
(12) United States Patent
Craft et al.

(54) PROTOCOL PROCESSING STACK FOR USE
WITH INTELLIGENT NETWORK
INTERFACE DEVICE

(75) Inventors: Peter K. Craft, San Francisco, CA
(US); Clive M. Philbrick, San Jose,
CA (US); Laurence B. Boucher,
Saratoga, CA (US); David A. Riggen,
Saratoga, CA (US)

(73) Assignee: Alacritech, Inc., San Jose, CA (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 67 days.

This patent is subject to a terminal dis
claimer.

(21) Appl. No.: 10/208,093

(22) Filed: Jul. 29, 2002

(65) Prior Publication Data

(63)

(51)
(52)
(58)

(56)

wo
wo

US 2003/0079033 A1 Apr. 24, 2003

Related U.S. Application Data

Continuation of application No. 09/514,425, filed on Feb.
28, 2000, now Pat. No. 6,427,171.

Int. Cl? G06F 15/16
U.S. Cl. .. 709/230; 709/250
Field of Search 709/230, 250,

709/236, 243, 228, 238

References Cited

U.S. PATENT DOCUMENTS

4,366,538 A
4,991,133 A

12/1982 Johnson et a!. 364/200
2/1991 Davis et a!. 364/900

(List continued on next page.)

FOREIGN PATENT DOCUMENTS

W0/98/19412
W0/98/50852

5/1998
11/1998

111111 111
US006697868B2

(10) Patent No.: US 6,697,868 B2
*Feb.24,2004 (45) Date of Patent:

wo
wo
wo
wo
wo
wo
wo
wo

W0/99/04343
wo 99/65219
wo 00/13091
wo 01/04770 A2
WO 01!05107 A1
wo 01!05116 A2
WO 01!05123 A1
WO 01!40960 A1

1!1999
12/1999
3/2000
1!2001
1!2001
1!2001
1!2001
6/2001

OTHER PUBLICATIONS

Form 10-K for Exelan, Inc., for the fiscal year ending Dec.
31, 1987 (10 pages).
Form 10-K for Exelan, Inc., for the fiscal year ending Dec.
31, 1988 (10 pages).
Article from Rice University entitled "LRP: ANew Network
Subsystem Architecture for Server Systems", by Peter Drus
chel and Gaurav Banga, Rice University, Oct. 1996, 8 pages.
Internet RFC/STD/FYI!BCP Archives article with heading
"RFC2140" entitled "TCP Control Block Interdependence",
web address http://www.faqs.org/rfcs/rfc2140.html, 9 pages,
printed Sep. 20, 2002.

(List continued on next page.)

Primary Examiner-Zarni Maung
(74) Attorney, Agent, or Firm-T. Lester Wallace; Mark
Lauer

(57) ABSTRACT

A host CPU runs a network protocol processing stack that
provides instructions not only to process network messages
but also to allocate processing of certain network messages
to a specialized network communication device, offloading
some of the most time consuming protocol processing from
the host CPU to the network communication device. By
allocating common and time consuming network processes
to the device, while retaining the ability to handle less time
intensive and more varied processing on the host stack, the
network communication device can be relatively simple and
cost effective. The host CPU, operating according to instruc
tions from the stack, and the network communication device
together determine whether and to what extent a given
message is processed by the host CPU or by the network
communication device.

23 Claims, 4 Drawing Sheets

----------1
I
I HOST I

20
.----- _j STORAGE ,--.._(__35

I I

22

REMOTE
HOST

30

25

I I
I

CPU 28

'---.,----' - - - - - - - -

US 6,697,868 B2
Page 2

U.S. PATENT DOCUMENTS 6,345,301 B1
6,356,951 B1
6,389,468 B1
6,427,169 B1
6,434,651 B1
6,449,656 B1
6,453,360 B1

2/2002 Burns eta!. 709/230

5,056,058 A
5,058,110 A
5,097,442 A
5,163,131 A
5,212,778 A
5,280,477 A
5,289,580 A
5,303,344 A
5,412,782 A
5,448,566 A
5,485,579 A
5,506,966 A
5,511,169 A
5,548,730 A
5,566,170 A
5,588,121 A
5,590,328 A
5,592,622 A
5,629,933 A
5,634,099 A
5,634,127 A
5,642,482 A
5,664,114 A
5,671,355 A
5,678,060 A
5,692,130 A
5,699,317 A
5,701,434 A
5,701,516 A
5,749,095 A
5,751,715 A
5,752,078 A
5,758,084 A
5,758,089 A
5,758,186 A
5,758,194 A
5,771,349 A
5,790,804 A
5,794,061 A
5,802,580 A
5,809,328 A
5,812,775 A
5,815,646 A
5,878,225 A
5,913,028 A
5,930,830 A
5,931,918 A
5,935,205 A
5,937,169 A
5,941,969 A
5,941,972 A
5,950,203 A
5,991,299 A
5,996,024 A
6,005,849 A
6,009,478 A
6,016,513 A
6,021,446 A
6,026,452 A
6,034,963 A
6,044,438 A
6,047,356 A
6,057,863 A
6,061,368 A
6,065,096 A
6,141,705 A
6,173,333 B1
6,226,680 B1
6,246,683 B1
6,247,060 B1

10/1991 Hirata et a!. 709/230
10/1991 Beach et a!. 370/85.6

3/1992 Ward et a!. 365/78
11/1992 Row et a!. 395/200
5/1993 Dally et a!. 395/400
1!1994 Trapp 370/85.1
2/1994 Latif et a!. 395/275
4/1994 Yokoyama et a!. 395/275
5/1995 Hausman et a!. 395!250
9/1995 Richter et a!. 370/94.1
1!1996 Hitz et a!. 395/200.12
4/1996 Ban 395!250
4/1996 Suda 395/280
8/1996 Young et a!. 395/280

10/1996 Bakke et a!. 370/60
12/1996 Reddin et a!. 395/200.15
12/1996 Seno et a!. 395/675

1!1997 Isfeld et a!. 395/200.02
5/1997 Delp et a!. 370/411
5/1997 Andrews et a!. 395/200.07
5/1997 Cloud et a!. 395/680
6/1997 Pardillos 395/200.2
9/1997 Krech, Jr. et a!. 395/200.64
9/1997 Collins 395/200.2

10/1997 Yokoyama et a!. 709/212
11/1997 Shobu et a!. 395/200.12
12/1997 Sartore et a!. 395/230.06
12/1997 Nakagawa 395/484
12/1997 Cheng et a!. 395/842

5/1998 Hagersten 711!141
5/1998 Chan et a!. 370/455
5/1998 Delp et a!. 395/827
5/1998 Silverstein et a!. 395/200.58
5/1998 Gentry et a!. 395/200.64
5/1998 Hamilton et a!. 395/831
5/1998 Kuzma 395/886
6/1998 Picazo, Jr. et a!. 395/188.01
8/1998 Osborne 395/200.75
8/1998 Hansen et a!. 395/800.01
9/1998 McAlpine 711!149
9/1998 Nogales et a!. 395/825
9/1998 Van Seeters et a!. ... 395/200.43
9/1998 Purcell et a!. 395/163
3/1999 Bilansky et a!. 395/200.57
6/1999 Wang et a!. 395/200.33
7/1999 Mendelson et a!. 711!171
8/1999 Row et a!. 709/300
8/1999 Murayama et a!. 709/216
8/1999 Connery et a!. 395/200.8
8/1999 Ram et a!. 710/128
8/1999 Roese et a!. 710/129
9/1999 Stakuis et a!. 707/10

11/1999 Radogna et a!. 370/392
11/1999 Blumenau 709/301
12/1999 Roach et a!. 370/276
12/1999 Panner et a!. 710/5

1!2000 Lowe 709/250
2/2000 Gentry, Jr 709/303
2/2000 Pitts . 710/56
3/2000 Minami et a!. 370/401
3/2000 Olnowich 711!130
4/2000 Anderson et a!. 711!129
5!2000 Olarig 345/520
5!2000 Hitzelberger 370/537
5!2000 Day eta!. 711!114

10/2000 Anand eta!. 710/15
1!2001 Jolitz et a!.
5/2001 Boucher et a!. 709/230
6/2001 Connery et a!. 370/392
6/2001 Boucher et a!. 709/238

2001/0004354 A1
2001!0025315 A1

3/2002 Gentry, Jr. 709/250
5!2002 Muller eta!. 709/226
7/2002 Elzur 709/224
8/2002 Gentry, Jr. 710/260
9/2002 Elzur eta!. 709/236
9/2002 Muller et a!. 709/250
6/2001 Jolitz
9/2001 Jolitz

OTHER PUBLICATIONS

Internet pages entitled "Hardware Assisted Protocol Pro
cessing", (which Eugene Feinber is working on), 1 page,
printed Nov. 25, 1998.
Zilog product Brief entitled "Z85C30 CMOS SCC Serial
Communication Controller", Zilog Inc., 3 pages, 1997.
Internet pages of Xpoint Technologies www.xpoint.com
website, 5 pages, printed Dec. 19, 1997.
Internet pages entitled: Asante and lOOBASE-T Fast Eth
ernet. 7 pages, printed May 27, 1997.
Internet pages entitled: A Guide to the Paragon XP/S-A7
Supercomputer at Indiana University. 13 pages, printed Dec.
21, 1998.
Richard Stevens, "TCP /IP Illustrated, vol. 1, The Protocols",
pp. 325-326 (1994).
Internet pages entitled: Northridge/Southbridge vs. Intel
Hub Architecture, 4 pages, printed Feb. 19, 2001.
Gigabit Ethernet Technical Brief, Achieving End-to-End
Performance. Alteon Networks, Inc., First Edition, Sep.
1996.
Internet pages directed to Technical Brief on Alteon Ethernet
Gigabit NI C technology, www.alteon.com, 14 pages, printed
Mar. 15, 1997.
VIA Technologies, Inc. article entitled "VT8501 Apollo
MVP4", pages i-iv, 1-11, cover and copyright page, revi
sion 1.3, Feb. 1, 2000.
iReady News Archives article entitled "iReady Rounding
Out Management Team with Two Key Executives", http://
www.ireadyco.com/archives/keyexec.html, 2 pages, printed
Nov. 28, 1998.
"Toshiba Delivers First Chips to Make Consumer Devices
Internet-Ready Based on iReady's Design, " Press Release
Oct., 1998, 3 pages, printed Nov. 28, 1998.
Internet pages from iReady Products, web sitehttp://ww
w.ireadyco.com/products,html, 2 pages, downloaded Nov.
25, 1998.
iReady News Archives, Toshiba, iReady shipping Internet
chip, 1 page, printed Nov. 25, 1998.
Interprophet article entitled "Technology", http://www.inter
prophet.com/technology.html, 17 pages, printed Mar. 01,
2000.
iReady Corporation, article entitled "The I-1000 Internet
Tuner", 2 pages, date unknown.
iReady article entitled "About Us Introduction", Internet
pages fromhttp://www.iReadyco.com/about.html, 3 pages,
printed Nov. 25, 1998.
iReady News Archive article entitled "Revolutionary
Approach to Consumer Electronics Internet Connectivity
Funded", San Jose, CA, Nov. 20, 1997.2 pages, printed Nov.
02, 1998.
iReady News Archive article entitled "Seiko Instruments
Inc. (SII) Introduces World's first Internet-Ready Intelligent
LCD Modules Based On iReady Technology," Santa Clara,
CA and Chiba, Japan, Oct. 26, 1998. 2 pages, printed Nov.
02, 1998.

US 6,697,868 B2
Page 3

NEWSwatch article entitled "iReady internet Tuner to Web
Enable Devices", Tuesday, Nov. 05, 1996, printed Nov. 02,
1998.
EETimes article entitled "Tuner for Toshiba, Toshiba Taps
iReady for Internet Tuner", by David Lammers, 2 pages,
printed Nov. 02, 1998.
"Comparison of Novell Netware and TCP/IP Protocol Archi
tectures", by J.S. Carbone, 19 pages, printed Apr. 10, 1998.
Adaptec article entitled "AEA-7110C-a DuraSAN prod
uct", 11 pages, printed Oct. 01, 2001.
iSCSI HBA article entitled "iSCSI and 2Gigabit fibre Chan
nel Host Bus Adapters from Emulex, QLogic, Adaptec,
JNI", 8 pages, printed Oct. 01, 2001.
U.S. patent application Ser. No. 60/053,240, Jolitz et al. filed
Jul. 18, 1997.
iSCSI HBA article entitled "FCE-3210/6410 32 and 64-bit
PCI-to-Fibre Channel HBA", 6 pages, printed Oct. 01,
2001.
iSCSI HBA article entitled "iSCSI Storage", 6 pages, printed
Oct. 01, 2001.
"Two-Way TCP Traffic Over Rate Controlled Channels:
Effects and Analysis", by Kalampoukas et al., IEEE Trans
actions on Networking, vol. 6, No. 6, Dec. 1998.
!Ready News article entitled "Toshiba Delivers First Chips
to Make Consumer Devices Internet-Ready Based on
iReady Design", Santa Clara, CA, and Tokyo, Japan, Oct.
14, 1998, printed Nov. 02, 1998.
U.S. patent application No. 08/964,304, by Napolitano, et
al., entitled "File Array Storage Architecture", filed Nov. 04,
1997.
"File System Design For An NFS File Server Appliance",
Article by D. Hitz, et al., 13 pages.
Adaptec Press Release article entitled "Adaptec Announces
EtherStorage Technology", 2 pages, May 04, 2000, printed
Jun. 14, 2000.
Adaptec article entitled "EtherStorage Frequently Asked
Questions", 5 pages, printed Jul. 19, 2000.

Adaptec article entitled "EtherStorage White Paper", 7
pages, printed Jul. 19, 2000.
CIBC World Markets article entitled "Computers; Storage",
by J. Berlino et al., 9 pages, dated Aug. 07, 2000.
Merrill Lynch article entitled "Storage Futures", by S.
Milunovich, 22 pages, dated May. 10, 2000.
CBS Market Watch article entitled Montreal Start-Up
Battles Data Storage Bottleneck, by S. Taylor, dated Mar. 05,
2000, 2 pages, printed Mar. 07, 2000.
Internet-draft article entitled "SCSI/TCP (SCSI over TCP)",
by J. Satran et al., 38 pages, dated Feb. 2000, printed May
19, 2000.
Internet pages entitled Technical White Paper-Xpoint's
Disk to LAN Acceleration Solution for Windows NT Server,
printed Jun. 05, 1997.
Jato Technologies article entitled Network Accelerator Chip
Architecture, twelve-slide presentation, printed Aug. 19,
1998.
EETimes article entitled Enterprise System Uses Flexible
Spec, dated Aug. 10, 1998, printed Nov. 25, 1998.
Internet pages entitled "Smart Ethernet Network Interface
Cards", which Berend Ozceri is developing, printed Nov. 25,
1998.
Internet pages entitled "Hardware Assisted Protocol Pro
cessing", which Eugene Feinberg is working on, printed
Nov. 25, 1998.
Internet pages of Xaqti corporation entitled "GigaPower
Protocol Processor Product Review," printed Nov. 25, 1999.
Internet pages entitled "DART: Fast Application Level Net
working via Data-Copy Avoidance," by Robert J. Walsh,
printed Jun. 03, 1999.
Internet pages of InterProphet entitled "Frequently Asked
Questions", by Lynne Jolitz, printed Jun. 14, 2000.
Internet pages entitled iReady About Us and iReady Prod
ucts, printed Nov. 25, 1998.
AndrewS. Tanenbaum, Computer Networks, Third Edition,
1996, ISBN 0-13-349945-6.

U.S. Patent

22

REMOTE
HOST

25

(50

Feb.24,2004 Sheet 1 of 4 US 6,697,868 B2

30

42
"--

----------1
I
I HOST I

20
,_ _J STORAGE~35

I I
I I

I
CPU 28

'------.----' - - - - - - - -

FIG. 1

(46

UPPER
LAYER

48\ UPPER LAYER
CONTEXT

54)
INTERFACE

STORAGE

TRANSPORT
_

35 ro
38,----- NETWORK \ J8 52

____ 44

3r DATA LINK

jll
56

30\
~ ,,

.. INIC/CPD ...

FIG. 2

U.S. Patent Feb.24,2004 Sheet 2 of 4

RECEIVE PACKET
FROM NETWORK 47

BYCPD

VALIDATE PACKET,
SUMMARIZE 57

HEADERS

5~

FAST PATH
CANDIDATE?

CCB?

YES

SEND TO
DESTINATION
IN HOST VIA
FAST-PATH

FIG. 3

NO

NO

69

US 6,697,868 B2

61

SEND PACKET TO
STACK FOR SLOW
PATH PROCESSING

65

SEND PACKET TO
STACK FOR SLOW
PATH PROCESSING

CREATE CCB FOR
MESSAGE

51

U.S. Patent Feb.24,2004 Sheet 3 of 4 US 6,697,868 B2

100 102
) .. s

PROTOCOL
108 105
s MINIPORT s PROCESSING

DRIVER
INIC/CPD

STACK 110 112
) ..) ..

)))
44 70 30

FIG. 4

120 122
s s

PROTOCOL
MINIPORT

PROCESSING 128 DRIVER 125 INIC/CPD
STACK s s

)))
44 70 30

FIG. 5

U.S. Patent Feb.24,2004 Sheet 4 of 4 US 6,697,868 B2

PROTOCOL ISO
MINIPORT

ls2
PROCESSING

DRIVER
INIC/CPD

STACK

)))
44 70 30

FIG. 6

142 140
...))

PROTOCOL
MINIPORT

PROCESSING ls5 DRIVER 148 INIC/CPD
STACK)

)))
44 70 30

FIG. 7

US 6,697,868 B2
1

PROTOCOL PROCESSING STACK FOR USE
WITH INTELLIGENT NETWORK

INTERFACE DEVICE

CROSS REFERENCE TO RELATED
APPLICATIONS

The present application is a continuation and claims the
benefit under 35 U.S.C. §120 of U.S. patent application Ser.
No. 09/514,425, filed Feb. 28, 2000, now U.S. Pat. No.
6,427,171 which in turn claims the benefit under 35 U.S.C.
§120 of: a) U.S. patent application Ser. No. 09/141,713, filed
Aug. 28, 1998, now U.S. Pat. No. 6,389,479, which in turn
claims the benefit under 35 U.S.C. §119 of provisional
application No. 60/098,296, filed Aug. 27, 1998; b) U.S.
patent application Ser. No. 09/067,544, filed Apr. 27, 1998,
now U.S. Pat. No. 6,226,680, which in turn claims the
benefit under 35 U.S.C. §119 of provisional application No.
60/061,809, filed Oct. 14, 1997; and c) U.S. patent applica
tion Ser. No. 09/384,792, filed Aug. 27, 1999, now U.S. Pat.
No. 6,434,620 which in turn claims the benefit under 35
U.S.C. §119 of provisional application No. 60/098,296, filed
Aug. 27, 1998.

The present application also claims the benefit under 35
U.S.C. §120 of U.S. patent application Ser. No. 09/464,283,
filed Dec. 15, 1999, now U.S. Pat. No. 6,427,173 which in
turn claims the benefit under 35 U.S.C. §120 of U.S. patent
application Ser. No. 09/439,603, filed Nov. 12, 1999, now
U.S. Pat. No. 6,247,060, which in turn claims the benefit
under 35 U.S.C. §120 of U.S. patent application Ser. No.
09/067,544, filed Apr. 27, 1998, now U.S. Pat. No. 6,226,
680, which in turn claims the benefit under 35 U.S.C. §119
of provisional application No. 60/061,809, filed Oct. 14,
1997.

2
architectures have been created, many types of protocols
have evolved to facilitate that communication.
Conventionally, network messages contain information
regarding a number of protocol layers that allow information

5 within the messages to be directed to the correct destination
and decoded according to appropriate instructions, despite
substantial differences that may exist between the computers
or other devices transmitting and receiving the messages.
Processing of these messages is usually performed by a

10 central processing unit (CPU) running software instructions
designed to recognize and manipulate protocol information
contained in the messages.

With the increasing prevalence of network
communication, a large portion of the CPU's time may be

15 devoted to such protocol processing, interfering with other
tasks the CPU may need to perform. Multiple interrupts to
the CPU can also be problematic when transferring many
small messages or for large data transfers, which are con
ventionally divided into a number of packets for transmis-

20 sian over a network.

SUMMARY

In accordance with the present invention, means for
offloading some of the most time consuming protocol pro-

25 cessing from a host CPU to a specialized device designed for
network communication processing are provided. The host
has a protocol processing stack that provides instructions not
only to process network messages but also to allocate
processing of certain network messages to the specialized

30 network communication device. By allocating some of the
most common and time consuming network processes to the
network communication device, while retaining the ability
to handle less time intensive and more varied processing on

The subject matter of all of the applications listed above 35

and patents listed above is incorporated herein by reference.

the host stack, the network communication device can be
relatively simple and cost effective. The host CPU, operating
according to the instructions from the stack, and the spe
cialized network communication device together determine
whether and to what extent a given message is processed by
the host CPU or by the network communication device.

REFERENCE TO COMPACT DISC APPENDIX

The Compact Disc Appendix (CD Appendix), which is a
part of the present disclosure, includes three folders, desig- 40

nated CD Appendix A, CD Appendix B, and CD Appendix
C on the compact disc. CD Appendix A contains a hardware
description language (verilog code) description of an
embodiment of a receive sequencer. CD Appendix B con
tains microcode executed by a processor that operates in 45

conjunction with the receive sequencer of CD Appendix A
CD Appendix C contains a device driver executable on the
host as well as ATCP code executable on the host. A portion

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic plan view of a host computer having
an intelligent network interface card or communication
processing device (INIC/CPD) connected to a remote host
via a network.

FIG. 2 is a schematic plan view of a protocol processing
stack of the present invention passing a connection context
between host storage and the INIC/CPD.

of the disclosure of this patent document contains material
(other than any portion of the "free BSD" stack included in
CD Appendix C) which is subject to copyright protection.
The copyright owner of that material has no objection to the
facsimile reproduction by anyone of the patent document or
the patent disclosure, as it appears in the patent and Trade
mark Office patent files or records, but otherwise reserves all
copyright rights.

50
FIG. 3 is a diagram of a general method employed to

process messages received by the host computer via the
INIC/CPD.

FIG. 4 illustrates a handout of the connection context
from the host protocol processing stack to the INIC/CPD via

55 a miniport driver installed in the host.

TECHNICAL FIELD

The present invention relates to the management of infor- 60
mation communicated via a network, including protocol
processing.

BACKGROUND

Various individuals, companies and governments have 65

worked for many years to provide communication over
computer networks. As different computer and network

FIG. 5 shows a return of the connection context to the host
protocol processing stack from the INIC/CPD via a miniport
driver installed in the host.

FIG. 6 diagrams a control mechanism for transmitting a
message via the fast-path.

FIG. 7 diagrams a control mechanism for receiving a
message via the fast-path.

DESCRIPTION OF THE PREFERRED
EMBODIMENT

Referring now to FIG. 1, the present invention can operate
in an environment including a host computer shown gener-

US 6,697,868 B2
3

ally at 20 connected to a remote host 22 via a network 25.
The host 20 includes a central processing unit (CPU) 28 and
storage 35, while an intelligent network interface card or
communication processing device (INIC/CPD) 30 provides

4
such exceptions can be INIC/CPD 30 or CPU 28 initiated.
The INIC/CPD 30 deals with exception conditions that
occur on a fast-path CCB by passing back or flushing to the
host protocol stack 44 the CCB and any associated message
frames involved, via a control negotiation. The exception
condition is then processed in a conventional manner by the
host protocol stack 44. At some later time, usually directly
after the handling of the exception condition has completed
and fast-path processing can resume, the host stack 44 hands

an interface between the host and the network 25. A com- 5
puter is defined in the present invention to be a device
including a CPU, a memory and instructions for running the
CPU. The network 25 is a medium for transmission of
information from one computer to another, such as conduc
tive wires, optical fibers or wireless space, including any
supporting hardware or software such as switches and
routers. Network implementations include local area
networks, wide area networks, telecommunication networks
and the Internet. The INIC/CPD 30 is depicted on a border

10 the CCB back to the INIC/CPD. This fallback capability
enables most performance-impacting functions of the host
protocols to be quickly processed by the specialized INIC/
CPD hardware, while the exceptions are dealt with by the
host stacks, the exceptions being so rare as to negligibly

of host 20 because the INIC/CPD provides a network
interface that may be added with an adapter card, for
example, or integrated as a part of the host computer. A bus
33 such as a peripheral component interface (PCI) bus
provides a connection within the host 20 between the CPU
28, the INIC/CPD 30, and a storage device 35 such as a
semiconductor memory or disk drive, along with any related
controls.

Referring additionally to FIG. 2, the host CPU 28 runs a
protocol processing stack 44 of instructions stored in storage
35, the stack including a data link layer 36, network layer 38,
transport layer 40, upper layer 46 and an upper layer
interface 42. A general description of these protocol layers
can be found in the book by W. Richard Stevens entitled
TCP!IP Illustrated, Volume 1 (13'h printing, 1999), which is
incorporated herein by reference. The upper layer 46 may
represent a session, presentation and/or application layer,
depending upon the particular protocol being employed and
message communicated. The upper layer interface 42, along
with the CPU 28 and any related controls can send or
retrieve data to or from the upper layer 46 or storage 35, as
shown by arrow 48. The upper layer interface 42 may be
called a Transport driver interface (TDI), for example, in
accord with Microsoft terminology. A connection context 50
has been created, as will be explained below, the context
summarizing various features of a message connection, such
as the protocol types, source and destination addresses and
status of the message. The context 50 may be passed
between an interface for the session layer 42 and the
INIC/CPD 30, as shown by arrows 52 and 54, and stored as
a communication control block (CCB) of information in
either an INIC/CPD 30 memory or storage 35.

15 effect overall performance.
FIG. 3 diagrams a general flow chart for messages sent to

the host via the network according to the current invention.
A large TCP!IP message such as a file transfer may be
received by the host from the network in a number of

20 separate, approximately 64 KB transfers, each of which may
be split into many, approximately 1.5 KB frames or packets
for transmission over a network. Novel NetWare® protocol
suites running Sequenced Packet Exchange Protocol (SPX)
or NetWare® Core Protocol (NCP) over Internetwork

25 Packet Exchange (IPX) work in a similar fashion. Another
form of data communication which can be handled by the
fast-path is Transaction TCP (hereinafter T/TCP or TTCP),
a version of TCP which initiates a connection with an initial
transaction request after which a reply containing data may

30 be sent according to the connection, rather than initiating a
connection via a several-message initialization dialogue and
then transferring data with later messages. In general, any
protocol for which a connection can be set up to define
parameters for a message or plurality of messages between

35 network hosts may benefit from the present invention. In any
of the transfers typified by these protocols, each packet
conventionally includes a portion of the data being
transferred, as well as headers for each of the protocol layers
and markers for positioning the packet relative to the rest of

40 the packets of this message.
When a message packet or frame is received 47 from a

network by the INIC/CPD, it is first validated by a hardware
assist. This includes determining the protocol types of the
various layers of the packet, verifying relevant checksums,

45 and summarizing 57 these findings into a status word or
words. Included in these words is an indication whether or

When the INIC/CPD 30 holds a CCB defining a particular
connection, data received by the INIC/CPD from the net
work and pertaining to the connection is referenced to that
CCB and can then be sent directly to storage 35 according 50

to a fast-path 58, bypassing sequential protocol processing

not the frame is a candidate for fast-path data flow. Selection
59 of fast-path candidates is based on whether the host may
benefit from this message connection being handled by the
INIC/CPD, which includes determining whether the packet
has header bytes denoting particular protocols, such as

by the data link 36, network 38 and transport 40 layers.
Transmitting a message, such as sending a file from storage

TCP!IP or SPX/IPX for example. The typically small per
centage of frames that are not fast-path candidates are sent
61 to the host protocol stacks for slow-path protocol pro
cessing. Subsequent network microprocessor work with
each fast-path candidate determines whether a fast-path
connection such as a TCP or SPX CCB is already extant for
that candidate, or whether that candidate may be used to set
up a new fast-path connection, such as for a TTCP!IP

35 to remote host 22, can also occur via the fast-path 58, in
which case the context for the file data is added by the 55

INIC/CPD 30 referencing the CCB, rather than by sequen
tially adding headers during processing by the transport 40,
network 38 and data link 36 layers. The DMA controllers of
the INIC/CPD 30 can perform these message transfers
between INIC/CPD and storage 35.

The INIC/CPD 30 can collapse multiple protocol stacks
each having possible separate states into a single state
machine for fast-path processing. The INIC/CPD 30 does
not handle certain exception conditions in the single state
machine, primarily because such conditions occur relatively 65

infrequently and to deal with them on the INIC/CPD would
provide little performance benefit to the host. A response to

60 transaction. The validation provided by the INIC/CPD pro
vides advantages whether a frame is processed by the
fast-path or a slow-path, as only error free, validated frames
are processed by the host CPU even for the slow-path
processing.

All received message frames which have been determined
by the INIC/CPD hardware assist to be fast-path candidates
are examined 53 by the network microprocessor or INIC

US 6,697,868 B2
5

comparator circuits to determine whether they match a CCB
held by the INIC/CPD. Upon confirming such a match, and
assuming no exception conditions exist, the INIC/CPD
removes lower layer headers and sends 69 the remaining
application data from the frame directly into its final desti- 5
nation in the host using direct memory access (DMA) units
of the INIC/CPD. This operation may occur immediately
upon receipt of a message packet, for example when a TCP
connection already exists and destination buffers have been
negotiated, or it may first be necessary to process an initial 10
header to acquire a new set of final destination addresses for
this transfer. In this latter case, the INIC/CPD will queue
subsequent message packets while waiting for the destina
tion address, and then DMA the queued application data to
that destination. The final destination addresses may be 15
provided as a scatter-gather list of host buffer address and
length pairs. For a Microsoft type operating system and
stack 44, the scatter gather list is a memory descriptor data
list (MDL).

A fast-path candidate that does not match a CCB may be 20
used to set up a new fast-path connection, by sending 65 the
frame to the host for sequential protocol processing. In this
case, the host uses this frame to create 51 a CCB, which is
then passed to the INIC/CPD to control subsequent frames
on that connection. The CCB, which is cached 67 in the 25
INIC/CPD, includes control and state information pertinent
to all protocols that would have been processed had con
ventional software layer processing been employed. The
CCB also contains storage space for per-transfer information
used to facilitate moving application-level data contained 30
within subsequent related message packets directly to a host
application in a form available for immediate usage. The
INIC/CPD takes command of connection processing upon
receiving a CCB for that connection from the host.

6
below. Once a connection handout occurs, the INIC/CPD
handles all TCP processing, according to the fast-path mode.
Any message transmissions occurring while in the fast-path
mode are referred to as fast-path sends. Likewise, any
message receptions that occur while in the fast-path mode
are referred to as fast-path receives.

A portion of the CCB corresponds to a conventional TCP
control block, containing items such as sequence numbers
and ports, as well as lower protocol values such as IP
addresses and the first-hop MAC addresses. A list of vari
ables for such a conventional TCP control block can be
found in the book by Gary R. Wright and W. Richard
Stevens entitled TCP!IP Illustrated, Volume 2 (7'h Edition,
1999), which is incorporated by reference herein, on pages
803-805.

In addition to those TCP variables, a number of variables
are provided in the CCB for maintaining state information
involving the present invention. A first of these variables, a
character termed conn_nbr, denotes the connection number
for this CCB. The INIC/CPD 30 may maintain, for example,
256 connections, so that the conn_nbr delineates which of
those connections is defined by this CCB. Another CCB
specific variable is termed hosttcbaddr, which lists the
address in the host for this particular CCB. This address is
used when the CCB is returned from the INIC/CPD to the
host. For accelerated processing of the most active
connections, the INIC/CPD 30 stores the connections in a
hash table in SRAM. A CCB variable termed Hash Value
gives a hash table offset for the CCB, which is a hash of the
source and destination IP addresses, and source and desti
nation TCP ports for the connection.

Another character, termed buff_state, tells whether a
CCB that has been cached in SRAM matches the corre-

35 sponding CCB stored in DRAM. After processing of a frame
or burst of frames against an SRAM cached connection, the
state of the CCB is changed, which is indicated by the
buff_state character. When the cached connection is flushed
back by DMA to DRAM, replacing the CCB held in DRAM

As mentioned above, the present invention improves
system performance by offloading TCP!IP data processing
from the host protocol stack to the INIC/CPD. Since only the
data movement portion of the protocol stack is offloaded,
TCP control processing generally remains on the host pro
tocol stack. In addition, the host protocol stack also handles
TCP exception processing, such as retransmissions. Leaving
TCP control and exception processing on the host protocol
stack has the advantage of giving the operating system
complete control over the TCP connection. This is conve
nient because the operating system may choose not to hand 45

out a connection to the network communication device for
various reasons. For example, if someone wishes to monitor
network frames on the host, the host protocol stack can be
programmed to handle all TCP connections, so that no
packets are processed on the INIC/CPD. A second advantage
to leaving TCP control and exception processing on the host
protocol stack is that this greatly simplifies the complexity
of operations required by the INIC/CPD, which can be made
from an inexpensive application specific integrated circuit
(ASIC) as opposed to an expensive CPU.

In order for a connection to be handled by both the host
protocol stack 44 for control and exception conditions, and
by the INIC/CPD 30 for data movement, the connection
context is made to migrate between the host and the INIC/
CPD. A CCB, which contains the set of variables used to
represent the state of a given TCP connection, provides the
mechanism for this migration. Transfer of a CCB from the
host to the INIC/CPD is termed a connection handout, and
transfer of a CCB from the INIC/CPD back to the host is
termed a connection flush. This transfer may occur several
times during the course of a TCP connection as the result of
dropped packets or other exceptions, which are discussed

40
with the SRAM CCB having updated status, the character
buff_state is set clean.

Additional variables contained in a CCB include a char-
acter termed rev _state, which denotes the status of a receive
finite state machine for the CCB, and a character termed
xmt_state, which denotes the status of a transmit finite state
machine for the CCB. Both of these state machines pertain
to fast path processing by the INIC/CPD 30. In other words,
the state of a fast path receive state machine for a given CCB
can be defined by a number of different values indicated by

50 the setting of the rev _state character, and the state of a fast
path transmit state machine for that CCB can be likewise be
defined by the setting of the xmt_state character. Events
processed against the receive and transmit state machines
are denoted in the CCB by characters labeled rev _evts and

55 xmt_evts, respectively. These event characters offer a his
tory of events that have transpired as well as the current
events affecting those state machines. For example, the
rev _evts character may contain eight bits defining previous
events and another eight bits defining current events, with

60 the xmt-evts character similarly apportioned.

Also contained in a CCB are variables associated with
frames that have been received by the INIC/CPD 30 corre
sponding to the connection. For example, fast path received
frames may accumulate in the host while the INIC/CPD 30

65 is waiting for an MDL delineating a host destination for the
received message. A CCB field termed RcvQ[RCV _MAX]
offers a number of thirty-two-bit words for storing pointers

US 6,697,868 B2
7 8

hardware-specific code is placed in the NDIS m1mport
driver. Implementations for other protocol processing
stacks, such as for Unix, Linux, Novel or Macintosh oper
ating systems, may also be hardware-independent. The

to such frames in DRAM, essentially forming a receive
queue. A CCB variable termed OfliO (for overflow input/
output pointers), offers information corresponding to the
RcvQ, such as pointers to the last frame in and first frame
out, while a variable termed QdCnt indicates the number of
frames in the RcvQ.

A number of CCB variables pertain to the MDL that has
been provided for storing a received message. A character
termed RHHandle is used to report to the host a command
that has been completed by the INIC/CPD 30 regarding that
MDL. RNxtDAdd is a CCB field that is used to denote the
next scatter/gather address list to be acquired from DRAM

5 present invention illustrates a Microsoft stack implementa
tion since it involves one of the most popular operating
systems, and substantial improvements are provided. The
description below illustrates the modifications required to
integrate the four basic fast-path operations into the

10 Microsoft TCP!IP protocol processing stack. Also defined is
the format of the TCP TASK_ OFFLOAD as well as mis
cellaneous issues assoCiated with these changes.

in the INIC/CPD 30 for storage according to the MDL. The
variable RCurBuff describes the current buffer of the MDL
for storing data, and RCurLen tells the length of that buffer.
Similarly, the variable RNxtBuff tells the next receive buffer
from the MDL for storing data, and RNxtLen tells the length

Support for the fast-path offload mechanisms requires the
definition of a new type of TCP _TASK_OFFLOAD. As

15 with other task offloads, TCP will determine the capabilities
of the NDIS miniport by submitting an OID_TCP _TASK_
OFFLOAD OlD to the driver.

of that buffer. RTotLen is used to designate the total length Fast-path information is passed between the protocol
processing stack 44 and the miniport driver 70 as media of the MDL, which is reduced as data is stored in the buffers

designated by the MDL.

The CCB similarly keeps track of buffer queues during
transmission of a message. The variable XNxtDAdd pertains
to the next address in INIC/CPD 30 DRAM from which to
acquire a scatter/gather list of data to be sent over a network,
while XTotLen provides the total length of the data to be
sent, which is reduced as data is sent. The variable X Cur Buff
describes the current host buffer from which to send data,
and XCurLen tells the length of that buffer. Similarly, the
variable XNxtBuff tells the next host buffer from which data
is acquired, and XNxtLen tells the length of that buffer.

20 specific information in an out-of-band data block of a packet
descriptor. There are two general fast-path TCP _TASK_
OFFLOAD structures--commands and frames. The TCP
OFFLOAD_COMMAND structure contains fast-path
information that is being sent from the TCPIP driver to the

25 miniport. The TCP_OFFLOAD_FRAME structure con
tains fast-path information being sent from the miniport to
the TCPIP driver. The header file that defines the fast-path
TCP _TASK_ OFFLOAD mechanism is described on a later
page.

30

Some CCB variables pertain to commands sent from the
host stack 44 to the INIC/CPD 30 during transmission of a
message. Several commands sent by the host regarding a
particular CCB may be processed at one time by the INIC/

35
CPD 30, and the CCB maintains variables keeping track of
those commands. A variable termed XRspSN holds a TCP
sequence number for each message that has been sent over
a network. This TCP sequence number is used for matching
with an acknowledgement (ACK) from the remote host of

40
receipt of that transmission. A variable termed XHHandle
provides a handle or DRAM address of the host regarding a
particular command, so that for example upon receiving
such an ACK the INIC/CPD can notify the host. CCB
variables that keep track of commands being processed by

45
the INIC/CPD include XCmdin, which tells the next com
mand storage slot, XCmdOut, which describes the command
to be executed, and XCmd2Ack, which points to commands
that have been sent but not yet ACKed. XCmdCnts lists the
number of commands currently being processed and com-

50
mands that have been sent but not yet ACKed. XmtQ
provides a queued list of all the commands being processed
by the INIC/CPD.

Six types of offload commands are defined below:
1] TCP _OFFLOAD_HANDOUTl (this is the first phase

of a two-phase handshake used in the connection
handout);

2] TCP _OFFLOAD_HANDOUT2 (this is the second
phase of the two-phase handshake used in the connec
tion handout);

3] TCP _OFFLOAD_FLUSH (this command is used to
flush a connection);

4] TCP_OFFLOAD_SENDMDL(this command is used
to send fast-path data);

5] TCP _OFFLOAD_RCVMDL (this is the command
used to pass an MDL scatter gather list to the INIC/
CPD for receive data);

6] TCP_OFFLOAD_WINUPDATE (this command is
used to send a TCP window update to the INIC/CPD);
and

7] TCP _OFFLOAD_CLOSE (This command is used to
close a TCP connection that is on the INIC/CPD).

Three types of offload frames are defined below:
1) TCP _OFFLOAD_FRAME_INTERLOCK (this is

part of the two-phase handshake used in the connection
handout);

2) TCP _OFFLOAD_FLUSH (this is used by the
mini port to flush a connection to the host);

3) TCP _OFFLOAD_FRAME_DATA (this is used to
indicate newly arrived fast-path data).

FIG. 4 illustrates the migration of a connection context

The CCB also contains a couple of fields for IP and TCP
checksums, termed ip_ckbase and tcp_ckbase, respec- 55
tively. Fast-path transmission of a message occurs with the
INIC/CPD prepending protocol headers derived from the
CCB to message data provided by the host for the CCB. The
ip_ckbase and tcp_ckbase offer the possibility of adjusting
the base checksums provided by the host for prepending to
the data along with the headers.

As mentioned above, fast-path operations can be divided
into four categories: handout, flush, send and receive. These
fast-path operations may be implemented in the form of a
generic Microsoft Task Offload (TCP _TASK_OFFLOAD), 65

which may be independent from the specific hardware of the
INIC/CPD 30. For the currently preferred implementation,

60 during a handout from the host protocol processing stack 44
to the INIC/CPD 30 via a miniport driver 70 installed in the
host 20. Two of the TCP offload commands and one of the
TCP offload frames that were defined above are illustrated
here. The miniport driver 70 converts these commands into
hardware specific interactions with the INIC/CPD 30.

The connection handout is implemented as a two-phase
operation to prevent race conditions. If instead a handout

US 6,697,868 B2
9

were attempted in a single-phase operation, there could be a
period of time during which the protocol processing stack 44
had issued the handout but the INIC/CPD 30 had not yet
received the handout. During this time, slow-path input data
frames could arrive and be processed by the protocol pro- 5

cessing stack 44. Should this happen, the context
information, which the protocol processing stack 44 passed
to the INIC/CPD 30, would no longer be valid. This poten
tial error is avoided by establishing a provisional context on
the INIC/CPD 30 with the first handout command. 10

10
which in turn issues a Flush command 122 to the INIC/CPD
30, causing the INIC/CPD 30 to flush the connection. When
the INIC/CPD 30 flushes the connection to the stack 44,
several operations are performed that result in sending a
Flush frame 125 to the miniport driver 70, which in turn
sends a TCP OFFLOAD_FRAME_FLUSH 128 to the
INIC/CPD 30. For the situation in which the INIC/CPD 30
decides to flush the connection, the signals 120 and 122 do
not exist.

When the INIC/CPD 30 flushes a connection, either by
request from the host stack 44 or by its own decision, it
performs several procedures. First, any outstanding fast-path
send or receive message transfers are completed. When
operating in the fast-path mode, a send or receive message

Thus a handout of a CCB from the stack 44 to the
INIC/CPD 30 for a connection to be processed by the
fast-path occurs in several steps. First, a TCP _OFFLOAD_
HANDOUT! 100 is sent from the stack 44 to the miniport
driver 70, which issues a Handoutl command 102 to the
INIC/CPD 30. The INIC/CPD 30 sends an interlock frame
105 to the miniport driver 70 upon receipt of the handoutl
command 102, and internally queues any subsequent frames
for the specified connection. Upon receipt of the interlock
frame 105, the mini port driver 70 sends a TCP _
OFFLOAD FRAME_INTERLOCK frame 108 to the
stack 44, which interprets frame 108 as a signal that no
further slow-path frames are expected. Stack 44 thereupon
completes the handshake by issuing a TCP _OFFLOAD_
HANDOUT2 command 110 that includes a CCB, which is
forwarded by the miniport driver 70 to the INIC/CPD 30 as

15 transfer may involve 64 kilobytes of data, for example.
When a send or receive transfer is terminated, information
regarding the data sent or received is flushed to the host so
that the stack 44 can continue processing the send or receive
operation. In order to do this, the scatter gather list defining

20 the set of host buffer address and length pairs for the send or
receive message transfer is passed back to the stack 44,
along with information denoting how much data has already
been transferred via the fast-path. Second, the contents of
the CCB defining the fast-path connection are also sent from

25 the INIC/CPD 30 back to the host. Note that while a

a handout2 112. Upon receipt of the handout2 112, the
INIC/CPD 30 reads the contents of the CCB and begins
fast-path processing. Note that the CCB address is passed to
the miniport in the TCP _OFFLOAD_HANDOUT2 com- 30

man d.

connection is in the fast-path mode, the state of the connec
tion is maintained by the INIC/CPD 30. This connection
state is transferred back to the host so that sequence
numbers, etc, are kept in sync. The INIC/CPD 30 does not
issue the flush frame to the host stack 44 until both of these
steps are complete.

A connection may be flushed for a variety of reasons. For
example, the stack 44 will flush if it receives a TDI_
DISCONNECT instruction for the connection, as connec-

35 tion setup and breakdown occurs on the host stack. The
INIC/CPD 30 will flush if it encounters a condition that is
not allocated to the INIC/CPD for handling, such as expi
ration of a retransmission timer or receipt of a fragmented

Once a connection has been placed in fast-path mode by
the CCB handout, subsequent fast-path commands will
require a way to identify the particular connection. The
present invention defines two opaque handles for this pur
pose. A HostContext handle is a value used to uniquely
identify a connection to the protocol processing stack 44.
For TCP/IP messages the value is the address of the TCP
control block. This handle is opaque to the miniport driver
70. A LowerContext handle, on the other hand, is used to 40

uniquely identify the connection to the miniport driver 70
and/or INIC/CPD 30. This handle is opaque to the host stack
44, and implementation specific to the miniport driver 70.
Both the HostContext handle and LowerContext handle are
contained in the TCP _OFFLOAD_COMMAND structure,
while only the HostContext value is contained in the TCP _
OFFLOAD_FRAME structure. During a connection
handout, the host stack 44 passes down the HostContext
field to the mini port driver 70. The miniport driver 70 returns
the LowerContext on completing the handout request.

The protocol processing stack 44 on the host has respon
sibility for deciding when a connection is to be handed out
to the INIC/CPD 30. A connection can be handed out to the
INIC/CPD 30 as soon as the connection is fully established
and any outstanding exceptions have been handled.
Nevertheless, the protocol processing stack 44 may choose

TCP segment.
FIG. 6 diagrams a control mechanism for transmitting a

message via the fast-path, which may be initiated by the
protocol processing stack 44 receiving a TDI_SEND
request for a connection that is in the fast-path mode. The
steps for controlling this fast-path send of the message to a

45 remote host via the INIC/CPD 30 are simple. The stack 44
creates a TCP _OFFLOAD_COMMAND with the appro
priate context handles, the length of the message to be sent,
and a scatter-gather list or send MDL. A virtual to physical
address translation is performed by the host stack 44,

50 although this translation may alternatively be performed by
the miniport driver 70. The fast-path send command will not
complete until either all of the data has been sent and
acknowledged, or the connection has been flushed back to
the host. If the connection is flushed back to the host, a

55 residual field will indicate how much of the send MDL
remains to be sent.

to not hand out a connection for a variety of reasons. For
example, in order to preserve resources on the INIC/CPD
30, the host stack 44 may choose to not handout out slow
connections, such as those employing Telnet. The host stack 60

44 may also use an heuristic method to determine that a
particular connection is too unreliable to warrant putting it

A fast-path receive operation begins when a frame arrives
on the INIC/CPD 30 for a connection on which no outstand
ing receive operation is already in progress. As shown in
FIG. 7, when such a frame is received by the INIC/CPD 30,
some or all of the received frame (depending on the frame
size) is forwarded 140 to the miniport driver 70, which in
turn sends 142 a TCP OFFLOAD_FRAME_DATAframe
containing the forwarded information to the host stack 44.
The host stack 44 will in turn communicate with the upper
layer interface, which may be a TDI interface for Microsoft
systems, calling a receive handler registered by the upper

in fast-path mode.
Either the host protocol processing stack 44 or the INIC/

CPD 30 can flush a connection, as shown in FIG. 5. Should 65

the host stack 44 decide to flush a connection, it will issue
a TCP_OFFLOAD_FLUSH 120 to the miniport driver 70,

US 6,697,868 B2
11

layer or application. The amount of data in the received
message frame may be indicated to that host application at
this point, which may be termed an indicated length. That
frame may also indicate the size of the data for the entire
received message, so that a destination for that data can be 5

earmarked within the host, such as with a scatter-gather list.
A total message length that may be specified in an initial
frame header is termed an available length.

12
to the INIC/CPD 30, for example via a field in the TCP _
OFFLOAD COMMAND structure. To deal with a scenario
in which the data stream is entirely one-way, we can also
define a TCP_OFFLOAD_WINUPDATE command type
to update the INI C/CPD.

A converse issue with ofiloading TCP processing involves
keeping host stack 44 TCP/IP statistics up to date. For
example, there is no conventional way for the host stack 44
to know how many TCP segments were received by the
INIC/CPD 30. We address this issue by introducing a
GET_TCP_STATISTICS OlD, which is passed to the
miniport driver 70 to obtain the TCP statistics. The way that
the miniport and INIC/CPD 30 maintain these statistics
depends upon implementations selected for those systems.

The host stack 44 creates and maintains a performance
monitor (Perfmon) extension dynamic link library (DLL),
which can be used to monitor fast-path statistics such as the
following: 1) Fast-path/slow-path send/receive bytes per
second; 2) Fast-path/slow-path send/receive segments per

For example, a NETBI OS message denotes the size of the
data in the NETBIOS header, which can optionally be 10

processed by the INIC/CPD 30 and passed to the upper layer
interface for earmarking a final host destination in which to
place the message data. Alternatively, the host stack 44 can
process an initial NETBIOS header and learn how much
more data is expected for the NETBIOS request. In cases for 15

which a total message is size is unknown, a fictitious
indication of large message length can be communicated to
the upper layer interface, causing the application to respond
with a large set of destination addresses which should have
sufficient storage for the message. 20 second; 3) Handouts per second; 4) Flushes per second; and

Continuing with the example of a Microsoft operating
system, if the available length is larger than the indicated
length, the TDI upper layer or application will provide an
1!0 request packet (IRP) with an MDL. This MDL is passed
down to the mini port driver 70 in the form of a TCP _ 25

OFFLOAD_RCVMDL command, which forwards the
command to the INIC/CPD 30. Like the fast-path send
command, this command contains the context handles, the
length of the receive MDL, and the scatter-gather list
contained in the MDL. By passing the MDL directly to the 30

INIC/CPD 30, the message data is moved directly to the
buffer(s) provided by the TDI upper layer or application,
without the data being touched by the CPU.

Subsequent message frames for this connection will be
processed solely by the INIC/CPD 30 and moved into the 35

buffers denoted by the MDL until either the MDL is filled or
the command is flushed back to the host. If the command is
flushed back to the host stack 44, then the residual field will
indicate how much unprocessed data remains for the MDL.
If the TCP_OFFLOAD_RCVMDLcommand is completed 40

without error, then the Tcpip driver will complete the IRP, at
which point the system is ready for the next TCP _
OFFLOAD_FRAME_DATA indication. For messages
whose total size is not discernable from initial received
frames, the connection may receive a FIN before the receive 45

MDL is filled. If this occurs a short completion is performed
on the receive IRP.

If the INI C/CPD 30 has been given a host destination such
as a scatter-gather list or MDL by an upper layer or
application, the INI C/CPD will treat data placed in this 50

destination as being accepted by the upper layer or appli
cation. The INI C/CPD 30 may therefore ACK incoming data
as it is filling the destination buffer(s) and will keep its
advertised receive window fully open.

For small requests, however, there may be no MDL 55

returned by the upper layer interface such as TDI to the
INIC/CPD 30. In this case all of the data may be absorbed
directly in the receive callback function. To account for this,
the data which has been accepted by the application is
updated to the INIC/CPD 30 so that the INIC/CPD can 60

update its receive window. In order to do this, the host stack
44 can accumulate a count of data which has been accepted
by the application receive callback function for a connec
tion. From the INIC/CPD's point of view, though, segments
sent to the host destination seem to be just "thrown over the 65

wall" unless there is an explicit reply path. To correct this
deficiency, the update may be piggybacked on requests sent

5) Fast-path/slow-path current connections.
Approximately 2500 lines of code are employed to port

the fast-path modifications to the Microsoft host stack 44,
not including comments. The approximate breakdown of
this is as follows: 1) Connection handout-550 lines of
code; 2) Flush-400 lines of code; 3) Send-550 lines of
code; 4) Receive-600 lines of code; and 5) Miscellaneous
(e.g., stats. and perfmon)-250 lines of code.

The fast-path code is implemented in such a way that it
requires minimal changes to the existing TCP/IP host stack
44. Nearly all of the approximately 2500 lines of code are
contained within fast-path specific routines, which are in
turn kept in a single fast-path specific file. A number of
changes to a Microsoft host stack 44 operation provide the
appropriate calls into the fast-path code. These changes are
summarized below.

The initialization code queries the adapters for the fast-
path TCP _TASK_ OFFLOAD feature and sets the appro
priate information in the structure representing the adapter.
Modifications to the TDI data presentation code are
employed to indicate data received. Modifications are also
employed where the host stack 44 receives a TDI Send
request. The modified stack 44 then recognizes that a
connection is in fast-path mode and calls the fast-path send
routine.

After a TCP connection is set up, the host stack 44 checks
the capabilities of the adapter associated with the
connection, and if appropriate calls the fast-path connection
handout routine. Similarly, for a fast-path connection that
has been placed into slow-path mode, the host stack code
repeats the handout of the connection once the connection
returns to a standard state.

The ProtocolReceivePacket routine of the host stack 44 is
modified to identify the existence of fast-path TCP _
TASK_OFFLOAD information in the packet. If fast-path
information exists, the appropriate fast-path receive routine
is called.

The ProtocolSendComplete routine of the host stack 44
recognizes the completion of a fast-path send, and calls the
appropriate fast-path send completion routine.

The TCP input code recognizes when it has received a
slow-path frame on a fast-path connection, which indicates
a routing loop. If this occurs the host stack 44 implements
the flush code.

The TCP connection breakdown code recognizes when a
connection is in fast path mode and issues a flush before
closing the connection.

US 6,697,868 B2
13

Paper Appendix A provides source code, written in a
C-type language, defining the TCP_TASK_OFFLOAD
structures used to implement the fast-path task offload.

CD Appendix A contains a hardware description language
(verilog code) description of an embodiment of a receive 5
sequencer of a network interface device.

CD Appendix B contains microcode executable by a
processor on the network interface device. The processor
operates in conjunction with the receive sequencer of CD
Appendix A

CD Appendix C contains a device driver executable on
the host as well as an ATCP stack executable on the host. The
software of CD Appendix C operates in conjunction with the
network interface device of CD Appendices A and B.

10

Although we have focused in this document and the 15
accompanying drawings on teaching the preferred
embodiment, other embodiments and modifications will
become apparent to persons of ordinary skill in the art in
view of this teaching. Therefore, this invention is to be
limited only by the following claims, which include all such 20
embodiments and modifications when viewed in conjunc
tion with the specification and accompanying drawings.

What is claimed is:

14
the subsequent incoming frames not being passed to the
processor during the first phase, and wherein the second
phase involves passing control of the TCP connection from
the processor to the TCP offload mechanism.

13. A set of instructions executable on a host computer,
the set of instructions being for performing steps compris
ing:

sending a first communication from the host computer to
a TCP offload device, the first communication causing
the TCP offload device to store subsequently received
frames for a TCP connection, the subsequently received
frames being received onto the TCP offload device
from a network;

receiving a second communication from the TCP offload
device by the host computer; and

in response to the receiving of the second communication
sending a third communication from the host computer
to the TCP offload device, the third communication
causing control of the TCP connection to be passed
from the host computer to the TCP offload device.

14. The set of instructions of claim 13, wherein the set of
instructions comprises a driver and a stack of protocol
processing layers, and wherein the TCP offload device is a
network interface card (NIC). 1. A set of instructions executable on a processor, the set

of instructions being for performing steps comprising:
establishing a TCP connection, the TCP connection being

at least in part identified by a TCP source port, TCP
destination port, IP source address, and IP destination
address; and

15. The set of instructions of claim 13, wherein the
25 sending of the third communication includes sending a

memory descriptor list (MDL) from the host computer to the
TCP offload device, the MDL identifying a destination in a
memory on the host computer.

offloading the TCP connection from the processor to an
intelligent TCP offload mechanism.

16. A set of instructions executable on a host computer for
30 performing steps comprising:

2. The set of instructions of claim 1, wherein the TCP
offload mechanism is a network interface card (NIC), and
wherein the set of executable instructions are part of an
operating system program executing on a host computer, the 35

processor being a central processing unit (CPU) of the host
computer.

3. The set of instructions of claim 1, wherein the set of
instructions includes a protocol processing stack.

4. The set of instructions of claim 1, wherein the offload- 40

ing includes transferring control of the TCP connection from
the processor to the TCP offload mechanism.

determining whether a TCP offload device coupled to the
host computer has fast-path capabilities;

obtaining from an application program an indication of a
destination on the host computer, the destination being
a place in a memory on the host computer where data
of a TCP connection is to be placed;

passing control of the TCP connection to the TCP offload
device; and

receiving statistics information from the TCP offload
device, the statistics information being statistics infor
mation on the TCP connection.

5. The set of instructions of claim 1, wherein the offload
ing includes communicating a status of the TCP connection
from the processor to the TCP offload mechanism.

17. The set of instructions of claim 16, wherein the
statistics information includes a number of segments

45 received by the TCP offload device.

6. The set of instructions of claim 1, wherein the offload
ing includes fast-path processing of the TCP connection.

7. The set of instructions of claim 1, wherein the offload
ing includes data path processing of the TCP connection.

8. The set of instructions of claim 1, wherein a message 50

is communicated via the TCP connection, and wherein the
offloading involves protocol processing of the message.

9. The set of instructions of claim 1, wherein a message
is communicated via the TCP connection, and wherein the
offloading involves fast-path processing of the message.

10. The set of instructions of claim 1, wherein a message
is communicated via the TCP connection, and wherein the
offloading involves data path processing of the message.

55

11. The set of instructions of claim 1, wherein the pro
cessor is a processor of a host, and wherein the TCP offload 60

mechanism is a communication processing device (CPD),
the CPD being integrated into the host.

12. The set of instructions of claim 1, wherein the
offloading involves a first phase and a second phase, wherein
the first phase involves causing the TCP offload mechanism 65

to queue subsequent incoming frames for the TCP connec
tion while the processor is in control of the TCP connection,

18. The set of instructions of claim 16, wherein the set of
instructions is also for performing the further steps of:

receiving control of the TCP connection back from the
TCP offload device; and

receiving a communication from the TCP offload device,
the communication containing a residual field, the
residual field indicating an amount of the data of the
TCP connection that remains to be placed in the des
tination on the host computer.

19. The set of instructions of claim 16, wherein the control
of the TCP connection is passed to the TCP offload device
in a plural-phase handout process, a first phase of the
handout process including causing the TCP offload device to
queue subsequent message packets received onto the TCP
offload device for the TCP connection such that the subse
quent message packets do not pass to the host computer
during the first phase, a second phase of the handout process
including passing the indication of the destination to the
TCP offload device.

20. The set of instructions of claim 16, wherein the
indication of the destination is a memory descriptor list
(MDL).

US 6,697,868 B2
15

21. An operating system that passes control of a TCP
connection from a host computer to a TCP offload device
coupled to the host computer, wherein after said control of
the TCP connection is passed to the TCP offload device the
TCP offload device performs all or substantially all TCP s
protocol processing on network frames received onto the
TCP offload device for the TCP connection such that the
operating system and the host computer perform no or
substantially no TCP protocol processing on the network
frames after said control is passed.

16
22. The operating system of claim 21, wherein the oper

ating system performed some TCP protocol processing on
the TCP connection prior to said control being passed to the
TCP offload device.

23. The operating system of claim 21, wherein the oper
ating system established the TCP connection prior to said
control being passed to the TCP offload device.

* * * * *

