocol is used to
transfer data packages between peer clients, once the desired
data package has been located, and is described in greater
detail with respect to FIG. 2B below. The control protocol
enables each peer client to efficiently build and maintain
tables which describe the location of available data packages
across the local area network, by exchanging messages.

Each peer client maintains two hash-tables which contain
information about data package location: a local-data pack
ages table and a network-data packages table. The local-data
packages table is a hash-table of data packages which reside
on the storage medium or media of the peer client itself. The
network-data packages table is a hash-table of data packages
which reside on the storage medium or media of other clients
on the local network. This table contains the local area
network address of the peer client on which each data
package is being stored. The size of this hash-table is
preferably limited in order to reduce memory consumption.
More preferably, each entry in the table has a time-stamp,

25
such that older entries are purged when the size of the table
exceeds the upper permissible limit.

step 1, peer client 12, such as peer client 12 looks for a data
package in the local memory or disk cache of that particular
peer client 12. If the desired data package is not found on the
local disk cache, then in step 2, peer client 12 queries any
other peer client(s) 12 on local network 14 to determine
whether any other peer client 12 has a particular data
package. For example, peer client 20 could query peer client
22, to determine whether peer client 22 has the desired data
package. In step 3a, if peer client 22 has the desired data
package, then peer client 20 obtains the data package from
peer client 22. Alternatively, as shown in step 3b, if peer
client 22 does not have the desired data package, then peer
client 20 obtains the data package from server 16 through
external connection 18. Thus, every peer client 12 is also 35
potentially a server which is internal to local network 14,
and hence could be described as an "internal server" to
distinguish peer client 12 from external server 16.

Each peer client 12 could also be described as a "caching
entity" and the data stored by each client for serving to other
peer clients 12 as "cached data" or "cached data packages".

A number of different possible embodiments of the sys
tem of the present invention can be implemented, of which
two illustrative embodiments are shown with reference to
theFigures below. Briefly, FIGS. 2A-2D illustrate an exem
plary embodiment of the system of the present invention for
implementation with the software application of Back
Web™ (BackWeb Technologies Ltd., Ramat Gan, Israel) on
a local area network (LAN). FIGS. 4 and 5A-5B illustrate
an exemplary embodiment of the system of the present
invention for implementation with a Web browser software
application on the Internet.

FIG. 2A shows an exemplary local network 24 which
features a plurality of peer clients 12 of which three are
shown for the purposes of discussion only and without
intending to be limiting in any way. For the purposes of
discussion only, suppose a peer client 26, labeled "A",
wishes to obtain four data packages "W", "X", "Y" and "Z".
None of these data packages are local to peer client 26,
which must therefore obtain these data packages from either
another peer client 12 as an internal server, or from an
external server (not shown). Local area network 24 features
two other peer clients 12: peer client 28, labeled "B", and
peer client 30, labeled "C". Peer client 26 must therefore first
communicate a request to peer client 28 and peer client 30
to see if the desired data packages are available at either
location, and then peer client 26 must obtain these data

In order to effectively identify the desired data package,
preferably each data package has a unique identifier or
"fingerprint" associated with it. More preferably, this unique

30 identifier is an MDS digest of the content of the data package
(for a description of the MDS specification, which is an
industry standard and would therefore be obvious to one of
ordinary skill in the art, see "RFC 1321" at http://
ds.internic.net/rfc/rfc 1321. txt).

Once any peer client knows both the unique identifier and
the location of the data package on the local network, that
client can then proceed to download the data package.
However, the peer client may not know the location of the
desired data package, in which case the client must follow

40 a control protocol according to the present invention in order
to determine the location of the desired data package and to
enable the client to build these hash tables with respect to
future attempts to locate a data package.

The control protocol is used to provide each client with
45 knowledge about the locations of data packages across the

local network. In the preferred implementation illustrated
with respect to FIGS. 2A-2D, control messages are prefer
ably sent and received as broadcast or multicast packets.
Local area networks such as Ethernet networks support

50 broadcast or multicast packets such that all peer clients on a
local area network receive the broadcast or multicast pack
ets. Effectively, a single packet can be sent to all peer clients
by using broadcast or multicast, thereby reducing the
amount of traffic on the network required as a result of

55 transmitting the request message (see for example Chapter
12, "Broadcasting and Multicasting", of TCP/IP Illustrated
Volume, by W. Richard Stevens, Addison-Wesley, 1994).
However, optionally the system of the present invention
could poll each peer client individually with a control

60 message for that peer client, although this is not preferred
since such individually addressed messages would consume
excessive amounts of available bandwidth. In such a
situation, preferably polling would be restricted to a certain
group of peer clients as internal servers, in order to reduce

65 the amount of traffic on the local area network.
For the preferred implementation in which broadcast or

multicast is used, more preferably, the decision to select

US 6,374,289 B2
7

either IP multicast or broadcast is made according to the
configuration set by the network administrator for the local
area network. IP multicast is preferable in terms of load on
the clients of the local network, but may not be supported on
all platforms (operating systems). More preferably, the TTL 5

or Time to Live may be configured. The TTL specifies the
number of routers a packet can cross before being dropped.
Configuring the TTL enables data package sharing to be
expanded across subnet boundaries.

As shown with respect to FIG. 2B, the control protocol of 10

the present invention preferably operates as follows. In step
1, peer client "A" from FIG. 2A looks for a data package on
the local storage medium or media. In step 2, since the data
package was not found locally on the medium or media of
peer client "A", peer client "A" must download the data 15

package and therefore preferably multicasts (or alternatively
broadcasts) a request message. A request message preferably
contains a protocol identifying version number (PVN) for
the control protocol of the present invention and a list of
MDS digests of the needed data packages, as shown in FIG. 20

2C.
Optionally and preferably, if more than one data package

8
enable the requesting client to retrieve one or more data
packages from the responding peer. Preferably, response
messages are also be broadcast for data packages which are
currently being downloaded from an external server, for
reasons described in greater detail below.

In step 5, the peer client downloads the data package or
data packages. In principle, according to a relatively simple
embodiment of the present invention, at this stage the
requesting client either receives a reply and downloads the
data packages from the client that replied; or, if a reply is not
received within a certain period of time, proceeds to down-
load these data packages from an external server. If the peer
client is downloading a data package from another peer
client as an internal server, the data package-exchange
protocol is used to obtain the data package. The data
package-exchange protocol is based on some appropriate
peer-to-peer communication protocol, including but not lim
ited to the HTTP protocol (see RFC-2068, "Hypertext
Transfer Protocol-HTTP/1.1", available from http://
ds.internic.net/rfc/rfc2068.txt as of Sep. 23, 1998).

is desired, a list of requested data packages is included in the
request message rather than a single MDS digest, in order to
reduce the total number of request messages on the network.

In step 3, the neighboring clients, shown as peer clients
"B" and "C" in FIG. 2A, receive this request message and
search for the requested data package in their local-data
packages hash-table. A peer client which does not find the
data package locally does not reply, as shown in step 4a.
Otherwise, in step 4b the peer client sends a response
message, preferably after waiting a short random time
interval to determine whether another peer client will
respond first. More preferably, the peer client does not
distribute the response message if another client responded
previously, in order to reduce unnecessary traffic on the local
area network. Also more preferably, the peer client distrib
utes the response message by broadcast or multicast.

Preferably, a more complex implementation is employed,
since such a simple implementation may cause multiple
clients to fetch the same data packages from the external
server simultaneously. This situation would arise if several

25 peer clients need to download the same data packages at
approximately the same time, which is a very probable
scenario for push clients for which content delivery is
triggered by an external server, since none of these clients
would receive a response to its request. Instead, the other

30 clients would still be downloading the data package when
the new client request is broadcast, such that none of them
would be ready to serve these data packages. Thus, many or
even all of the clients would attempt to retrieve the data
package from the external server and not from another peer

For example, as shown in FIG. 2A, if peer client "A"
requests a data package "W", peer client "B" would reply
with the response message, since peer client "B" has the data
package stored locally. By contrast, peer client "C" would
not reply with a response message, since peer client "C"
does not have data package "W" stored locally. On the other
hand, if peer client "A" requests a data package "X", both
peer client "B" and peer client "C" could respond. In this
situation, preferably only peer client "B" or peer client "C"
would respond, depending on which peer client had the
shorter random interval for waiting before sending the
response message.

35 client, thereby increasing the amount of traffic on the net
work and reducing the efficiency of operation of the system
of the present invention.

Preferably, the problem is solved by notifying other

40
clients when a first client is downloading the data package
from the external server, even if the process of retrieving the
data package is not yet complete. In this preferred
embodiment, the first client which requires the data package
obtains the data package from the external server. Other

45
clients which require the data package will then download it
from the first client, even if the first client is still in the
process of retrieving the data package from the external
server. The preferred embodiment of the method of the
present invention is described in greater detail with regard to

50
FIG. 2E.

In step 1, the requesting client again transmits the request,
again preferably by broadcasting or multicasting, and then
waits for a response. If no response is received within a
certain period of time, in step 2 the client transmits a

55 response message as if replying to its own request, indicat
ing that this client either has the data package, or in this case,
that the client is retrieving the data package. In step 3, the
client retrieves the data package from the external server.

More preferably, responses are sent only for data pack
ages with yet unknown locations. For example, suppose
client "A" requests data packages "W", "X", "Y" and "Z".
Client "B" has data packages "W", "X" and "Y", and is the
first to r, with a reply message indicating possession of data
packages "W", "X" and "Y". Suppose another client, "C"
has data packages "X", "Y" and "Z". Since it replied after
client "B", the response message from client "C" will only
indicate possession of data package "Z" because this is the 60
only data package with an as yet unknown location.

In step 4, other clients create an entry in their network data
packages hash table, indicating the location of the client
which will be serving the data package. Thus, preferably
only a single client accesses the external server for any given
data package.

A response message optionally contains the identifying
PVN, the list of MDS digests of data packages that were
found and a TCPport number, as shown in FIG. 2D. The port
number identifies on which TCP port the responding peer 65

client is waiting for data package requests. Alternatively, the
response message optionally contains other indicators which

If a request is sent for multiple data packages, but a
response is received indicating the location of only some of
the data packages at a neighboring peer client or clients, the
client first obtains these data packages from the neighboring

US 6,374,289 B2
9 10

peer client or clients. Next, the client then transmits the
response message for the rest of the data packages, and
proceeds to obtain the remaining data package or data
packages from the external server. Thus, the client only
obtains the data package or data packages from the external 5

server which are not available locally, rather than obtaining
all of the data packages from the external server, thereby
reducing network traffic.

client is substituted for the old IP address 1s calculated
according to the following equations:

{I
Old IP address Po(x)= !/(generation+!)

New IP address = .
New IP address Pn(x) = 1-1/(generatwn+ 1)

wherein Pn(x) is the probability that a new IP address is
substituted for the old IP address, Po(x) is the probability
that the old IP address is retained, and "generation" is a
number indicating how many times this address had been
previously changed.

According to preferred embodiments of the present
invention, preferably the process of downloading data pack- 10

age from peer clients is optimized to reduce the amount of
time required for downloading, the load on each individual
client and the overall network traffic. Such optimization is
performed as follows.

For example, if client "A" responds indicating it has data
package "X", then initially all other peer clients store the IP
address of client "A" as the location of data package "X". If
client "B" then broadcasts a response also indicating that
client "B" has data package "X", then the probability that
any one client now changes the IP address for the location
of data package "X" is 50%. In other words, about half of the

First, preferably the exit degree of each client is bound, 15

such that each client is only able to serve a fixed, limited
number of other clients simultaneously. More preferably, the
default limit is three other clients, for example, or some
another appropriate number which is preferably configured

20 by the user or by the network administrator. If an additional

clients should now point to client "A" and about half should
point to client "B".

Such a substantially even distribution of load across
multiple clients should produce data-flow with a tree-shaped
topology, as shown in FIG. 3, rather than a random topology,
thus optimizing the average download time and the load on

client attempts to download a data package from a client
which is already serving the maximum number of other
clients will receive a "busy" message. This feature limits the
load on each individual client.

Also preferably, the present invention is able to optimize
the selection of the best client from which the data package
should be obtained. For example, if client "A" had already
downloaded a larger portion of the required data package
than client "B", transferring the data package from client
"A" is more optimal. Such clients are preferentially selected
to serve data packages, since these clients will be able to
serve the data package after a shorter time period has
elapsed. Such preferential selection occurs by shortening the
time period for waiting before these clients respond, thereby
increasing the likelihood that they will serve the data pack
ages. For this reason, the client preferably calculates the
random delay before responding such that the delay is
inversely proportional to the percentage of the data package
which has been already downloaded. In addition, the random
delay is preferably proportional to the number of clients
being served at the moment, in order to decrease the
likelihood of overloading already busy clients.

In addition, according to other preferred embodiments of
the present invention, preferably the entries of the locations
of data packages in the network data packages table are
updated according to a probabilistic function. Such a func
tion is preferred in order to prevent all of the clients from
registering a single client as the server for any particular data
package, for example. When different clients respond, usu
ally at different times, indicating they have a specific data
package, the remaining clients listening across the network
update the entry for this data package in their network data
packages table, by adding the IP address, or some other type
of address according to the addressing system employed by
the network, of the client which can serve the data package
to this table. In a simple implementation, the clients would
store only the last advertised location of each data package,
and therefore many or all clients might attempt to obtain the
data package from a single client as the internal server,
thereby overloading that client.

To avoid this situation, preferably the following probabi
listic algorithm is used to determine the particular client
address which is stored in the network data packages table.
Each time a new client transmits a response message,
indicating that this client is able to serve particular data
package, the probability that the new IP address of the new

25 the serving clients.
Furthermore, if any client requests a particular data pack

age during the period required by client "A" for download
ing that package, preferably client "A" sends a broadcast or
multicast message indicating that the package is in the

30 process of being downloaded. Therefore, preferably only a
single client "B" polls client "A" for each data package, for
example. Other clients preferably automatically receive any
responses from that polling action through the broadcast or
multicast transmission, and thus will not be forced to poll for

35 themselves.
The polling (request/response) traffic is optimized since

there is usually no need to transmit both a request and a
response for each data package needed by each client. Such
optimization is possible since each client preferably receives

40 substantially all of the request/response communication of
all the other clients and "remembers" the location of the data
packages in the network-data packages table.

As previously described, the actual process for receiving
a data package from an internal server is performed accord-

45 ing to the data package exchange protocol, by using the
HTTP protocol or some other suitable peer-to-peer commu
nication protocol. The data package transfer software appli
cation of the present invention preferably features a timer,
for detection of an aborted transfer or a very slow data

50 package transfer, for example. The timer determines when
such a transfer has timed out. If a time-out occurs, the
requesting client preferably repeats the whole process. If the
transfer remains unsuccessful after a plurality of attempts,
the client preferably ceases to attempt to transfer the data

55 package from the peer client as the internal server, and
instead transfers the data package or data packages directly
from the external server.

Again, as described previously, if a requested data pack
age has not yet finished being downloaded by a peer client,

60 the requesting client receives a message indicating that the
data package is not ready, as well as an indication of the
fraction of the data package already downloaded. The
requesting client continues polling the serving client until
the data package download is complete. If the download

65 becomes substantially slower or is otherwise interrupted or
terminated for a long period of time, the requesting client
behaves as if a time-out occurred.

US 6,374,289 B2
11

According to additional preferred features of the present
invention, substantially automatic detection of peer clients is
supported. Such automatic detection enables each peer client

12
In step 2, other Web browsers across the network listen to

detect request messages of this type. These Web browsers,
which are peer clients for this embodiment of the present
invention, receive this request message and check their own to detect the presence of other peer clients on the network.

If such peer clients are not found, preferably the system of
the present invention is disabled, since the operation of the
system as described above would only prolong the time
period required to download a data package if no other peer
clients are available.

5 cache for the requested URL. If the requested URL is found
in the local cache of a Web browser, that Web browser
preferably waits a random interval and then preferably
transmits a response message indicating it has the required
data package (or data packages). Preferably, the message is

Preferably, the amount of bandwidth on the local area
network which is consumed by each peer client serving data
packages to other clients is limited, to avoid over-burdening
any specific host. This limit is preferably configurable by the
user or by the network administrator.

10 broadcast or multicast. More preferably, that Web browser
does not reply if another Web browser had replied first. A
reply message is preferably sent by a particular Web browser
even if the requested URL is still being downloaded by that
Web browser.

In step 3, if no response to an issued requmessage is
received within a certain amount of time, for example 5
seconds, then the process is preferably timed out. In this
case, the Web browser preferably no longer attempts to
obtain the URL from another Web browser, and the URL is

Furthermore, in order to protect peer clients from unau- 15

thorized access of local storage media through the system of
the present invention, certain security features are preferably
included. For example, preferably only data packages iden
tified in the hash tables are able to be transferred from the
client. Thus, transmitted data packages are preferably only
data packages which were intended to be served to the peer
clients, such that malicious users preferably cannot use the
system of the present invention to obtain "random" data
packages from the storage media of a peer client. Data
packages are more preferably only referenced by their 25

unique identifier, such as their 128-bit MDS digest, such that

20 obtained from the regular Web server using regular HTTP
protocol. Before starting to download the data package from
the regular Web server, the Web browser preferably trans
mits a response message indicating that this particular Web

a data package is only able to be downloaded from a client
if the intended recipient knows this digest. Thus, the name
of a data package alone is preferably not sufficient inform a
tion to permit retrieval of the data package from a peer 30

client.

browser is downloading the data package.
On the other hand, if a response message is received, the

Web browser obtains the URL from the other Web browser
which indicated that it had the URL in the local cache.
Preferably, Web browsers across the network record the
URLs and the address from which the response message
originated for future use, such that these Web browsers
would be able to download the URL at a future time without
first transmitting the request message.

Once the Web browser is able to locate a data package on
a neighboring Web browser, the Web browser attempts to

According to another embodiment of the present
invention, the system of the present invention is also appli
cable to Web browsers, FTP clients, and other software
applications involving client-server data-transfer. As
described with reference to FIGS. 4 and 5A-5B, another
exemplary embodiment of the present invention is used for
caching Web content.

35 download the data package. The downloading process is
performed with a suitable data-transfer protocol, such as
HTTP or FTP. If a time-out or other failure occurs during the
processing of data package transfer, the receiving Web
browser preferably performs substantially the entire proce-In step 1 of FIG. 4, a Web browser being operated by a

client computer requests a specific data package. First the
Web browser looks at the local cache, as is known to one of
ordinary skill in the art. If the data package is found in the
local cache, then that data package is retrieved from the local
cache. Otherwise, the Web browser issues a message
requesting this data package, preferably by using broadcast 45

or multicast message transmission. The data package is
preferably uniquely defined by a unique identifier. More
preferably, the unique identifier is the URL of the data
package, or alternatively and preferably a combination of the
URL of the data package and timestamp, or by any other
suitable unique identifier.

40 dure more than once. More preferably, the number of
permitted attempts to retry the transfer is configurable. If the
process fails after these attempts have been performed,
preferably the Web browser transfers the required data
package or data packages from the regular Web server.

According to preferred features of this embodiment of the
present invention, data package downloading is well
distributed, such that the Web browsers do not obtain a data
package from only a single Web browser, but rather obtain
the data package from a plurality of Web browsers. Such

50 distribution is maintained as follows.

For optimization, if more than one data package is
required, the Web browser preferably transmits one request
message containing the list of needed data packages, thereby
reducing the total network traffic across the network. Such a 55

situation may arise if, for example, the Web browser had just
parsed an HTML (hypertext mark-up language) document,
or Web page, which contains many links to follow. Prefer
ably and optionally, each request message contains an iden
tifying "magic number", which may contain the protocol 60

version (PVN). For instance: "Vl.O". As shown in FIG. SA,
the request message includes the list of URL's or other
unique identifiers to identify the data package or data
packages being requested, which is similar in function to the
list of MDS digests described previously for request 65

messages, and a unique identifier identifying the request
message, shown as "REQ".

First, preferably the number of simultaneous data package
transfers from a single Web browser is limited. If this
number is exceeded, the Web browser transmits a "busy"
message to other Web browsers attempting to transfer the
data package. Next, preferably once a Web browser receives
a message giving the location of a particular data package,
the corresponding entry in the hash table for that data
package is not altered every time another response message
is received pertaining to this data package. The hash table is
preferably altered by subsequent messages in a probabilistic
manner, such that the probability that any particular entry is
updated to indicate a new location of a data package is equal
to l!(generation+1), where 'generation' counts the number
of times a response message was received for that data
package.

For example, if Web browser "A" transmits a response
message indicating that data package "X" is on the local

US 6,374,289 B2
13 14

7. The method of claim 5, wherein said request message
and said response message are transmitted to said plurality
of peer clients by multicasting.

cache, then initially all of the neighboring Web browsers
have an entry in the hash table indicating that Web browser
"A" is the location of data package "X". If Web browser "B"
then transmits a response message for data package "X",
then each Web browser preferably now alters the entry in the
hash table to indicate a new location of data package "X"
with a probability of about fifty percent, such that about fifty
percent of the Web browsers now have an entry indicating
that the data package is available from Web browser "A" and
such that about fifty percent of the Web browsers now have
an entry indicating that the data package is available from
Web browser "B". Thus, a good load distribution can be
achieved.

8. The method of claim 5, wherein said request message
5 and said response message are transmitted to said plurality

of peer clients by polling each peer client individually.
9. The method of claim 5, wherein if said response

message is not received from said at least one other peer
client by said first peer client, the method further comprises

10
the step of:

(g) obtaining said data package by said first peer client
from the external server.

The random delay (mentioned in step 2 above) chosen by
a browser is proportional to the number of currently served
browsers, or the number of browsers currently downloading
data packages from that browser, and inversely proportional
to the amount of the data package already downloaded by it.
This way the browsers more eligible to download from are
more likely to be chosen by other browsers to serve these
data packages.

10. The method of claim 9, further comprising the step of
sending a response message by said first peer client to said
at least one other peer client substantially before said first

15 peer client obtains said data package from the external

While the invention has been described with respect to a
limited number of embodiments, it will be appreciated that
many variations, modifications and other applications of the
invention may be made.

What is claimed is:
1. A method for distributing data packages across a

network, the network featuring an external server for serving
at least one data package, the external server being a
dedicated server, the steps of the method being performed by

20

25

a data processor, the method comprising the steps of:
30

(a) providing a plurality of peer clients attached to the
network and providing a list of data packages, said data
packages being stored by each of said plurality of peer
clients, each data package of said data packages having
an entry in said list, said entry indicating a unique

35
identifier for said data package and a location of said
data package in at least one of said plurality of peer
clients;

(b) examining said list of data packages by a first peer
client to find an entry for a required data package; and

40
(c) if said entry for said data package is present on said list

server.
11. The method of claim 10, wherein said list of data

packages is stored on each of said plurality of peer clients,
the method further comprising the steps of:

(h) receiving said response message from said first peer
client by said at least one other peer client; and

(i) altering said list of data packages being stored by said
at least one other peer client for indicating said location
of said data package according to said response mes
sage.

12. The method of claim 10, wherein said list of data
packages is stored on each of said plurality of peer clients,
the method further comprising the steps of:

(h) receiving said response message from said first peer
client by said at least one other peer client; and

(i) altering said list of data packages being stored by said
at least one other peer client for indicating said location
of said data package according to a probabilistic func
tion.

13. The method of claim 1, wherein said probabilistic
function is performed according to a set of equations:

{I
Old location Po(x) = 1/ (generation+ 1)

New location=
New location Pn(x) =!-!/(generation+ 1)

wherein Pn(x) is a probability that said new location is
substituted for said old location, Po(x) is a probability that
said old location is retained, and "generation" indicates how

of data packages of said first peer client, retrieving said
data package from said location at another of said
plurality of peer clients according to said entry for said
data package.

2. The method of claim 1, wherein said list of data
packages is stored on the external server.

45 many times said location had been previously changed.
14. The method of claim 10, further comprising the steps

of:
3. The method of claim 1, wherein said list of data

packages is stored on at least said first peer client.
4. The method of claim 3, wherein alternatively said entry 50

for said data package is absent from said list of data
packages of said first peer client, the method further com
prising the steps of:

(d) sending a request message for said data package by
said first peer client to at least one other peer client; and 55

(e) if a response message is received by said first peer
client from said at least one other peer client, retrieving
said data package from said at least one other peer
client by said first peer client.

5. The method of claim 4, the method further comprising 60

the step of:
(t) altering said list of data packages being stored by at

least said first peer client for indicating said location of
said data package according to said response message.

6. The method of claim 5, wherein said request message 65

and said response message are transmitted to said plurality
of peer clients by broadcasting.

(h) receiving said response message from said first peer
client by said at least one other peer client; and

(i) retrieving said data package from said first peer client
by said at least one other peer client substantially after
said first peer client has obtained said data package.

15. The method of claim 1, wherein an upper limit is
predetermined for a number of said plurality of peer clients
served substantially simultaneously by said at least one other
peer client, such that if a number of said plurality of peer
clients served substantially simultaneously by said at least
one other peer client is greater than said upper limit, the
method further comprises the step of:

(d) sending a busy message from said at least one other
peer client to said first peer client.

16. The method of claim 1, wherein the external server is
a Web server, and said plurality of peer clients is a plurality
of Web browsers.

17. The method of claim 1, wherein the external server is
a BackWeb™ server, and said plurality of peer clients is a
plurality of BackWeb™ clients.

US 6,374,289 B2
15

18. The method of claim 1, wherein said unique identifier
for said data package is an MDS digest of said data package.

19. The method of claim 1, wherein the step of retrieving
said data package is performed according to a protocol based
on TCP/IP.

20. The method of claim 19, wherein said protocol is
HTTP.

21. The method of claim 19, wherein said protocol is FTP.

5

22. A method for distributing data packages across a
network, the network featuring a server for serving at least 10

one data package, and a plurality of peer clients for storing
said data packages, the steps of the method being performed
by a data processor, the method comprising the steps of:

(a) providing a list of said data packages stored by said
plurality of peer clients, each of said data packages 15

having an entry in said list, said entry including a
unique identifier for said data package and a location of
said data package within at least one of said plurality of
peer clients;

(b) searching, at a first peer client, said list to find a 20

particular entry at a second peer client for a required
data package; and,

(c) if said particular entry is found, retrieving, at said first
peer client, said data package from said second peer
client, according to said particular entry; and,

16
(d) if said particular entry is not found, retrieving, at said

first peer client, said data package from said server.
23. A method for distributing data packages across a

network, the network featuring a server for serving at least
one data package, and a plurality of peer clients for storing
said data packages, the steps of the method being performed
by a data processor, the method comprising the steps of:

(a) providing at each of said plurality of peer clients a
local list of data packages stored by said peer client,
each of said data packages having an entry in said local
list;

(b) requesting, at a first peer client, a required data
package;

(c) searching at a second peer client, said local list, to find
a particular entry for said required data package;

(d) if said particular entry is found, retrieving, at said first
peer client, said data package from said second peer
client, according to said particular entry; and,

(e) if said particular entry is not found, retrieving, at said
first peer client, said data package from said server.

* * * * *

111111 111
US006374289Cl

c12) INTER PARTES REEXAMINATION CERTIFICATE (663rd)
United States Patent c1o) Number: US 6,374,289 Cl
Delaney et al. (45) Certificate Issued: Aug. 13, 2013

(54) DISTRIBUTED CLIENT-BASED DATA
CACHING SYSTEM

(75) Inventors: Hubert Delaney, Wilton, CT (US); Adi
Ruppin, Ramat Gan (IL); Lior Hass, Tel
Aviv (IL); Ofer Faigon, Jerusalem (IL)

(73) Assignee: Transamerica Business Credit
Corporation, Rosemont, IL (US)

Reexamination Request:
No. 95/000,538, Feb. 17,2010

Reexamination Certificate for:
Patent No.: 6,374,289
Issued: Apr. 16, 2002
Appl. No.: 09/817,953
Filed: Mar. 26, 2001

Related U.S. Application Data

(63) Continuation of application No. 09/166,686, filed on
Oct. 5, 1998, now abandoned.

(51) Int. Cl.
G06F 13100 (2006.01)

PVN I REQ I
PVN I RSP I

(52) U.S. Cl.
USPC 709/203; 707/E17.12

(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited

To view the complete listing of prior art documents cited
during the proceeding for Reexamination Control Number
95/000,538, please refer to the USPTO's public Patent
Application Information Retrieval (PAIR) system under the
Display References tab.

Primary Examiner- M. Sager

(57) ABSTRACT

A system and method for enabling data package distribution
to be performed by a plurality of peer clients connected to
each other through a network, such as a LAN (local area
network). Each peer client can obtain data packages from
each other or from an external server. However, each peer
client preferably obtains data packages from other peer cli
ents, rather than obtaining data packages from the external
server.

US 6,374,289 Cl
1

INTER PARTES
REEXAMINATION CERTIFICATE

ISSUED UNDER 35 U.S.C. 316

THE PATENT IS HEREBY AMENDED AS
INDICATED BELOW.

AS A RESULT OF REEXAMINATION, IT HAS BEEN
DETERMINED THAT: 10

The patentability of claim 15 is confirmed.
Claims 1, 3-5, 9, 16, 19-20, 22 and 23 are cancelled.

Claims 2, 6-8, 10-14, 17-18 and 21 were not reexamined.

* * * * *
15

2

