
c12) United States Patent 
Medved et al. 

(54) SELECTIVELY SWITCHING DATA 
BETWEEN LINK INTERFACES AND 
PROCESSING ENGINES IN A NETWORK 
SWITCH 

(75) Inventors: Jan Medved, Pleasanton, CA (US); Alex 
Dadnam, San Ramon, CA (US); Sameer 
Kanagala, San Carlos, CA (US); Fong 
Liaw, Cupertino, CA (US); John Burns, 
Los Altos, CA (US); David Bumstead, 
San Jose, CA (US) 

(73) Assignee: Hammerhead Systems, Inc., Mountain 
View, CA (US) 

( *) Notice: Subject to any disclaimer, the term of this 
patent is extended or adjusted under 35 
U.S.C. 154(b) by 925 days. 

(21) Appl. No.: 10/447,825 

(22) Filed: May29, 2003 

(65) Prior Publication Data 

US 2004/0240470Al Dec. 2, 2004 

(51) Int. Cl. 
H04J 3116 (2006.01) 

(52) U.S. Cl. ....................... 370/360; 370/376; 370/467; 
370/469 

(58) Field of Classification Search . ... ... ... ... .. .. 3 70/469, 
370/466, 471, 376, 907, 395.51 

See application file for complete search history. 

(56) References Cited 

U.S. PATENT DOCUMENTS 

5,521,919 A * 5/1996 Anderson et a!. ........... 370/376 
5,528,587 A 6/1996 Galandet a!. ............... 370/412 
5,712,853 A * 111998 Mathur et al. ............... 370/467 
6,332,198 B1 12/2001 Simons et al. ................. 714/6 

111111 1111111111111111111111111111111111111111111111111111111111111 
US007535895B2 

(10) Patent No.: US 7,535,895 B2 
May 19,2009 (45) Date of Patent: 

6,519,257 B1 
6,891,836 B1 * 
6,944,153 B1 * 
6,973,028 B1 * 
7,130,276 B2 
7,184,440 B1 * 

2/2003 Brueckheimer et a!. 
5/2005 Chen eta!. ............. 370/395.51 
9/2005 Buckland eta!. ............ 370/376 

12/2005 Huai eta!. .................. 370/222 
10/2006 Chen eta!. .................. 370/249 
2/2007 Sterne et al ............ 370/395.52 

2002/0049608 A1 4/2002 Hartsell et a!. 

(Continued) 

FOREIGN PATENT DOCUMENTS 

wo W001190843 1112001 

OTHER PUBLICATIONS 

Patridge eta!., A 50-Gb/sIP Router, IEEE, 12 pages, 1998. 
James Aweya, IP Router Architectures: An Overview, Norte! Net
works, 48 pages, 1999. 

(Continued) 

Primary Examiner-Chi H. Pham 
Assistant Examiner-Shick Hom 
(74) Attorney, Agent, or Firm-Van Pelt, Yi & James LLP 

(57) ABSTRACT 

Technology is disclosed for directing data through a network 
switch. One version of a network switch employs a mid-plane 
architecture that allows data to be directed between any link 
interface and any processing engine. Each time slot of data 
from an ingress link interface can be separately directed to 
any ingress processing engine. Each time slot of data from an 
egress processing engine can be separately directed to any 
egress link interface that supports the lower level protocol for 
the data. In one version of the switch, each processing engine 
in the network switch has the ability to service all of the 
protocols from the layers of the OSI model that are supported 
by the switch and not handled on the link interfaces. This 
allows the switch to allocate processing engine resources, 
regardless of the protocols employed in the data passing 
through the switch . 

38 Claims, 13 Drawing Sheets 

---90 

Fabric 

120 



US 7,535,895 B2 
Page 2 

U.S. PATENT DOCUMENTS 

2002/0116485 A1 
2003/0236919 A1 
2004/0004961 A1 
2004/0240470 A1 

8/2002 Black eta!. ................. 709/223 
12/2003 Johnson eta!. 

112004 Lakshmanamurthy et a!. 
12/2004 Medved eta!. .............. 370/907 

2007/0280223 A1 * 12/2007 Pan eta!. .................... 370/360 

OTHER PUBLICATIONS 

Kumagai eta!., IP Router for Next-Generation Network, Fujitsu Sci. 
Tech, 11 pages, 200 1. 
Niraj Shah, Understanding Network Processor, Berkeley University, 
93 pages, 2001. 

* cited by examiner 



U.S. Patent May 19,2009 Sheet 1 of 13 US 7,535,895 B2 

...---- 90 

Link 
2) ~ Interface - ~ ... .. Processing ... .. - ~ 

Engine - ~ 

\. 100 

\. 110 Link 

12 

12 
4-; ~ Interface - ~ 

\. 102 Processing - ~ Engine - ~ 

Link 

6) Interface - ~ 

\. 108 \. 112 

\.104 • 
12 

Switch .. Processing .. Fabric r 

Engine - r 

• 

• \.114 
• 

Link • .. .. 
8) Interface -

\. 106 • 
12 

.. Processing .. 
r 

Engine 
r 

\. 116 \. 120 

FIG. 1 



U.S. Patent May 19,2009 Sheet 2 of 13 US 7,535,895 B2 

Receive Physical Signals of Link 
t--

Channel(s) 
10 

,. 
Map Link Channel Data Into Virtual 

t--Channel Slot(s) 12 

,. 
Forward Slots to Switch -........ 14 

, 

Switch Slots r-- 16 

,, 
Forward Slots to Ingress Processing r--Engine 18 

,. 
Extract Payload Packet(s) t-- 20 

,, 
Process Payload Packet( s) -........ 22 

1ir 

Generate Fabric Cell( s) r-- 24 

,. 
Forward Fabric Cell(s) to Fabric r- 26 

FIG. 2A 



U.S. Patent May 19,2009 Sheet 3 of 13 US 7,535,895 B2 

Forward Fabric Cell(s) to Egress r-Processing Engine 
30 

,, 
Reassemble Cells Into Packet( s) r-- 32 

,, 
Process Packet(s) r- 34 

1r 

Map Packet Data Into Virtual --...... 
Channel Slot(s) 36 

'r 

Forward Slots to Switch --...... 38 

, 

Switch Slots ~ 40 

v 
Forward Slots to Egress Link ---Interface 42 

, 
Map Virtual Channel Slot Data Into -._.. 

Link Channel(s) 44 

,, 
Transmit Physical Signals for Link ---Channel(s) 46 

FIG. 28 



U.S. Patent May 19,2009 Sheet 4 of 13 US 7,535,895 B2 

Map Link Channel Data into 
""'-"' 

Frame(s) 
50 Map Slot Data into Virtual r-Channel(s) 53 

+ + 
Map Frame Data into Virtual 

r-Channel(s) 
Map Virtual Channel Payload Data r-into Packet(s) 51 54 

+ 
Map Virtual Channel Data into 

r-Slot(s) 

FIG. 38 
52 

FIG. 3A 

Map Packet Data into Virtual r--Channel(s) 55 
Map Slot Data into Virtual r-Channel(s) 

57 

+ + 
Map Virtual Channel Data into Slots ""'-" 

Map Virtual Channel Data into ....._ 
Frame(s) 56 58 

FIG. 3C + 
Map Frame Data into Link ....._ 

Channel(s) 59 

FIG. 30 



U.S. Patent May 19,2009 

Receive Slot 

Map Incoming Slot Data 
L-----1 

to Outgoing Slot 

FIG. 4 

60 

62 

Sheet 5 of 13 US 7,535,895 B2 

No 

Select Slot 

Map Virtual Channel Data 
Into Slot 

67 Map Idle Data Into Slot 

64 

65 

66 

Forward Slot 68 

FIG. 5 



U.S. Patent May 19,2009 Sheet 6 of 13 US 7,535,895 B2 

Receive Physical Signals of Link ---· Channel(s) 
10 

~r 

Map Link Channel Data Into 
r---Packet(s) 70 

,, 
Forward Packet to Packet Switch r--- 72 

,, 
Identify Target Processing Engine r- 74 

,lr 

Forward Packet to Processing 
r-Engine 76 

,lr 

Extract Payload 1--77 

,, 
Process Payload Packet( s) r--- 22 

1J 

Generate Fabric Cell(s) ............ 24 

,, 
Forward Fabric Cell(s) to Fabric r-- 26 

FIG. 6 



U.S. Patent May 19,2009 Sheet 7 of 13 US 7,535,895 B2 

Forward Fabric Cell(s) to Egress 
~ Processing Engine 30 

~lr 

Reassemble Cells Into Packet ~""""-- 32 

~r 

Process Packet t---- 34 

,, 
Map Packet Data Into Packet(s) t---- 80 

,, 
Forward Packet(s) to Packet Switch r- 82 

,, 
Identify Target Link Interface t---- 84 

,, 
Forward Packet(s) .-............ 86 

, 
Generate Frame(s) ~ 87 

,, 
Transmit Physical Signals for Link 

~""""--Channel(s) 46 

FIG. 7 



U.S. Patent May 19,2009 Sheet 8 of 13 US 7,535,895 B2 

122 

-- ... Link Interface ... ~~ ... ~~ n 

)~ --: .. ~ 

.... ... 

100) .. .. - ~ 

12 

... ... Link Interface 
4) 

.. .. ._ ... 

102 ... ... 

12 

Link Interface 
._ ~ 

6) 
.. ._ ... 

104) ... 

12 

... .. Link Interface 
.... 

8) ~ ... ... 

106 J 
Processing .. 

::::: ... .. 
Engine - .. 

.... ~ 

110 J 
Processing ... .. 

.:: .. .. 
Engine ... .... ~ 

112 J 
Processing ... .. 

.::::: ... .. 
Engine :::: .. 

._ ... 

114 J 
Processing ... ... - ~ ... 

Engine -:: .. .... - ~ 

116 J .. ... 
Switch ... ... -

108 J .. ... 
Fabric 

.... .... 
... ... - ~ 

120 J 154 .._.... 
r-- 150 

Control .. r----- 152 ._ ... ,, ,, , 

130 
) 

FIG. 8 



U.S. Patent May 19,2009 Sheet 9 of 13 US 7,535,895 B2 

1~-J 
.. 

J 

l( 205 
r 210 [215 r 

Processing Control Bus 
Main Memory 

Unit Interface 

j~ ~ jll 

1 lr 1 

2~; jll 

.. 
jll jll 

230 ~ jll 

[2 40 2 [250 
1ir r 1ir 

Portable 
Graphics 

Peripheral( s) Storage 
Subsystem Medium 

,, ,, r 

Mass 
[220 Output [260 Input ~270 

Storage Display Control 
Interface Interface 

FIG. 9 



U.S. Patent May 19,2009 Sheet 10 of 13 

30 

A 

f""'-' 122 
, 

Transceiver ... .. Layer1 /Layer 2 ... .. 
Processing 

Slot 
Mapper 

OJ t 302; t 303; t 
J 

Local Memory ... Controller Memory 
- p 

Control Bus 
FIG. 1 Q Interface 

310 J Jll 

... .. -; 
150 

... .. 
- p 

US 7,535,895 B2 

Switch Plane 
Interface 

t J 304 

, ... .. 
152 J 



U.S. Patent May 19,2009 Sheet 11 of 13 

Jll 

-......., 122 
, 

Transceiver .... ""' Layer 1/Layer 2 
- Processing 

.... .. - Packet 
Mapper 

t 309; f 

Local Memory .::: -:- Controller 

-, Jjl 

308.) 

Control Bus 

FIG. 11 Interface 

j ~~ 
310 

-..c) 
150 

Memory 

.. 

.... ... 
p 

US 7,535,895 B2 

Switch Plane 
Interface 

t ~ \..304 

lr ... .. 



U.S. Patent May 19,2009 Sheet 12 of 13 US 7,535,895 B2 

~~ 

Control Bus ... .. Controller .... .. Local 
Memory .... ... 

Interface - - Memory 

,~ 150 

330; 332; 
J!l 

334; 333; 
J 

lr , 
J!l 

, .. 
J ~ 

Fabric 
Network Conversion 

Switch 
_... .. Plane ~ ~ ~ Plane ~ Processor Engine 

,~ 154 
Interface Interface 

336; 338 j 335; 342; 152 J 
lr 

FIG. 12 

ll 

- . Switch ~ 
t---152 

~ 

~ 

108; 

~ 

.... .. Fabric ..._ _.. t---154 ._ .. ._ ... 
lr 

362; 

... .. ._ ~ 

150 Control Bus .....,. .. Controller -- _.. 
Local 

Interface 
~ 

Memory 

364 
j 

366 J 368 J 

FIG. 13 



U.S. Patent May 19,2009 Sheet 13 of 13 US 7,535,895 B2 

j~ .... TSI Switch .. 
Port 

380 

..... TSI Switch 
Port 

.. 

382) Memory 
~ 

Interface 
.. 

. 
r--152 . 

. 
.... TSI Switch 

--.. 
Port .. 

384) 
J~ 

l400 \..406 

Connection Control l .... .. Memory 
11r 

396; ,. 
J~ .- TSI Switch 

~ 

Port 
.... 

386; 

~ 
TSI Switch 

~ 

Port 
~ 

388 J_ 
Memory 
Interface 

..-

r--152 . 
. 

- TSI Switch 
~ , ~ Port 
.... -

'\.. 402 \.404 -] 
390 FIG. 14 



US 7,535,895 B2 
1 

SELECTIVELY SWITCHING DATA 
BETWEEN LINK INTERFACES AND 

PROCESSING ENGINES IN A NETWORK 
SWITCH 

BACKGROUND OF THE INVENTION 

1. Field of the Invention 
The present invention is directed to network switching 

technology. 
2. Description of the Related Art 
Network switches process data from an incoming port and 

direct it to an outgoing port. Network switches offer a variety 

10 

2 
tionship between link interfaces and processing engines does 
not permit incoming link interface traffic to be redirected to a 
processing engine with excess resources. 

Multiple card network switches implement link interface 
functionality and processing engine functionality on multiple 
PCBs-allowing the network switch to support more link 
interfaces and processing engines than a single card switch. 
Two types of multiple card systems are the backplane archi-
tecture and the mid-plane architecture. 

In the backplane architecture, multiple line cards are 
coupled together over a backplane. A line card includes a 
processing engine coupled to one or more link interfaces for 
interfacing to physical mediums. Multiple line cards are 
coupled to the backplane. Incoming data is switched from an of services, including support for virtual private networks 

("VPNs"). The increased popularity of the Internet and other 
network related technologies has increased performance 
demands on network switches. Network switches need to 
efficiently manage their resources, while supporting multiple 
physical signaling standards and higher-level protocols. 

15 ingress line card to an egress line card for transmission onto a 
desired network medium. One type of backplane architecture 
includes a fabric card coupled to the backplane for facilitating 
the transfer of data between line cards. 

The backplane architecture also fails to efficiently allocate 
20 system resources. The relationship between link interfaces 

and processing engines is fixed. Each processing engine 
resides on a line card with its associated link interfaces. The 
processing engine can only communicate with link interfaces 

A typical network switch includes link interfaces for 
exchanging data with physical signaling mediums. The medi
urns carry data according to multiple physical signaling pro
tocols. Each link interface supports a physical signaling stan
dard from the physical layer (Layer 1) of the Open Systems 
Interconnection ("OSI") model. In one example, a link inter- 25 

face supports a network connection for Synchronous Optical 
Network ("SONET") at Optical Carrier level 48 ("OC-48"). 
In another example, a link interface supports the physical 
layer of Gigabit Ethernet. Some link interfaces also support 
portions of the data-link layer (Layer 2) in the OSI model, 30 

such as the Media Access Control ("MAC") of Gigabit Eth-
ernet. 

on its line card. Incoming traffic through the link interfaces on 
one card can be very heavy. None of this traffic can be directed 
to a processing engine on another line card for ingress pro-
cessing. This is wasteful if processing engines on other cards 
have excess resources available. 

In the mid-plane architecture, multiple cards are coupled to 
a mid-plane that facilitates communication between the 
cards. The switch includes processing engine cards and link 
interface cards. Each processing engine card includes a pro
cessing engine, and each link interface card has one or more 
link interfaces. One type oflink interface typically performs 

Incoming data also conforms to one or more higher-level 
protocols, such as High-level Data Link Control ("HDLC"), 
Point-to-Point Protocol ("PPP"), Frame Relay, Asynchro
nous Transfer Mode ("ATM"), and other protocols in higher 
layers of the OSI model. Each link interface forwards incom
ing data to a processing engine in the network switch that 
supports a higher-level protocol for the data-a network 
switch may have one or multiple processing engines. The 
processing engine interprets the data and performs any 
desired processing, such as packet processing according to 
one or more layers in the OSI model. A variety of different 
processing operations can be performed, based on the ser
vices supported in the network switch. 

35 processing on data at Layer 1 of the OSI model. Each pro
cessing engine card processes data at Layer 2 in the OSI 
model and higher. A processing engine card provides only 
one type of Layer 2 processing-requiring the switch to con
tain at least one processing engine card for each type of Layer 

40 2 protocol supported in the switch. In some instances, link 
interfaces perform a portion of the Layer 2 processing, such 
as Gigabit Ethernet MAC framing. Another type oflink inter
face only performs a portion of the Layer 1 processing
operating only as a transceiver. In this implementation, the 

The processing engine identifies an egress link interface for 
incoming data and arranges for the data to be forwarded to the 
egress link interface. The egress link interface delivers the 
data to a desired network medium connection. In network 

45 processing engine card also performs the remaining portion 
of the Layer 1 processing. Each processing engine card only 
supports one type of Layer 1 protocol-requiring the switch 
to contain at least one processing engine card for each type of 

switches with multiple processing engines, an ingress pro- 50 

cessing engine directs the data through an egress processing 
engine for forwarding to the egress link interface. 

Network switches can be implemented as either single card 
or multiple card systems. A single card system implements all 

Layer 1 protocol supported in the switch. 
In operation, an ingress link interface card forwards inc om-

ing data to an ingress processing engine card. The ingress 
processing engine card is dedicated to processing data 
according to the higher-level protocol employed in the 
incoming data. The ingress processing engine passes the pro-

55 cessed incoming data to an egress processing engine card for 
further processing and forwarding to an egress link interface 
card. In one implementation, the switch includes a fabric card 
for switching data from one processing engine card to another 

of the switch's link interfaces and processing engines on a 
single printed circuit board ("PCB"). These types of systems 
are typically simple switches with the link interfaces being 
directly connected to a single processing engine. If multiple 
processing engines are employed, each processing engine is 
typically connected to a fixed set of link interfaces. The pro- 60 

cessing engines are also coupled to a fabric or interconnect 
mesh for exchanging data with each other. The connections 
between a set of link interfaces and a processing engine 
cannot be altered, regardless of the level of traffic through the 
link interfaces. This can result in an inefficient use of system 65 

resources-one processing engine can be over utilized, while 
another processing engine is under utilized. The fixed rela-

processing engine card. 
One type of mid-plane switch passes data between link 

interface cards and processing engine cards over fixed traces 
in the mid-plane. This creates the same inefficient use of 
system resources explained above for the single card archi
tecture and backplane architecture. 

Another type of mid-plane switch employs a program
mable connection card to direct data between link interface 
cards and processing engine cards. Each link interface card 



US 7,535,895 B2 
3 

has one or more serial outputs for ingress data coupled to the 
connection card and one or more serial inputs for egress data 
coupled to the connection card. Each processing engine card 
has one or more serial outputs for egress data coupled to the 
connection card and one or more serial inputs for ingress data 
coupled to the connection card. For each link interface card 
output, the connection card forms a connection with one 
processing engine card input for transferring data. For each 
processing engine card output, the connection card forms a 
connection with one link interface card input for transferring 10 

data. Data from one card output cannot be directed to multiple 
card inputs through the connection card. 

Even with the connection card, the mid-plane architecture 
wastes resources. Protocol specific processing engine cards 
can be wasteful. If the network switch receives a dispropor- 15 

tionately large percentage of data according to one protocol, 
the processing engine supporting that protocol is likely to be 
over utilized. Meanwhile, processing engine cards for other 
protocols remain under utilized with idle processing band
width. The resource inefficiency of existing mid-plane sys- 20 

terns is worse when a switch includes redundant processing 
engine cards. The network switch requires at least one redun
dant processing engine card for each protocol supported in 
the network switch, regardless of the protocol's utilization 
level. 25 

SUMMARY OF THE INVENTION 

4 
switch directs the data to one or more egress link interfaces for 
transmission onto a physical medium. One implementation of 
the TSI switch performs TDM switching on data streams 
received from each processing engine-separately directing 
each time slot of incoming data to the proper egress link 
interface. In an alternate embodiment, the TSI switch is 
replaced by a packet switch that performs packet switching. 

The switch between the link interfaces and processing 
engines can be any multiplexing switch-a switch that mul
tiplexes data from multiple input interfaces onto a single 
output interface and demultiplexes data from a single input 
interface to multiple output interfaces. The above-described 
TSI switch and packet switch are examples of a multiplexing 
switch. 

In one example, the TSI switch receives data from link 
interfaces and processing engines in the form of SONET 
STS-48 frames. The TSI switch has the ability to switch time 
slots in the SO NET frame down to the granularity of a single 
Synchronous Transport Signal-! ("STS-1") channel. In 
alternate embodiments, the TSI switch can switch data at a 
higher or lower granularity. Further implementations of the 
TSI switch perform virtual concatenation-switching time 
slots for multiple STS-1 channels that operate together as a 
higher throughput virtual channel, such as a STS-3 channel. 

The operation of the TSI switch and protocol independence 
of the processing engines facilitates bandwidth pooling 
within the network switch. When a processing engine 
becomes over utilized, a channel currently supported by the The present invention, roughly described, pertains to tech

nology for efficiently utilizing resources within a network 
switch. One implementation of a network switch employs a 
mid-plane architecture that allows data to be directed between 
any link interface and any processing engine. In one imple
mentation, each link interface can have a single data stream or 
a channelized data stream. Each channel of data from a link 
interface can be separately directed to any processing engine. 
Similarly, each channel of data from a processing engine can 

30 
processing engine can be diverted to any processing engine 
that is not operating at full capacity. This redirection of net
work traffic can be performed at the STS-1 channel level or 
higher. Similar adjustments can be made when a processing 
engine or link interface are under utilized. Bandwidth pooling 

be separately directed to any link interface. In one embodi
ment, each processing engine in the network switch has the 
ability to service all of the protocols from the layers of the OSI 
model that are supported by the switch and not handled on the 
link interfaces. This allows the switch to allocate processing 
engine resources, regardless of the protocols employed in the 
data passing through the switch. 

35 
adjustments can be made when the network switch is initial
ized and during the switch's operation. The network switch 
also provides efficient redundancy-a single processing 
engine can provide redundancy for many other processing 
engines, regardless of the protocols embodied in the under-

40 lying data. Any processing engine can be connected to any 
channel on any link interface-allowing any processing 
engine in the network switch to back up any other processing 
engine in the switch. This easily facilitates the implementa
tion of 1:1 or 1 :N processing engine redundancy. In one 

45 
implementation, the efficient distribution of resources allows 
for a 2: 1 ratio oflink interfaces to processing engines, so that 
each link interface has redundancy and no processing engine 
is required to sit idle. 

One embodiment of the network switch includes link inter
faces, processing engines, a switched fabric between the pro
cessing engines, and a switch between the link interfaces and 
processing engines. In one implementation, the switch 
between the link interfaces and processing engines is a time 
slot interchange ("TSI") switch. An ingress link interface 50 

receives incoming data from a physical signaling medium. 
The ingress link interface forwards incoming data to the TSI 
switch. The TSI switch directs the data to one or more ingress 
processing engines for processing, such as forwarding at the 
Layer 2 or Layer 3level of the OSI model. In one implemen- 55 

tation, the TSI switch performs Time Division Multiplexing 
("TDM") switching on data received from each link inter
face-separately directing each time slot of incoming data to 
the proper ingress processing engine. In an alternate embodi
ment, the TSI switch is replaced by a packet switch. The 60 

information exchanged between link interfaces and process
ing engines is packetized and switched through the packet 
switch. 

The ingress processing engine sends data to the packet 
switch fabric, which directs packets from the ingress process
ing engine to one or more egress processing engines for 
further processing and forwarding to the TSI switch. The TSI 

The present invention can be accomplished using hard
ware, software, or a combination of both hardware and soft
ware. The software used for the present invention is stored on 
one or more processor readable storage media including hard 
disk drives, CD-ROMs, DVDs, optical disks, floppy disks, 
tape drives, RAM, ROM or other suitable storage devices. In 
alternative embodiments, some or all of the software can be 
replaced by dedicated hardware including custom integrated 
circuits, gate arrays, FPGAs, PLDs, and special purpose com
puters. In one embodiment, software implementing the 
present invention is used to program one or more processors, 
including microcontrollers and other progrmable logic. 
The processors can be in communication with one or more 
storage devices, peripherals and/or communication inter
faces. 

These and other objects and advantages of the present 
65 invention will appear more clearly from the following 

description in which the preferred embodiment of the inven
tion has been set forth in conjunction with the drawings. 



US 7,535,895 B2 
5 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 is a block diagram depicting one embodiment of a 
network switch in accordance with the present invention. 

FIG. 2A is a flowchart depicting one embodiment of a 
process for the ingress flow of data through a network switch. 

FIG. 2B is a flowchart depicting one embodiment of a 
process for the egress flow of data through a network switch. 

FIG. 3A is a flowchart depicting one embodiment of a 
process for mapping link channel data into virtual channel 
slots. 

FIG. 3B is a flowchart depicting one embodiment of a 
process for extracting payload packets. 

FIG. 3C is a flowchart depicting one embodiment of a 
process for mapping packet data into virtual channel slots. 

FIG. 3D is a flowchart depicting one embodiment of a 
process for mapping virtual channel slot data into link chan
nels. 

FIG. 4 is a flowchart depicting one embodiment of a pro
cess for a TSI switch to map slot data into outgoing slots. 

FIG. 5 is a flowchart depicting one embodiment of a pro
cess for a TSI switch to forward slots. 

FIG. 6 is a flowchart depicting an alternate embodiment of 
a process for the ingress flow of data through a network 
switch. 

FIG. 7 is a flowchart depicting an alternate embodiment of 
a process for the egress flow of data through a network switch. 

FIG. 8 is a block diagram depicting one embodiment of a 
mid-plane multiple card architecture for a network switch. 

FIG. 9 is a block diagram depicting one embodiment of a 
control module. 

FIG. 10 is a block diagram depicting one embodiment of a 
link interface. 

FIG. 11 is a block diagram depicting an alternate embodi
ment of a link interface. 

FIG. 12 is a block diagram depicting one embodiment of a 
processing engine. 

FIG. 13 is a block diagram depicting one embodiment of a 
combined fabric and switch card. 

FIG. 14 is a block diagram depicting one embodiment of a 
TSI switch. 

DETAILED DESCRIPTION 

FIG. 1 is a block diagram depicting one embodiment of 
network switch 90 in accordance with the present invention. 
Network switch 90 implements a mid-plane architecture to 
switch packets between multiple signaling mediums. Switch 
90 supports multiple physical layer protocols in Layer 1 of the 
OSI model. Switch 90 also supports one or more higher-level 
protocols corresponding to Layer 2, Layer 3, and above in the 
OSI model. Switch 90 provides networking services that con
trol the flow of data through switch 90. 

Switch 90 can be any type of network switch in various 
embodiments. In one embodiment, switch 90 is a network 
edge switch that provides Frame Relay, Gigabit Ethernet, 
Asynchronous Transfer Mode ("ATM"), and Internet Proto
col ("IP") based services. In one example, switch 90 operates 
as a Provider Edge ("PE") Router implementing a virtual 
private network-facilitating the transfer of information 
between Customer Edge Routers that reside inside a custom
er's premises and operate as part of the same virtual private 
network. In another embodiment, switch 90 is a network core 
switch that serves more as a data conduit. 

FIG. 1 shows that switch 90 has a mid-plane architecture 
that includes link interfaces 100, 102, 104, and 106, process
ing engines 110, 112, 114, and 116, switch 108, and fabric 

6 
120. In different embodiments, switch 90 can include more or 
less link interfaces and processing engines. In one embodi
ment, switch 90 includes 24link interfaces and 12 processing 
engines. The link interfaces and processing engines are 
coupled to switch 108, which switches data between the link 
interfaces and processing engines. The processing engines 
are also coupled to fabric 120, which switches data between 
processing engines. In one implementation, fabric 120 is a 
switched fabric that switches packets between processing 

10 engines. In an alternative implementation, fabric 120 is 
replaced with a mesh of mid-plane traces with corresponding 
interfaces on the processing engines. 

During ingress, data flows through an ingress link interface 
to switch 108, which switches the data to an ingress process-

15 ing engine. In one implementation, switch 108 is a multiplex
ing switch, such as a time slot based switch or packet based 
switch. The ingress processing engine processes the data and 
forwards it to an egress processing engine through fabric 
switch 120. In one implementation, the ingress processing 

20 engine employs Layer 2 and Layer 3 lookups to perform the 
forwarding. The egress processing engine performs egress 
processing and forwards data to switch 108. Switch 108 
switches the data to an egress link interface for transmission 
onto a medium. More details regarding the ingress and egress 

25 flow of data through switch 90 are provided below with ref
erence to FIGS. 2A, 2B, 6, and 7. 

Each link interface exchanges data with one or more physi
cal networking mediums. Each link interface exchanges data 
with the mediums according to the Layer 1 physical signaling 

30 standards supported on the mediums. In some embodiments, 
a link interface also performs a portion of Layer 2 processing, 
such as MAC framing for Gigabit Ethernet. 

In one example, link interfaces 100 and 106 interface with 
mediums 122 and 128, respectively, which carry STS-48 

35 SONET over OC-48; link interface 102 interfaces with 
medium 124, which carries channelized SO NET over OC-48, 
such as 4 STS-12 channels; and link interface 104 interfaces 
with medium 126, which carries Gigabit Ethernet. In various 
embodiments, many different physical mediums, physical 

40 layer signaling standards, and framing protocols can be sup
ported by the link interfaces in switch 90. 

The processing engines in switch 90 deliver the services 
provided by switch 90. In one implementation, each process
ing engine supports multiple Layer 2, Layer 3, and higher-

45 level protocols. Each processing engine in switch 90 pro
cesses packets or cells in any manner supported by switch 
90-allowing any processing engine to service data from any 
medium coupled to a link interface in switch 90. In one 
embodiment, processing engine operations include Layer 2 

50 and Layer 3 switching, traffic management, traffic policing, 
statJst1cs collection, and operation and maintenance 
("OAM") functions. 

In one implementation, switch 108 is a TSI switch that 
switches data streams between the link interfaces and pro-

55 cessing engines. In one embodiment, TSI switch 108 
switches time slots of data between link interfaces and pro
cessing engines. In one implementation, each time slot can 
support a single STS-1 channel. One version of TSI switch 
108 interfaces with link interfaces and processing engines 

60 through TSI switch ports. During ingress, an ingress link 
interface maps incoming data into a set of time slots and 
passes the set of time slots to an incoming TSI switch port in 
TSI switch 108. In one implementation, TSI switch 108 sup
ports an incoming set of time slots with 48 unique slots, each 

65 capable of carrying bandwidth for an STS-1 channel of a 
SONET frame. In one such embodiment, TSI switch 108 
receives the incoming set of time slots on an incoming TSI 



US 7,535,895 B2 
7 

switch port. In different embodiments, different time slot 
characteristics can be employed. TSI switch 108 switches the 
received time slots into outgoing time slots for delivery to 
ingress processing engines. TSI switch 108 delivers outgoing 
time slots for each ingress processing engine through an 
outgoing TSI switch port associated with the respective 
ingress processing engine. 

8 
data from link channels to time slots that are presented to TSI 
switch 108 for switching. In one embodiment, each link inter
face maps link channel data into a set of 48 time slots for 
delivery to TSI switch 108. 

Switch 90 employs virtual concatenation of time slots to 
form virtual channels within switch 90. Each time slot is 
assigned to a virtual channel. In some instances, multiple time 
slots are assigned to the same virtual channel to create a single 
virtual channel with increased bandwidth. In one example, 

During egress, an egress processing engine maps egress 
data into time slots and passes the time slots to TSI switch 
108, which receives the time slots into an incoming TSI 
switch port. TSI switch 108 maps the received time slots into 
outgoing time slots for delivery to egress link interfaces 
through outgoing TSI switch ports. In one implementation, 
TSI switch 108 includes the following: (1) an incoming TSI 
switch port for each ingress link interface and each egress 
processing engine, and (2) an outgoing TSI switch port for 
each ingress processing engine and each egress link interface. 
When a link interface or processing engine performs both 
ingress and egress operations, TSI switch 108 includes an 
incoming TSI switch port and an outgoing TSI switch port for 
the link interface or processing engine. 

10 each time slot has the ability to support bandwidth for a STS-1 
channel of data. When a single time slot is assigned to a 
virtual channel, the virtual channel is an STS-1 channel. 
When multiple time slots are assigned to the same virtual 
channel, the resulting virtual channel operates as a single 

15 channel with the bandwidth of a single STS-X channel-Xis 
thenumberoftime slots assigned to the virtual channel. When 
multiple time slots are assigned to a single virtual channel 
there is no requirement for the assigned time slots to be 
adjacent to one another. However, the time slots can be adja-

20 cent in some embodiments. In further embodiments, time 
slots can support a channel bandwidth other than a STS-1 
channel. In one implementation, TSI switch 108 performs time divi

sian multiplexing. TSI switch 108 is capable of switching a 
time slot in any incoming set of time slots to any time slot in 
any outgoing set of time slots. Any time slot from a link 25 

interface can be delivered to any processing engine. Any time 
slot from a processing engine can be delivered to any link 
interface that supports the protocol for the time slot's data. 
This provides a great deal of flexibility when switching data 
between link interfaces and processing engines-allowing 30 

data to be switched so that no processing engine or link 
interface becomes over utilized while others remain under 
utilized. 

In an alternate embodiment, switch 108 is a packet switch. 
In this embodiment, the link interfaces and processing 35 

engines deliver data to packet switch 108 in the form of 
packets with headers. Packet switch 108 uses the headers to 
switch the packets to the appropriate link interface or pro
cessing engine. 

In various embodiments, different techniques can be 
employed for mapping link channel data into virtual channel 
time slots. In one example, a link includes 4 STS-12 channels, 
and the ingress link interface coupled to the link supports 4 
S TS-12 virtual channels---4 virtual channels each being 
assigned 12 time slots with STS-1 bandwidth. In this 
example, the ingress link interface maps data from each STS-
12link channel to a respective one of the 4 STS-12 virtual 
channels. FIG. 3A shows a process that employs Layer 2 
framing before mapping link channel data into virtual chan
nel time slots. More details regarding FIG. 3A are provided 
below. 

The ingress link interface forwards the set of time slots to 
TSI switch 108 (step 14). In one implementation, each ingress 
link interface supports a set of 48 time slots, and TSI switch 
108 receives a set of 48 time slots from each ingress link 
interface. In this embodiment, each ingress link interface 

FIG. 2A is a flowchart depicting one embodiment of a 
process for the ingress flow of data through network switch 90 
when switch 108 is a TSI switch. An ingress link interface, 
such as link interface 100, 102, 104, or 106, receives physical 
signals over a medium, such as link 122 (step 10). The physi-

40 forwards the set of 48 time slots to TSI switch 108 in the form 

cal signals conform to a physical signaling standard from 45 

Layer 1 of the OSI model. In one implementation, each link 
interface includes one or more transceivers to receive the 
physical signals on the medium in accordance with the Layer 

ofGFP framed data over SONET. In alternate embodiments, 
switch 90 employs different numbers of time slots and differ
ent methods offorwarding time slots to TSI switch 108. 

TSI switch 108 switches the incoming time slots from 
ingress link interfaces to outgoing time slots for delivery to 
ingress processing engines (step 16). TSI switch 108 for
wards sets of outgoing time slots to their respective ingress 
processing engines (step 18). There is an outgoing set of time 
slots associated with each ingress processing engine coupled 
to TSI switch 108. TSI switch 108 maps each incoming time 
slot from an ingress link interface to a time slot in an outgoing 
set of time slots for an ingress processing engine. TSI switch 
108 has the ability to direct any incoming time slot of data 
from a link interface to any processing engine on any time slot 

1 protocol governing the physical signaling. Different link 
interfaces in network switch 90 can support different Layer 1 50 

physical signaling standards. For example, some link inter
faces may support OC-48 physical signaling, while other link 
interfaces support physical signaling for Gigabit Ethernet. 
The reception process (step 1 0) includes the Layer 1 process
ing necessary to receive the data on the link. 55 in any outgoing set of time slots. 

In one implementation, each link supported by a link inter
face includes one or more channels. In one example, link 122 
is an OC-48 link carrying 4 separate STS-12 channels. In 
different embodiments, a link can have various channel con
figurations. A link can also carry only a single channel of data. 60 

For example, link 122 can be an OC-48 link with a single 
STS-48 channel. 

TSI switch 108 can map time slot data from an incoming 
set of time slots to time slots in multiple outgoing sets of time 
slots-a first time slot in an incoming set of time slots can be 
mapped to a time slot in one outgoing set of time slots and a 
second time slot in the incoming set of time slots can be 
mapped to a time slot in a different outgoing set of time slots. 
TSI switch 108 can also map time slots from different incom
ing sets of time slots to time slots in the same outgoing set of 
time slots-a time slot in a first incoming set of time slots can 

The ingress link interface maps data from incoming link 
channels into virtual channel time slots in switch 90 (step 12). 
As described above, one embodiment of switch 90 employs 
TSI switch 108 to pass data from ingress link interfaces to 
ingress processing engines. Each ingress link interface maps 

65 be mapped to a time slot in an outgoing set of time slots and 
a time slot in a different incoming set of time slots can be 
mapped to a time slot in the same outgoing set of time slots. 



US 7,535,895 B2 
9 10 

processing engine, each virtual channel is represented by one 
or more time slots in a set of time slots. In one embodiment, 
each time slot can support the bandwidth of a STS-1 channel. 
In one implementation, the set of time slots includes 48 time 
slots, and the egress processing engine forward the 48 time 
slots to TSI switch 108 in the form ofGFP framed data over 
SONET. In alternate embodiments, different time slot sizes 
can be employed and different mechanisms can be employed 
for forwarding sets of time slots. More details regarding the 

In one implementation, each ingress processing engine is 
assigned 48 outgoing time slots. TSI switch 108 maps the data 
from each incoming time slot to one of the 48 time slots for 
one of the ingress processing engines. TSI switch 108 for
wards each outgoing set of 48 time slots to a respective 
ingress processing engine in the form of GFP framed data 
over SO NET. In alternate implementations, an outgoing set of 
time slots can have a different format than the incoming set of 
time slots. More details regarding the mapping performed by 
TSI switch 108 appears below. 10 mapping of packet data into virtual channel slots is provided 

below with reference to FIG. 3C. An ingress processing engine, such as processing engines 
110, 112, 114, or 116, receives an outgoing set of time slots 
from TSI switch 108 and extracts payload data packets (step 
20). The payload data is the data carried within each virtual 
channel. An ingress processing engine extracts the payload 15 

data and maps the data into packets that can be processed 
according to the protocols supported on the processing 
engine. In one implementation, one or more processing 
engines each support multiple protocols within each layer of 
the OSI model. In another implementation, one or more pro- 20 

cessing engines each support all protocols supported by the 
processing engines in switch 90 within each layer of the OSI 
model supported on the processing engines. These implemen
tations allow an ingress processing engine to perform differ
ent processing on data from each of the virtual channels 25 

received via the outgoing set of time slots from TSI switch 
108. In yet another embodiment, a processing engine does not 
support multiple protocols within each layer of the OSI 
model. Further details regarding the extraction of payload 
data are provided below with reference to FIG. 3B. 

TSI switch 108 switches the incoming set of time slots 
from each egress processing engine (step 40). TSI switch 108 
maps each time slot in an incoming set of time slots into a time 
slot in an outgoing set of time slots for delivery to an egress 
link interface. This mapping process is the same as described 
above for mapping data from ingress link interface time slots 
into outgoing sets of time slots for ingress processing engines 
(step 16, FIG. 2A). TSI switch 108 is capable of mapping any 
time slot from an egress processing engine set of time slots to 
any time slot of any outgoing set of time slots for any egress 
link interface. TSI switch 108 forwards outgoing sets of time 
slots to the appropriate egress link interfaces (step 42). In one 
implementation, an outgoing set of slots is in the form ofGFP 
framed data over SO NET. Different forwarding formats and 
time slot sizes can be employed in various embodiments. 

The ingress processing engine processes the extracted pay
load data packets according to the identified protocol for the 
data (step 22). Payload data received from one time slot may 
require different processing than payload data received from 

An egress link interface that receives an outgoing set of 
time slots from TSI switch 108 maps virtual channel slot data 
into link channels (step 44). FIG. 3D shows a flowchart for 

30 one method of carrying out step 44 by framing virtual channel 
data and mapping the framed data into link channels. In 
alternate embodiments, different techniques can be employed 
to carryout step 44. The egress link interface transmits the 
physical signals for data in each link channel as physical 
signals on the medium coupled to the link interface (step 46). 
The link interface transmits the frames according to the Layer 
1 signaling protocol supported on the medium. 

FIG. 3A is a flowchart describing one embodiment of a 

a different time slot. In one embodiment, the ingress process- 35 

ing engine performs data processing at Layer 2 and Layer 3 of 
the OSI model. In further embodiments, the ingress process
ing engine may perform processing at Layer 2, Layer 3 and 
above in the OSI model. 

The ingress processing engine generates fabric cells for 
delivering processed data to an egress processing engine 
through fabric 120 (step 24). In one implementation, the 
ingress processing engine generates fabric cells by breaking 
the payload data associated with processing packets into 
smaller cells that can be forwarded to fabric 120. Various 
fabric cell formats can be employed in different embodi
ments. The ingress processing engine formats the cells 
according to a standard employed for delivering cells to fabric 
120. Those skilled in the art will recognize that many different 
well-known techniques exist for formatting fabric cells. The 50 

ingress processing engine forwards the fabric cells to fabric 
120 (step 26). 

40 
process for mapping link channel data into virtual channel 
slots (step 12, FIG. 2A). The ingress link interface maps link 
channel data into frames (step 50). In one implementation, the 
ingress link interface performs Layer 2 processing on incom
ing link data to create Layer 2 frames. In alternate embodi-

45 ments, different protocol rules can be employed to generate 
frames from link channel data. In one embodiment, switch 90 
maintains mapping tables that are used by ingress processing 
engines to map link channel data into frames. 

FIG. 2B is flowchart depicting one embodiment of a pro
cess for the egress flow of data through network switch 90 
when switch 108 is a TSI switch. Fabric 120 forwards fabric 55 

One implementation of the table contains entries with the 
following fields: 1) Link Channel-identifYing a link channel 
for the ingress processing engine; 2) Protocol-identifYing a 
Layer 1 and Layer 2 protocol for the identified link channel; 
and 3) Frame-identifying one or more frames to receive data 
from the identified link channel. When data arrives at an 
ingress link interface, the link interface uses the table entry 
that corresponds to the link channel supplying the data. The 
ingress link interface maps the data into the identified frames 
using the identified Layer 1 and Layer 2 protocols. Each link 
channel can be programmed for a different Layer 1 and/or 

cells to an egress processing engine, such as processing 
engine 110 and 112, 114, or 116 (step 30). The egress pro
cessing engine reassembles the fabric cells into one or more 
processing packets of data (step 32). The egress processing 
engine processes the packets according to the appropriate 
OSI model protocols. In one implementation, the egress pro
cessing engine performs Layer 2 and Layer 3 processing. In 
alternate implementations, there is no need for packet pro
cessing on the egress processing engine. 

60 Layer 2 protocol. A user of switch 90 programs the fields in 
the above-identified table in one embodiment. In further 

The egress processing engine maps processing packet data 65 

into virtual channel slots (step 36) and forwards the virtual 
channel slots to TSI switch 108 (step 38). On each egress 

embodiments, different fields can be employed and mecha
nisms other than a mapping table can be employed. 

The ingress processing engine maps the frame data into 
virtual channels (step 51) and maps the virtual channel's data 
into time slots in a set of time slots the link interface will 
forward to TSI switch 108 (step 52). In one implementation, 



US 7,535,895 B2 
11 

these steps are performed as separate operations. In alternate 
implementations, these steps are combined into a single step. 

In one embodiment, network switch 90 maintains mapping 
tables that are used by the ingress link interface to map incom
ing data into virtual channels and virtual channel data into a 
set of time slots. In one implementation, the table contains 
entries with the following fields: 1) Virtual Channel-identi
fying a virtual channel; 2) Time Slots-identifying all time 
slots in the ingress link interface's set of time slots that belong 
to the identified virtual channel; 3) Link Channel-identifY
ing one or more link channels that are to have their data 
mapped into the identified virtual channel; and 4) Link Chan
nel Protocol-identifying the Layer 1 and Layer 2 protocols 
employed for the data in the identified link channels. In one 
implementation, the Link Channel field can identifY one or 
more frames formed as a result of step 50. Alternatively, 
different information can be used to identifY link channel data 
for a virtual channel when the ingress link interface does not 
frame link channel data. A user of switch 90 programs these 
fields in one embodiment. In further embodiments, different 
fields can be employed and mechanisms other than a mapping 
table can be employed. 

The ingress link interface uses a table entry to map data into 
a virtual channel. The ingress link interface maps data from 
the entry's identified link channel into the entry's identified 
time slots for the virtual channel. The ingress link interface 
formats the link channel data in the virtual channel time slots, 
based on the entry's identified Layer 1 and Layer 2 protocols 
for the link channel data. 

FIG. 3B is a flowchart describing one embodiment of a 
process for extracting payload packets (step 20, FIG. 2A). 
The egress processing engine maps data from each time slot 
received from TSI switch 108 into a virtual channel (step 53) 
and maps data from the virtual channel into one or more 
payload data packets for processing (step 54). In one imple
mentation, these steps are performed as separate operations. 
In alternate implementations, these steps are combined into a 
single step. 

In one embodiment, network switch 90 maintains mapping 
tables that are used by the ingress processing engine to map 
incoming slot data to packets for processing by the ingress 
processing engine. In one implementation, the table contains 

12 
information will be useful when directing the processing 
packet's contents through the egress flow described above. 

FIG. 3C is a flowchart depicting one embodiment of a 
process for mapping packet data into virtual channel slots 
(step 36, FIG. 2B). The egress processing engine maps pro
cessing packet data into virtual channels (step 55) and maps 
virtual channel data into time slots (step 56) for delivery to 
TSI switch 108. In one implementation, these steps are per
formed as separate operations. In alternate implementations, 

10 these steps are combined into a single step. 
In one embodiment, network switch 90 maintains mapping 

tables that are used by the egress processing engine to map 
packet data into virtual channel time slots. In one implemen
tation, the table contains an entry for each virtual channel. 

15 Each entry includes the following fields: 1) Virtual Channel
identifying a virtual channel; 2) Time Slots-identifYing all 
time slots in the egress processing engine's set of time slots 
that belong to the identified virtual channel; 3) Link Chan
nel-identifying one or more link channels that are to have 

20 their data mapped into the identified virtual channel; and 4) 
Link Channel Protocol-identifying the Layer 1 and Layer 2 
protocols employed for the data in the identified link chan
nels. A user of switch 90 programs these fields in one embodi
ment. In further embodiments, different fields can be 

25 employed and mechanisms other than a mapping table can be 
employed. 

The egress processing engine identifies the link channel 
that is intended to receive a processing packet's data. In one 
implementation, the processing packet's header includes this 

30 information. The egress processing engine identifies the table 
entry that corresponds to the link channel. The egress pro
cessing engine uses the entry to identify the corresponding 
virtual channel and associated time slots. The egress process
ing engine maps the packet data into these virtual channel 

35 time slots, based on the protocols identified in the Link Chan
nel Protocol field. 

FIG. 3D is a flowchart depicting one embodiment of a 
process for mapping virtual channel slot data into link chan
nels (FIG. 44, FIG. 2B). The egress link interface maps time 

40 slot data from TSI switch 108 into virtual channels (step 57) 
and maps virtual channel data into frames (step 58). In one 
implementation, these steps are performed as separate opera
tions. In alternate implementations, these steps are combined 

an entry for each virtual channel. Each entry includes the 
following fields: 1) Virtual Channel-identifYing a virtual 45 
channel; 2) Time Slots-identifYing all time slots in the 
ingress processing engine's set of time slots that belong to the 
identified virtual channel; 3) Link Channel-identifYing one 

into a single step. 
In one embodiment, network switch 90 maintains mapping 

tables that are used by the ingress link interface to map slot 
data into virtual channels and virtual channel data into 
frames. In one implementation, the table contains an entry for 
each virtual channel. Each entry includes the following fields: 
1) Virtual Channel-identifYing a virtual channel; 2) Time 
Slots-identifying all time slots in the egress link interface's 
set of time slots that belong to the identified virtual channel; 
3) Link Channel-identifYing one or more link channels that 
are to have their data mapped into the identified virtual chan-

or more link channels that are to have their data mapped into 
the identified virtual channel; and 4) Link Channel Proto- 50 
col-identifying the Layer 1 and Layer 2 protocols employed 
for the data in the identified link channels. A user of switch 90 
programs these fields in one embodiment. In further embodi
ments, different fields can be employed and mechanisms 
other than a mapping table can be employed. 55 nel; and 4) Link Channel Protocol-identifYing the Layer 1 

and Layer 2 protocols employed for the data in the identified 
link channels. A user of switch 90 programs these fields in one 
embodiment. In further embodiments, different fields can be 
employed and mechanisms other than a mapping table can be 

The ingress processing engine uses this table to extract 
payload data into packets for processing. When each time slot 
of data arrives at the ingress processing engine, the ingress 
processing engine associates the time slot with a virtual chan
nel in an entry corresponding to the time slot. The ingress 
processing engine parses the contents of the virtual channel to 
obtain payload data for processing packets. The ingress pro
cessing engine uses the information in the Link Channel 
Protocol field to parse the virtual channel. The ingress pro
cessing engine also places information in a header of each 
processing packet that identifies the link channel associated 
with the virtual channel being mapped into the packet. This 

60 employed. 
The egress link interface uses this table to map time slot 

data into virtual channels. For a time slot that arrives from TSI 
switch 108, the egress link interface maps data into the iden
tified virtual channel for the time slot. For each virtual chan-

65 nel, the egress link interface maps the channel's data into the 
link interface identified for the virtual channel. For the framed 
data embodiment described above, the egress link interface 



US 7,535,895 B2 
13 

maps the virtual channel data into one or more frames that 
correspond to the identified link channel. These frames can be 
identified as part of the Link Channel field in one embodi
ment. The egress link interface formats the virtual channel 
data in the frames, based on the identified Layer 1 and Layer 5 

2 protocols for the link channel data. 
In the frame data implementation, the egress link interface 

maps frame data into link channels (step 59). In one embodi
ment, switch 90 maintains mapping tables used by egress 
processing engines to map frame data into link channels. One 10 

implementation of the table contains entries for each link 
channel, including the following fields: 1) Link Channel
identifying a link channel for the egress processing engine; 2) 
Protocol-identifYing Layer 1 and Layer 2 protocols for the 
identified link channel; and 3) Frame-identifying one or 15 

more frames that maintain data from the identified link chan-

14 
port is coupled to deliver the outgoing set of slots to either an 
egress link interface or ingress processing engine. 

In alternate embodiments, different mapping table formats 
can be employed. For example, each incoming TSI switch 
port in the TSI switch has its own mapping table in one 
embodiment-including the Incoming Slot, Outgoing Port, 
and Outgoing Slot fields. Alternatively, the Outgoing Port 
field can be modified to identifY a transmit port that corre
sponds to a set of slots. In different embodiments, the map
ping table is replaced by a different instrumentality that 
serves the same purpose. 

In a further implementation, the above-described mapping 
table includes the following additional fields: 5) Backup Out
going Port-identifying a backup outgoing TSI switch port 
for the port identified in the Outgoing Port field; 6) Backup 
Outgoing Slot-identifYing a slot in the outgoing set of slots 
for the port identified in the Backup Outgoing Port field; and 
7) Backup-indicating whether to use the Outgoing Port and 
Outgoing Slot fields or the Backup Outgoing Port and Backup 

nel. When virtual channel data is framed, the egress link 
interface uses the table entry that corresponds to a selected 
frame. The egress link interface maps the frame data into the 
identified channel using the identified Layer 1 and Layer 2 
protocols. A user of switch 90 programs the fields in the 
above-identified table in one embodiment. In further embodi
ments, different fields can be employed and mechanisms 
other than a mapping table can be employed. 

20 Outgoing Slot fields. A user of switch 90 sets values in these 
fields in one implementation. In an alternate embodiment, 
these backup fields are maintained in a central memory of 
switch 90 and backup values are loaded into the above-de-

FIG. 4 is a flowchart depicting one embodiment of a pro- 25 

cess for TSI switch 108 to map slot data into outgoing slots. 
Ingress link interfaces and egress processing engines forward 
sets of time slots to TSI switch 108. In one implementation, 
slots are sent to TSI switch 108 in the form of GFP framed 
data over SONET. In one embodiment, TSI switch 108 30 

receives a set of 48 time slots from each ingress link interface 
and egress processing engine. 

TSI switch 108 receives an incoming time slot (step 60). 
TSI switch 108 determines whether the slot has idle data (step 
61). If the slot is idle, TSI switch 108loops back to step 60 to 35 

receive the next slot. If the slot is not idle, TSI switch 108 
maps the data in the slot to a slot in an outgoing set of slots 
(step 62). TSI switch 108 maps data from an ingress link 
interface to a slot in an outgoing set of slots for an ingress 
processing engine. TSI switch 108 maps data from an egress 40 

processing engine to a slot in an outgoing set of slots for an 
egress link interface. TSI switch 108 returns to step 60 to 
receive the next incoming slot. 

In one embodiment, TSI switch 108 employs a mapping 
table to map incoming slot data to a slot in an outgoing set of 45 

slots (step 62). One example of a mapping table includes 
entries with the following fields: 1) Incoming Port-identi
fying an incoming TSI switch port on TSI switch 108 that is 
coupled to either an ingress link interface or egress processing 
engine to receive a set of time slots; 2) Incoming Slot- 50 

identifying a time slot in the incoming set of time of slots on 
the identified incoming TSI switch port; 3) Outgoing Port
identifying an outgoing TSI switch port on TSI switch 108 
that is coupled to either an ingress processing engine or egress 
link interface to provide an outgoing set of slots; and 4) 55 

Outgoing Slot-identifYing a time slot in the outgoing set of 
slots for the identified outgoing TSI switch port. 

When time slot data is received, TSI switch 108 finds a 
corresponding table entry. The corresponding table entry has 
an Incoming Port field and Incoming Slot field that corre- 60 

spond to the port on which the incoming set of slots is being 
received and the slot in the incoming set of slots that is being 
received. TSI switch 108 maps the incoming slot data to a slot 
in an outgoing set of slots that is identified by the entry's 
Outgoing Port and Outgoing Slot fields. In one implementa- 65 

tion, each outgoing set of slots corresponds to an outgoing 
TSI switch port in TSI switch 108. The outgoing TSI switch 

scribed table only when a backup is needed. 
These additional table fields can be used to support redun

dancy. A link interface or processing engine associated with 
an outgoing set of slots may become disabled. When this 
happens, TSI switch 108 will use the Backup Outgoing Port 
and Backup Outgoing Slot fields in place of the Outgoing Port 
and Outgoing Slot fields. This provides great flexibility in 
creating redundancy schemes on a per channel basis, per time 
slot basis, per port basis, per group of ports basis, or other 
basis. If a link interface fails, the virtual channel slots asso
ciated with the failed link interface can be redistributed 
among multiple link interfaces. Similarly, if a processing 
engine fails, the virtual channel slots associated with the 
failed processing engine can be redistributed among multiple 
processing engines. Switch 90 implements the redistribution 
by modifying the mapping information in the mapping 
table-switch 90 sets values in the above-described Backup 
fields to control the mapping operation of switch 108. This 
flexibility allows redundancy to be shared among multiple 
link interfaces and processing engines. In fact, network 
switch 90 can avoid the traditional need of having an entire 
link interface PCB and an entire processing engine PCB set 
aside for redundancy purposes. Switch 90 can modifY map-
ping information automatically, upon detecting a condition 
that calls for modification. Alternatively, a user can manually 
alter mapping information. 

Efficiency is greatly increased when each processing 
engine supports all protocols used in switch 90 at the OSI 
model layers supported by the processing engines. In this 
embodiment, each processing engine can receive and process 
data from any time slot in any link interface's set of time slots. 
This allows backup processing engines to be assigned so that 
no processing engine becomes over utilized and no process-
ing engine remains under utilized. In one implementation, 
switch 90 modifies mapping information by setting values in 
the Backup fields to facilitate efficient bandwidth pooling. 
Switch 90 monitors the utilization of processing engines and 
link interfaces. If any link interface or processing engine 
becomes over or under utilized, switch 90 sets values in the 
above-described Backup fields to redirect the flow of data to 
make link interface and processing engine utilization more 
evenly distributed. 

In a further embodiment, switch 90 employs the above
described Backup field to implement l:N, 1:1, or 1 + 1 redun-



US 7,535,895 B2 
15 

dancy. In 1 :N redundancy, a time slot or set of time slots is 
reserved for backing up a set of N time slots. In 1:1 redun
dancy, each time slot or set of time slots is uniquely backed up 
by another time slot orsetoftime slots. In 1+1 redundancy, an 
incoming time slot is mapped to two outgoing time slots- 5 

one time slot identified by the Outgoing Port and Outgoing 
Slot fields, and another time slot identified by the Backup 
Outgoing Port and Backup Outgoing Slot fields. This allows 
redundant dual paths to be created through switch 90. The 
ability of switch 90 to efficiently distribute processing engine 10 

resources allows this dual path redundancy to be achieved 
without significant decrease in the overall throughput perfor
mance of switch 90. 

16 
ingress link interface identifies a table entry that corresponds 
to the link channel and uses the protocols specified in the 
entry's Protocol field to move data from the link channel to 
the packet. The ingress link interface also loads the Destina
tion PE field in the packet header with the processing engine 
identified in the entry's Destination field. 

Packet switch 108 identifies the targeted ingress processing 
engine for the packet (step 7 4) and forwards the packet to the 
targeted ingress processing engine (step 76). In one imple
mentation, packet switch 108 uses the Destination PE field in 
the packet header to identify the targeted ingress processing 
engine. The ingress processing engine extracts payload data 
in the packets from packet switch 108 (step 77). The ingress 
processing engine maps the payload data into processing FIG. 5 is a flowchart depicting one embodiment of a pro

cess for TSI switch 108 to forward slots in an outgoing set of 
slots. TSI switch 108 selects a slot (step 64). TSI switch 108 
determines whether the slot is to contain an idle signal or valid 
virtual channel slot data (step 65). If the slot is to be idle, TSI 
switch 108 maps an idle data pattern into the selected slot 
(step 67) and forwards the slot to an ingress processing engine 
or egress link interface (step 68). If the slot is not idle (step 
65), TSI switch 108 maps virtual channel data into the 
selected slot (step 66) and forwards the slot to an ingress 
processing engine or egress link interface (step 68). TSI 
switch 108 continues to loop back to step 64 and repeat the 
above-described process. 

15 packets for processing by the ingress processing engine. 
In one embodiment, network switch 90 maintains mapping 

tables that are used by the ingress processing engine to map 
payload data from the ingress processing engine into process
ing packets (step 77). In one implementation, the table con-

20 tains entries with the following fields: 1) Source Informa
tion-identifYing a permutation of values from the packet 
header fields Source LI, Source PHY, and Source Channel; 2) 
Protocol-identifying the Layer 1 and Layer 2 protocols 
associated with the data having a header that matches the 

In one implementation, the process in FIG. 5 can be per
formed in real time while the outgoing set of slots is being 
forwarded. Alternatively, an entire outgoing set of slots is 
assembled before forwarding any channels. 

25 Source Information field; and 3) Link Channel-identifying 
the link channel that originated the data. A user of switch 90 
programs these fields in one embodiment. In alternate 
embodiments, different fields can be employed, or other 

FIG. 6 is a flowchart depicting an alternate embodiment of 
a process for the ingress flow of data through network switch 

30 

instrumentalities can replace the table. 
When a packet arrives from packet switch 108, the ingress 

processing engine finds an entry with a Source Information 
field that corresponds to the values in the packet's header. The 
ingress processing engine then uses the identified entry's 
Protocol field to map the packet payload data into a process-

90 when switch 108 is a packet switch. The process steps with 
the same numbers as those appearing in FIG. 2A operate the 
same as described for FIG. 2A. The description in FIG. 6 will 
highlight the differences in the ingress data flow when packet 
switch 108 is employed. 

35 ing packet. In one implementation, the ingress processing 
engine also includes a link channel identifier in the processing 
packet, based on the Link Channel field. The remaining steps 
in FIG. 6 conform to those described above for FIG. 2. After the ingress link interface receives physical signals for 

link channels (step 10), the ingress processing engine maps 
link channel data into one or more packets (step 70). The link 40 

interface forwards each packet to packet switch 108 (step 72) 
for delivery to an ingress processing engine. Each packet 
includes a payload and a header. The payload includes the 
data received from the physical medium that needs to be 
forwarded to an ingress processing engine. The header 45 

includes information necessary for packet switch 108 to prop
erly direct the packet to a targeted ingress processing engine. 
The ingress link interface creates the header in the step of 
mapping data into the packet (step 70). 

In one implementation, the header includes the following 50 

fields: 1) Destination PE-identifYing the targeted ingress 
processing engine; 2) Source LI-identifYing the ingress link 
interface that created the packet; 3) Source PHY -identifY
ing the link interface transceiver that received the data in the 
packet's payload; and ( 4) Source Channel-identifying a link 55 

channel in which the payload data was received by the ingress 
link interface. In alternate embodiments, different header 
fields can be employed. 

In one implementation, the ingress link interface maps data 
into the packet's payload (step 70) using a mapping table. 60 

One embodiment of the mapping table includes entries with 
the following fields: 1) Destination-identifying a processing 
engine; 2) Link Channel-identifYing a link channel; and 3) 
Protocol-identifYing the Layer 1 and Layer 2 protocols for
mat of data in the identified link channel. A user of switch 90 65 

programs these fields in one embodiment. The ingress link 
interface maps data into a packet from a link channel. The 

FIG. 7 is a flowchart depicting an alternate embodiment of 
a process for the egress flow of data through network switch 
90 when switch 108 is a packet switch. The steps in FIG. 7 
with the same reference numbers as those in FIG. 3 operate in 
the same manner described for FIG. 3. The description of 
FIG. 7 will highlight the differences in the egress data flow 
when switch 108 is a packet switch. 

After processing packets from reassembled fabric cells 
(Step 34), the egress processing engine maps packet data into 
new packets for delivery to packet switch 108 (step 80). In one 
implementation, the egress processing engine uses a mapping 
table to perform this operation. One embodiment of the map
ping table includes the following fields: 1) Packet Informa-
tion-identifYing information to use in a packet header; 2) 
Link Channel-identifying a link channel that originated the 
data being put into the packet; and 3) Protocol-identifying 
the Layer 1 and Layer 2 protocols for the packet data. A user 
of network switch 90 configures these fields. In alternate 
embodiments, different fields can be employed, or the table 
can be replaced by a different instrumentality. 

The egress processing engine identifies a table entry that 
has a Link Channel field that corresponds to the link channel 
that originated the payload data in the processing packet. The 
egress processing engine maps the payload data into a packet 
for packet switch 108, based on the protocols in the corre
sponding Protocol field. The egress processing engine uses 
the entry's Packet Information field to create a header for the 
packet. In one implementation, the packet headers include the 
following fields: 1) Source PE-identifYing the egress pro-



US 7,535,895 B2 
17 

cessing engine that created the packet; 2) Destination 
LI-identifying a targeted egress link interface for the packet 
3) Destination PHY -identifying a targeted transceiver on 
the identified egress link interface; and ( 4) Destination Chan
nel-identifying a targeted link channel in which the payload 
data is to be transmitted from the egress link interface. In 
alternate embodiments, different header fields can be 
employed. 

The egress processing engine forwards the new packets to 
packet switch 108 for switching to the targeted egress link 10 

interface (step 82). Packet switch 108 identifies the targeted 
egress link interface for the incoming packet (step 84). Packet 
switch 108 uses the header information in the packet to make 
this identification. For the header described above, the Des
tination LI field identifies the targeted egress link interface. 15 

Packet switch 108 forwards the packet to the targeted egress 
link interface (step 86). Transmission data frames are gener
ated (step 87) and physically transmitted (step 46). In order to 
generate frames (step 87), the egress processing engine uses 
the header fields in the packet from packet switch 108. In one 20 

implementation, packet switch 108 uses the Destination PHY 
and Destination Channel fields to generate these frames. 

FIG. 8 is a block diagram depicting one embodiment of 
switch 90, implemented with a mid-plane architecture. 
Switch 90 includes control module 130, which is coupled to 25 

control bus 150. The above-described link interfaces 100, 
102, 104, and 106, processing engines, 110, 112, 114, and 
116, switch 108, and fabric 120 are also coupled to control bus 
150. Control bus 150 carries control information for directing 
the operation of components in switch 90. In one implemen- 30 

tation, control bus 150 is a 100 Base-T Ethernet communica
tion link. In such an embodiment, control bus 150 employs 
the 100 Base-T Ethernet protocols for carrying and format
ting data. In alternate embodiments, a variety of different 
protocols can be employed for implementing control bus 150. 35 

In a further embodiment, control bus 150 is a star-like 
switched Ethernet network. Further details regarding the 
operation of control module 130 are provided below. 

Link interfaces 100, 102, 104, and 106, processing engines 
110, 112, 114, and 116, and switch 108 are coupled to switch 40 

plane 152. Switch plane 152 carries sets of time slots. In one 
implementation, switch 108 is a TSI switch and switch plane 
152 carries GFP framed data over SO NET. In one such imple
mentation, the capacity of switch plane 152 is 2.488 Giga-bits 
per second, with the SONET frame containing 48 time slots 45 

that each support bandwidth equivalent to one STS-1 chan
nel. Alternatively, the frame may include higher bandwidth 
channels or even different size channels. In further embodi
ments, switch plane 152 carries STS-192 SO NET. In another 
embodiment, switch 108 is a packet switch and switch plane 50 

152 carries packets. Processing engines 110, 112, 114, and 
116 and fabric 120 are coupled to fabric plane 154. The 
processing engines and fabric 120 exchange fabric cells 
across fabric plane 154. 

FIG. 8 shows data planes 152 and 154 as separate from 55 

control bus 150. In alternate embodiments, control bus 150 
can be implemented as part of switch plane 152 and fabric 
plane 154. 

FIG. 9 is a high-level block diagram depicting one embodi
ment of control module 130. In one embodiment, control 60 

module 130 is a PCB in switch 90. Control module 130 
directs the operation oflink interfaces 100, 102, 104, and 106, 
processing engines 110, 112, 114, and 116, switch 108, and 
fabric 120. In one implementation, control module 130 
directs the operation of these components by issuing configu- 65 

ration and operation instructions that dictate how the compo
nents operate. 

18 
Control module 130 also maintains a management infor

mation base ("MIB") that maintains the status of each com
ponent at various levels of detail. In one implementation, the 
MIB maintains information for each link interface and each 
processing engine. This enables control module 130 to deter
mine when a particular component in switch 90 is failing, 
being over utilized, or being nnder utilized. Control module 
130 can react to these determinations by making adjustments 
in the internal switching of data between link interfaces and 
processing engines through switch 1 08-changing switching 
of data associated with failed or inefficiently utilized compo
nents. 

In one example, control module 130 detects that a process
ing engine is under utilized. Control module 130 responds by 
arranging for switch 108 to switch one or more time slots 
from one or more link interfaces to the under utilized process
ing engine. In another example, control module 130 deter
mines that a failure occurred at a link interface. Control mod
ule 130 arranges for switch 108 to switch each time slot 
originally directed to the failed link interface to one or more 
different link interface. In one implementation, the time slots 
are distributed to several alternative link interfaces. Control 
module 130 facilitates the above-described time slot switch
ing changes by modifying mapping table information, such as 
the Backup field, in one embodiment. The mapping table 
information can be maintained in control module 130 or 
distributed on switch 108. 

In one embodiment, control module 130 contains process
ing nnit 205, main memory 210, and interconnect bus 225. 
Processing unit 205 may contain a single microprocessor or a 
plurality of microprocessors for configuring control module 
130 as a multi-processor system. Processing nnit 205 is 
employed in conjnnction with a memory or other data storage 
medium containing application specific program code 
instructions to implement processes carried out by switch 90. 

Main memory 210 stores, in part, instructions and data for 
execution by processing unit 205. If a process is wholly or 
partially implemented in software, main memory 210 can 
store the executable instructions for implementing the pro
cess. In one implementation, main memory 210 includes 
banks of dynamic random access memory (DRAM), as well 
as high-speed cache memory. 

Control module 130 further includes control bus interface 
215, mass storage device 220, peripheral device(s) 230, por
table storage medium drive( s) 240, input control device inter
face 270, graphics subsystem 250, and output display inter
face 260, or a subset thereof in various embodiments. For 
purposes of simplicity, all components in control module 130 
are shown in FIG. 9 as being connected via bus 225. Control 
module 130, however, may be connected through one or more 
data transport means in alternate implementations. For 
example, processing unit 205 and main memory 210 may be 
connected via a local microprocessor bus. Control bus inter
face 215, mass storage device 220, peripheral device(s) 230, 
portable storage medium drive(s) 240, and graphics sub
system 250 may be coupled to processing nnit 205 and main 
memory 210 via one or more input/output busses. 

Mass storage device 220 is a non-volatile storage device for 
storing data and instructions for use by processing nnit 205. 
Mass storage device 220 can be implemented in a variety of 
ways, including a magnetic disk drive or an optical disk drive. 
In software embodiments of the present invention, mass stor
age device 220 stores the instructions executed by control 
module 130 to perform processes in switch 90. 

Portable storage medium drive 240 operates in conjunction 
with a portable non-volatile storage medium to input and 
output data and code to and from control module 130. 



US 7,535,895 B2 
19 

Examples of such storage mediums include floppy disks, 
compact disc read only memories (CD-ROM) and integrated 
circuit non-volatile memory adapters (i.e. PC-MCIA 
adapter). In one embodiment, the instructions for control 
module 130 to execute processes in switch 90 are stored on 
such a portable medium, and are input to control module 130 
via portable storage medium drive 240. 

Peripheral device( s) 230 may include any type of computer 
support device, such as an input/output interface, to add addi
tiona! functionality to control module 130. For example, 10 

peripheral device(s) 230 may include a communications con
troller, such as a network interface, for interfacing control 
module 130 to a communications network. Instructions for 
enabling control module 130 to perform processes in switch 

20 
Processing module 302 is coupled to slot mapper 303. 

During ingress, slot mapper 303 obtains data from processing 
module 302. Slot mapper 303 performs the above-described 
operations for mapping data into virtual channel time slots 
(steps 51 and 52, FIG. 3A) and forwarding time slot to TSI 
switch108 (step 14, FIG. 2A). During egress, slotmapper303 
receives data from processing engines over switch plane 152. 
Slot mapper 303 maps slot data into virtual channels for use 
by processing module 302 in performing Layer 2 framing and 
Layer 1 processing. 

Slot mapper 303 is coupled to switch plane interface 304. 
Switch plane interface 304 is coupled to switch plane 152 to 
transfer data between channel mapper 303 and plane 152. 
During data ingress, switch plane interface 304 forwards sets 

90 may be downloaded into main memory 210 over a com
munications network. Control module 130 may also interface 
to a database management system over a communications 
network or other medium that is supported by peripheral 
device(s) 230. 

15 of time slots from slot mapper 303 onto switch plane 152. In 
one implementation, interface 304 sends sets of time slots 
over switch plane 152 in the form of GFP framed data over 
SONET. During egress, interface 304 transfers data from 
switch plane 152 to slot mapper 303. 

Controller 308 directs the operation of transceiver 300, 
processing module 302, slot mapper 303, and switch plane 
304. Controller 308 is coupled to these components to 
exchange information and control signals. Controller 308 is 
also coupled to local memory 306 for accessing data and 

Input control device interface 270 provides interfaces for a 20 

portion of the user interface for control module 130. Input 
control device interface 270 may include an alphanumeric 
keypad for inputting alphanumeric and other key informa
tion, a cursor control device, such as a mouse, a trackball, 
sty Ius, or cursor direction keys. In order to display textual and 
graphical information, control module 130 contains graphics 
subsystem 250 and output display interface 260. Output dis
play interface 260 can include an interface to a cathode ray 
tube display or liquid crystal display. Graphics subsystem 250 
receives textual and graphical information, and processes the 30 

information for output to output display interface 260. 

25 software instructions that direct the operation of controller 
308. Controller 308 is coupled to control bus interface 310, 
which facilitates the transfer of information between link 
interface 100 and control bus 150. Controller 308 can be 

Control bus interface 215 is coupled to bus 225 and control 
bus 150. Control bus interface 215 provides signal conversion 
and framing to support the exchange of data between bus 225 
and control bus 150. In one implementation, control bus inter- 35 

face 215 implements 100 Base-T Ethernet protocols-con
verting data between the format requirements of bus 225 and 
the 100 Base-T Ethernet format on control bus 150. 

FIG. 10 is a block diagram of one embodiment of a link 
40 

interface in switch 90, such as link interface 100, 102, 104, or 
106. The link interface in FIG. 10 is for use when switch 108 

implemented using any standard or proprietary microproces
sor or other control engine. Controller 308 responds to 
instructions from control module 130 that are received via 
control bus 150. Memory 307 is coupled to controller 308, 
Layer !/Layer 2 processing module 302, and slot mapper 303 
for maintaining instructions and data. 

Controller 308 performs several functions in one embodi
ment. Controller 308 collects network related statistics gen
erated by transceiver 300 and Layer !/Layer 2 processing 
module 302. Example statistics include carrier losses on 
medium 122 and overflows in Layerl/Layer 2 processing 
module 302. Controller 308 and control module 130 employ 
these statistics to determine whether any failures have 
occurred on link interface 100. The collected statistics can 
also enable controller 308 and control module 130 to deter-is a TSI switch. In one implementation, the link interface 

shown in FIG. 10 is a PCB. FIG. 10 will be described with 
reference to link interface 100, but the implementation shown 
in FIG. 10 can be applicable to other link interface modules. 
In one implementation, each link interface resides in switch 

mine the level of bandwidth traffic currently passing through 
45 link interface 100. Control module 130 uses this information 

90 as a PCB. 

Link interface 100 includes transceiver 300 for receiving 
and transmitting data signals on medium 122 in accordance 50 
with the physical signaling requirements of medium 122. In 
one implementation, transceiver 300 is an optical transceiver. 

to ultimately decide how to distribute the bandwidth capacity 
of link interfaces and processing engines within switch 90. 
Controller 308 carries out instructions from control module 
130 when implementing link interface and processing engine 
switchovers to account for failures or improved resource uti
lization. The instructions may call for activating or deactivat
ing transceiver 300. 

In one example, controller 308 identifies a failure in trans
ceiver 300. Controller 308 stores this indication in a database 

In another embodiment, transceiver 3 00 is a Giga-bit Ethernet 
transceiver for exchanging physical signals with medium 122 
in accordance with the physical signaling standards of Giga
bit Ethernet. 

Transceiver 300 is coupled to Layer !/Layer 2 processing 
module 302. During ingress, transceiver 300 sends signals 
from medium 122 to processing module 302. In one imple
mentation, processing module 302 carries out all Layer 1 
processing for incoming data and a portion of required Layer 

55 in memory 307. The failure information stored in memory is 
provided to control module 130. Control module 130 uses this 
information to deactivate link interface 100 and initiate a 
switchover process-assigning one or more link interfaces in 
switch 90 to begin carrying out the operations oflink interface 

60 100. 

2 processing. In some implementations, processing module 
302 does not perform any Layer 2 processing. Processing 
module 302 supports different protocols in various embodi
ments. During an egress operation, processing module 302 65 

processes data according to Layer 1 and Layer 2 protocols to 
prepare the data for transmission onto medium 122. 

In another example, controller 308 provides control mod
ule 130 with information relating to the amount ofbandwidth 
being utilized on link 122-indicating whether link interface 
100 can handle more traffic or needs assistance in handling 
the current traffic. Based on this information, control module 
130 may decide to switchover some of the responsibilities of 
link interface 100 to one or more different link interfaces. If a 



US 7,535,895 B2 
21 

switchover is needed, control module 120 arranges for the 
mapping table information to be modified, as described above 
for one embodiment. 

FIG. 11 is a block diagram depicting an alternate embodi
ment of a link interface when switch 108 is a packet switch. 
The components of FIG. 11 that are numbered the same as a 
component in FIG. 10 operate the same as described for FIG. 
10. The only difference is that slot mapper 303 from FIG. 10 
is replaced by packet mapper 309. Packet mapper 309 is 
coupled to exchange data with Layer !\Layer 2 processing 10 

module 302 and switch plane interface 304. 
During ingress, packet mapper 309 maps data into packets 

(step 70, FIG. 6). Packet mapper 309 retrieves data from 
processing module 302. Packet mapper 309 maps the data 
into packet payloads and places headers on the packets. 15 

Packet mapper 309 then forwards the packets to switch plane 
304, which forwards the packets to packet switch 108. 

During egress, packet mapper 309 assists in generating 
data frames for transmission (step 87, FIG. 7). Packet mapper 
309 receives data from switch plane interface 304 in the form 20 

of packets formatted for packet switch 108. Packet mapper 
309 places the data for the packets into a format that allows 
processing module 302 to properly direct the packet payloads 
into frames for transmission by transceiver 300. 

FIG. 12 is a block diagram depicting one embodiment of a 25 

processing engine in switch 90, such as processing engines 
110, 112, 114, and 116. In one embodiment, processing 
engines 110, 112, 114, and 116 are each implemented as 
PCBs in switch 90. In one implementation, each processing 
engine in switch 90 support all of the protocols for each OSI 30 

model layer supported on the processing engine. This enables 
any processing engine to exchange data with any link inter
face in switch 90. This provides switch 90 with the freedom to 
allocate processing engine resources without considering the 
protocol employed in incoming data. The granularity of inter- 35 

nal data switching between link interfaces and processing 
engines can vary in different embodiments. In one embodi
ment, switch 90 is able to individually switch a single time 
slot of data from each link interface to a processing engine. 

Although FIG. 12 is described with respect to processing 40 

engine 110, the description applies to all processing engines 
in switch 90. Processing engine 110 includes network pro
cessor 338 coupled to exchange information with fabric plane 
interface 336 and switch plane interface 342 via conversion 
engine 335. Interface 342 is coupled to switch plane 152 to 45 

exchange data between processing engine 110 and switch 
108. Interface 336 is coupled to fabric plane 154. Interface 
336 uses plane 154 to exchange data between processing 
engine 110 and fabric 120. 

During data ingress, interface 342 receives data provided 50 

on plane 152. Interface 342 provides the data to conversion 
engine 335. Conversion engine 335 extracts payloads (step 
20, FIG. 2A) from received sets of time slots for processing 
(step 22, FIG. 2A) at Layer 2 and above. Conversion engine 
335 maps an extracted payload into a desired packet format 55 

and forwards the packet to network processor 338 for pro-
cessing. 

22 
cessing the packets at Layer 2 and above (steps 32 and 34, 
FIG. 2B). Network processor 338 passes processed data to 
conversion engine 335. Conversion engine 335 maps the data 
into one or more virtual channel time slots (step 3 6, FIG. 2B). 
Conversion engine 335 passes egress sets of time slots to 
plane 152 via switch plane interface 342. Interface 342 places 
sets of time slots on plane 152, which carries the data to 
switch 108. 

In an alternate embodiment, switch 108 is a packet switch. 
In this embodiment, conversion engine 335 converts data 
between processing packets and packets exchanged with 
packet switch 108 (step 77, FIG. 6 and step 80, FIG. 7). 

Network processor 338 carries out operations that support 
the applications running on switch 90. For example, switch 90 
may support virtual private networks by acting as a Provider 
Edge Router. Network processor 338 maintains routing tables 
for the virtual private networks. Processing engine 338 
employs the tables to properly route data for a VPN to the next 
step in a virtual circuit in the VPN. 

Processing engine 110 also includes controller 332, which 
is coupled to local memory 334 and control bus interface 330. 
Network processor 338 is coupled to controller 332 to receive 
data and control instructions. Controller 332 performs many 
of the same functions described above for controller 308 on 
link interface 100, except that controller 332 performs opera
tions specific to the operation of processing engine 110. Local 
memory 334 holds instructions for controller 332 to execute, 
as well as data maintained by controller 332 when operating. 
Control bus interface 330 operates the same as the above
described control bus interface 310 in FIG. 10. Memory 333 
is coupled to controller 332 and network processor 338 to 
maintain data and instructions. 

One application performed on controller 332 is the main
tenance of network related statistics. Network processor 338 
collects statistics based on information in the data frames 
passing through processing engine 110. These statistics iden-
tify whether a failure has occurred on processing engine 110 
or another component within switch 90. Additional statistics 
collected by network processor 338 indicate the level of uti
lization that processing engine 110 is experiencing. These 
statistics are made available to controller 332 for delivery to 
control module 130. 

Example statistics include whether frames have been 
dropped and the number of frames passing through network 
processor 338. When a failure is detected, controller 332 
signals control module 130 over bus 150. In one implemen-
tation, controller 332 performs this operation by sending data 
over bus 150 that contains information to indicate that a 
failure has taken place. Similarly controller 332 can send 
information over bus 150 to control module 130 that indicates 
the level of bandwidth utilization on processing engine 110. 
Alternatively, control module 130 can access raw statistics in 
local memory 334 and memory 333 and make failure and 
utilization assessments. 

In response to the statistics provided by controller 332, 
control module 130 may decide that it is appropriate to per
form a switchover that involves processing engine 110 or 
other components within switch 90. Control module 130 
sends instructions to controller 332 over bus 150 to identifY 

Network processor 338 processes data from plane 152 
according Layer 2 protocols and above. Network processor 
338 also performs the above-described function of generating 
fabric cells (step 24, FIG. 2A). Fabric plane interface 336 
receives fabric cells from network processor 338. Interface 
336 transmits the fabric payload onto fabric plane 154 (step 
26, FIG. 2A). 

60 the actions for processing engine 110 to implement to facili
tate a switchover. These actions may include activating or 
deactivating processing engine 110. In the case of processing 
engine 110 being substituted for another processing engine, 
control module 130 may provide controller 332 with infor-

During data egress, network processor 338 processes data 
in fabric cells received from fabric plane 154 through fabric 
plane interface 336-reassembling cells into packets and pro-

65 mation that brings processing engine 110 to the current state 
of the other processing engine. This allows processing engine 
110 to operate in place of the replaced component. 



US 7,535,895 B2 
23 

Controller 332 can also support the performance of many 
other applications by network processor 338. In various 
embodiments, controller 332 can direct the operation of net
work processor 338 in performing tunneling, frame relay 
support, and Ethernet switching and bridging functions. 
These are only examples of some applications that can be 
performed on processing engine 110. A wide variety of appli
cations can operate on processing engine 110. 

24 
receive egress data in the formofa setoftime slots, such as 48 
time slots sent in the format ofGFP framed data over SO NET. 

The incoming TSI switch ports are used during the process 
steps described above with reference to FIG. 4 for receiving 
and mapping incoming time slot data to outgoing time slots. 
Each incoming TSI switch port is coupled to switch plane 152 
to receive a set of time slots from either a link interface or 
processing engine. Each incoming TSI switch port is also 

FIG. 13 is a block diagram depicting one embodiment of a 
single line card module that contains both fabric 120 and 10 

switch 108. Switch 108 directs data between link interfaces 

coupled to memory interface 400. When an incoming TSI 
switch port receives a time slot of data (step 60, FIG. 4), TSI 
switch 108 maps the slot data to a time slot in an outgoing set 

and processing engines over switch plane 152. During 
ingress, data passes from an ingress link interface onto plane 
152, into switch 108, back onto plane 152, and into one or 
more processing engines. During egress, switch 108 receives 
data from an egress processing engine on plane 152 and 
provides that data to one or more egress link interfaces via 
plane 152. Fabric 120 provides for the exchange of data 
between processing engines. Fabric 120 receives data on 
plane 154 from an ingress processing engine and passes the 
data to an egress processing engine on plane 154. 

of time slots (step 62, FIG. 4). TSI switch 108 maps the slot 
data by storing it into a location in memory 404 that is des
ignated for the slot in the outgoing set of time slots. Each 

15 incoming TSI switch port is coupled to memory interface 
400, which is coupled to memory bus 406. Memory bus 406 
is coupled to memory 404 to exchange data. In operation, data 
from a slot in an incoming TSI switch port is provided to 
memory interface 400 along with an identifier for a slot in an 

20 outgoing set of time slots. Memory interface 400 loads the 
data from the incoming TSI switch port's slot into a location 
in memory 404 that corresponds to the identified time slot in 
the outgoing set of time slots. 

Switch 108 and fabric 120 are both coupled to controller 
366. Controller 366 interfaces with local memory 368 and 
network control bus interface 364 in a marmer similar to the 
one described above for controller 308 in link interface 100 25 

TSI switch 108 also includes connection control396. Con
nection control 396 is coupled to memory interface 400 to 
provide mapping information. The information from connec
tion control 396 informs memory interface 400 where to map 
each incoming time slot. In one implementation, connection 
control 396 includes the above-described mapping tables 

(FIG. 10). Memory 368 maintains instructions for directing 
the operation of controller 366, as well as data employed by 
controller 366 in operation. Control bus interface 364 allows 
controller 366 to exchange data and control information with 
control module 130 over control bus 150. In one implemen
tation, control bus interface 364 supports the transmission of 
100 Base-T Ethernet information over control bus 150. 

As with the controllers described above, controller 366 
supports the performance of a number of applications by 
fabric 120 and switch 108. In one application, controller 366 
collects statistical information from switch 108 and fabric 
120. One type of statistical information identifies the amonnt 
of data passing through fabric 120 and switch 108. Other 
statistics indicate whether switch 108 or fabric 120 have 
failed. Those skilled in the art will recognize that various 
embodiments of the invention allow for controller 366 to 
collect a wide array of different statistical information. Con
troller 366 communicates the collected statistical information 
to control module 130 over bus 150. Control module 130 uses 

30 employed by TSI switch 108. 
TSI switch 108 also includes a set of outgoing TSI switch 

ports. Each outgoing TSI switch port is coupled to either a 
link interface or a processing engine to forward outgoing sets 
of time slots. TSI switch 108 includes an outgoing TSI switch 

35 port for each link interface and an outgoing TSI switch port 
for each processing engine. The outgoing TSI switch ports are 
coupled to the link interfaces and processing engines over 
switch plane 152. Outgoing TSI switch ports coupled to pro
cessing engines deliver outgoing sets of time slots to the 

40 processing engine during ingress data flow. Outgoing TSI 
switch ports coupled to link interfaces provide outgoing sets 
of time slots to the link interfaces during egress data flow. 
FIG. 14 shows a subset of the outgoing TSI switch ports as 
transmit ports 386, 388 and 390. 

the statistical information to determine whether the respon- 45 

sibilities assigned to any link interface or processing engine 
need to be redistributed. 

The outgoing TSI switch ports are used in carrying out the 
forwarding of outgoing sets of time slots as shown above in 
FIG. 5. When an outgoing set of time slots needs to be trans
mitted, memory interface 402 retrieves the data for the time 
slots from locations in memory 404 that are designated to the 

Controller 366 also supports the redistribution of respon
sibilities-enabling control module 130 to change switching 
rules in switch 108. For example, controller 366 can program 
the above-described Backup field values in TSI switch lOS
redistributing time slot data among different link interfaces 
and processing engines. 

FIG. 14 is a block diagram depicting one embodiment of 
TSI switch 108. TSI switch 108 includes an incoming TSI 
switch port for each link interface and an incoming TSI 
switch port for each processing engine. Each incoming TSI 
switch port is coupled to either a link interface or processing 
engine. In one embodiment, TSI switch 108 includes 24 
incoming TSI switch ports coupled to link interfaces and 12 
incoming TSI switch ports coupled to processing engines. A 
subset of the incoming TSI switch ports in TSI switch 108 are 
shown in FIG. 14 as TSI switch ports 380, 382 and 384. 
Incoming TSI switch ports coupled to link interfaces receive 
ingress data in the form of a set of time slots, such as 48 time 
slots sent in the format of GFP framed data over a SO NET. 
Incoming TSI switch ports coupled to processing engines 

50 slots (step 66, FIG. 5). Connection control 396 is coupled to 
memory interface 402 to indicate whether valid data exists in 
memory 404 for a time slot or idle data needs to be resident in 
the portion of the outgoing TSI switch port corresponding to 
the slot. When valid data exists, memory interface 402 

55 retrieves the data from memory 404. 
Each outgoing TSI switch port communicates with 

memory 404 through memory interface 402 over memory bus 
406. Each outgoing TSI switch port is coupled to memory 
interface 402. Memory interface 402 is coupled to memory 

60 bus 406 to retrieve data from memory 404 to service channel 
data requests from transmit ports. 

In alternate embodiments, different designs can be 
employed for TSI switch 108 that facilitate the above-de
scribed operation ofTSI switch 108. In various embodiments, 

65 different TDM switches can be employed. 
The foregoing detailed description of the invention has 

been presented for purposes of illustration and description. It 



US 7,535,895 B2 
25 

is not intended to be exhaustive or to limit the invention to the 
precise form disclosed. Many modifications and variations 
are possible in light of the above teaching. The described 
embodiments were chosen in order to best explain the prin
ciples of the invention and its practical application to thereby 
enable others skilled in the art to best utilize the invention in 
various embodiments and with various modifications as are 
suited to the particular use contemplated. It is intended that 
the scope of the invention be defined by the claims appended 
hereto. 

We claim: 
1. A network switch comprising: 
a plurality of link interfaces; 
a plurality of processing engines; 

10 

a switch fabric coupled to said plurality of processing 15 

engines; and 
a switch coupling said plurality of link interfaces to said 

plurality of processing engines, wherein said switch is 
configured to: 

map data from at least one time slot in a set of time slots 20 

from a link interface in said plurality oflink interfaces to 
at least one outgoing set of time slots; and 

26 
a switch coupling said plurality of link interfaces to said 

plurality of processing engines, wherein switch is con
figured to: 

map data from a first link interface in said plurality oflink 
interfaces to multiple processing engines in said plural
ity of processing engines; and 

map data from multiple link interfaces in said plurality of 
link interfaces to a first processing engine in said plural
ity of processing engines, 

wherein said switch is configured to map data from a first 
link interface and map data from multiple link interfaces 
in response to mapping information maintained in said 
network switch, and 

said network switch is configured to modifY said mapping 
information in response to a failure of at least one link 
interface in said plurality oflink interfaces; 

wherein at least one processing engine in said plurality of 
processing engines receives data to be processed by said 
at least one processing engine according to a first proto
col within a layer and data to be processed by said at least 
one processing engine according to a second protocol 
within said layer and said first protocol is different than 
said second protocol. forward each outgoing set of time slots in said at least one 

outgoing set of time slots to a processing engine in said 
plurality of processing engines, 

6. The network switch according to claim 5, wherein said 
25 mapping information includes entries in a mapping table. 

wherein said switch is configured to map data in response 
to mapping information maintained in said network 
switch, wherein said mapping information identifies a 
time slot in an outgoing set of time slots in said at least 
one outgoing set of time slots for each time slot in said 30 

set of time slots; and 
said network switch is configured to modify said mapping 

information in response to a failure of at least one link 
interface in said plurality of link interfaces. 

2. The network switch according to claim 1, wherein said 35 

mapping information includes entries in a mapping table. 
3. A network switch comprising: 
a plurality of link interfaces; 
a plurality of processing engines; 

40 
a switch fabric coupled to said plurality of processing 

engines; and 
a switch coupling said plurality of link interfaces to said 

plurality of processing engines, wherein said switch is 
configured to: 

45 
map data from at least one time slot in a set of time slots 

from a processing engine in said plurality of processing 
engines to at least one outgoing set of time slots; and 

forward each outgoing set of time slots in said at least one 
outgoing set of time slots to a link interface in said 

50 
plurality of link interfaces, 

wherein said switch is configured to map data in response 
to mapping information maintained in said network 
switch, wherein said mapping information identifies a 
time slot in an outgoing set of time slots in said at least 55 
one outgoing set of time slots for each time slot in said 
set of time slots; and 

said network switch is configured to modify said mapping 
information in response to a failure of at least one link 
interface in said plurality of link interfaces. 

4. The network switch according to claim 3, wherein said 
mapping information includes entries in a mapping table. 

5. A network switch comprising: 
a plurality of link interfaces; 
a plurality of processing engines; 
a switch fabric coupled to said plurality of processing 

engines; and 

60 

65 

7. The network switch according to claim 6, wherein said 
switch is configured to modifY said mapping information 
including by: 

(1) modifying at least one Backup field value in said map
ping table. 

8. The network switch according to claim 5, wherein said 
switch is a switch from a group of switches consisting of a 
packet switch, a multiplexing switch, and a time slot inter
change switch. 

9. The network switch according to claim 5, wherein: 
said plurality of link interfaces includes at least twice as 

many link interfaces as a number of processing engines 
included in said plurality of processing engines; 

each link interface in said set oflink interfaces has redun
dancy; 

each processing engine in said set of processing engines 
has redundancy; and 

no processing engine in said set of processing engines is 
idle. 

10. A network switch comprising: 
a plurality oflink interfaces; 
a plurality of processing engines; 
a switch fabric coupled to said plurality of processing 

engines; and 
a switch coupling said plurality of link interfaces to said 

plurality of processing engines, wherein said switch is 
configured to: 

map data from at least one time slot in a set of time slots 
from a link interface in said plurality oflink interfaces to 
at least one outgoing set of time slots; and 

forward each outgoing set of time slots in said at least one 
outgoing set of time slots to a processing engine in said 
plurality of processing engines, 

wherein said switch is configured to map data in response 
to mapping information maintained in said network 
switch, wherein said mapping information identifies a 
time slot in an outgoing set of time slots in said at least 
one outgoing set of time slots for each time slot in said 
set of time slots; and 

said network switch is configured to modifY said mapping 
information in response to a failure of at least one pro
cessing engine in said plurality of processing engines. 



US 7,535,895 B2 
27 

11. The network switch according to claim 10, wherein 
said mapping information includes entries in a mapping table. 

12. A network switch comprising: 
a plurality of link interfaces; 
a plurality of processing engines; 
a switch fabric coupled to said plurality of processing 

engines; and 
a switch coupling said plurality of link interfaces to said 

plurality of processing engines, wherein said switch is 
configured to: 10 

map data from at least one time slot in a set of time slots 
from a processing engine in said plurality of processing 
engines to at least one outgoing set of time slots; and 

forward each outgoing set of time slots in said at least one 
outgoing set of time slots to a link interface in said 15 

plurality of link interfaces, 
wherein said switch is configured to map data in response 

to mapping information maintained in said network 
switch, wherein said mapping information identifies a 
time slot in an outgoing set of time slots in said at least 20 

one outgoing set of time slots for each time slot in said 
set of time slots; and 

said network switch is configured to modify said mapping 
information in response to a failure of at least one pro
cessing engine in said plurality of processing engines. 

13. The network switch according to claim 12, wherein 
said mapping information includes entries in a mapping table. 

14. A network switch comprising: 
a plurality of link interfaces; 
a plurality of processing engines; 
a switch fabric coupled to said plurality of processing 

engines; and 

25 

30 

a switch coupling said plurality of link interfaces to said 
plurality of processing engines, wherein said switch is 

35 
configured to: 

map data from a first link interface in said plurality oflink 
interfaces to multiple processing engines in said plural
ity of processing engines; and 

map data from multiple link interfaces in said plurality of 40 
link interfaces to a first processing engine in said plural-
ity of processing engines, 

wherein said switch is configured to map data from a first 
link interface and map data from multiple link interfaces 
in response to mapping information maintained in said 45 
network switch; and 

said network switch is configured to modify said mapping 
information in response to a failure of at least one pro
cessing engine in said plurality of processing engines; 

wherein at least one processing engine in said plurality of 50 
processing engines receives data to be processed by said 
at least one processing engine according to a first proto
col within a layer and data to be processed by said at least 
one processing engine according to a second protocol 
within said layer and said first protocol is different than 55 
said second protocol. 

15. The network switch according to claim 14, wherein 
said mapping information includes entries in a mapping table. 

16. The network switch according to claim 15, wherein 
said switch is configured to modify said mapping information 60 

including by: 
(1) modifYing at least one Backup field value in said map

ping table. 
17. The network switch according to claim 14, wherein 

said switch is a switch from a group of switches consisting of 65 

a packet switch, a multiplexing switch, and a time slot inter
change switch. 

28 
18. The network switch according to claim 14, wherein: 
said plurality of link interfaces includes at least twice as 

many link interfaces as a number of processing engines 
included in said plurality of processing engines; 

each link interface in said set oflink interfaces has redun
dancy; 

each processing engine in said set of processing engines 
has redundancy; and 

no processing engine in said set of processing engines is 
idle. 

19. A network switch comprising: 
a plurality oflink interfaces; 
a plurality of processing engines; 
a switch fabric coupled to said plurality of processing 

engines; and 
a switch coupling said plurality of link interfaces to said 

plurality of processing engines, wherein said switch is 
configured to: 

map data from a first link interface in said plurality oflink 
interfaces to multiple processing engines in said plural
ity of processing engines; 

map data from multiple link interfaces in said plurality of 
link interfaces to a first processing engine in said plural
ity of processing engines, 

wherein said switch is configured to map data from a first 
link interface and map data from multiple link interfaces 

in response to mapping information maintained in said 
network switch; and 

said network switch is configured to modifY said mapping 
information, including modifying at least one Backup 
field value in said mapping table; 

wherein at least one processing engine in said plurality of 
processing engines receives data to be processed by said 
at least one processing engine according to a first proto
col within a layer and data to be processed by said at least 
one processing engine according to a second protocol 
within said layer and said first protocol is different than 
said second protocol. 

20. The network switch according to claim 19, wherein 
said switch is configured to modify said mapping information 
in response to a utilization level of at least one link interface 
in said plurality of link interfaces. 

21. The network switch according to claim 19, wherein 
said switch is configured to modify said mapping information 
in response to a failure of at least one link interface in said 
plurality of link interfaces. 

22. The network switch according to claim 19, wherein 
said switch is configured to modify said mapping information 
in response to a utilization level of at least one processing 
engine in said plurality of processing engines. 

23. The network switch according to claim 19, wherein 
said switch is configured to modify said mapping information 
in response to a failure of at least one processing engine in 
said plurality of processing engines. 

24. The network switch according to claim 19, wherein 
said mapping information includes entries in a mapping table. 

25. The network switch according to claim 19, wherein 
said switch is a switch from a group of switches consisting of 
a packet switch, a multiplexing switch, and a time slot inter
change switch. 

26. The network switch according to claim 19, wherein: 
said plurality of link interfaces includes at least twice as 

many link interfaces as a number of processing engines 
included in said plurality of processing engines; 

each link interface in said set oflink interfaces has redun
dancy; 



US 7,535,895 B2 
29 

each processing engine in said set of processing engines 
has redundancy; and 

no processing engine in said set of processing engines is 
idle. 

27. A network switch comprising: 
a plurality of link interfaces; 
a plurality of processing engines; 
a switch fabric coupled to said plurality of processing 

engines; and 
a switch coupling said plurality of link interfaces to said 

plurality of processing engines, wherein said switch is 
configured to: 

30 
30. The network switch according to claim 28, wherein 

said switch is configured to modify said mapping information 
in response to a failure of at least one link interface in said 
plurality of link interfaces. 

31. The network switch according to claim 28, wherein 
said switch is configured to modify said mapping information 
in response to a utilization level of at least one processing 
engine in said plurality of processing engines. 

32. The network switch according to claim 28, wherein 
10 said switch is configured to modify said mapping information 

in response to a failure of at least one processing engine in 
said plurality of processing engines. 

map data from a first link interface in said plurality oflink 
interfaces to multiple processing engines in said plural-
ity of processing engines; and 15 

33. The network switch according to claim 28, wherein 
said mapping information includes entries in a mapping table. 

34. The network switch according to claim 28, wherein 
said switch is configured to modify said mapping information 
including by: 

map data from multiple link interfaces in said plurality of 
link interfaces to a first processing engine in said plural-
ity of processing engines; 

wherein said switch is configured to map data from a first 
20 

link interface and map data from multiple link interfaces 

(1) modifying at least one Backup field value in said map
ping table. 

35. The network switch according to claim 27, wherein 
said switch is a switch from a group of switches consisting of 
a packet switch, a multiplexing switch, and a time slot inter
change switch. 

in response to mapping information maintained in said 
network switch; and 

wherein at least one processing engine in said plurality of 
processing engines receives data to be processed by said 
at least one processing engine according to a first proto
col within a layer and data to be processed by said at least 
one processing engine according to a second protocol 
within said layer and said first protocol is different than 
said second protocol; and 

wherein: 
said plurality oflink interfaces includes at least twice as 

many link interfaces as a number of processing 
engines included in said plurality of processing 
engines; 

each link interface in said set of link interfaces has 
redundancy; 

each processing engine in said set of processing engines 
has redundancy; and 

36. The network switch according to claim 5, wherein said 
25 first protocol is High-level Data Link Control ("HDLC"), 

Point-to-Point Protocol ("PPP"), Frame Relay, Asynchro
nous Transfer Mode ("ATM"), Gigabit Ethernet, or Internet 
Protocol ("IP"); and said second protocol is High-level Data 
Link Control ("HDLC"), Point-to-Point Protocol ("PPP"), 

30 Frame Relay, Asynchronous Transfer Mode ("ATM"), Giga
bit Ethernet, or Internet Protocol ("IP"). 

37. The network switch according to claim 14, wherein 
said first protocol is High-level Data Link Control ("HDLC"), 
Point-to-Point Protocol ("PPP"), Frame Relay, Asynchro-

35 nous Transfer Mode ("ATM"), Gigabit Ethernet, or Internet 
Protocol ("IP"); and said second protocol is High-level Data 
Link Control ("HDLC"), Point-to-Point Protocol ("PPP"), 
Frame Relay, Asynchronous Transfer Mode ("ATM"), Giga-
bit Ethernet, or Internet Protocol ("IP"). 

no processing engine in said set of processing engines is 40 

idle. 

38. The network switch according to claim 27, wherein 
said first protocol is High-level Data Link Control ("HDLC"), 
Point-to-Point Protocol ("PPP"), Frame Relay, Asynchro
nous Transfer Mode ("ATM"), Gigabit Ethernet, or Internet 
Protocol ("IP"); and said second protocol is High-level Data 

28. The network switch according to claim 27, wherein 
said method includes the step of: 

(c) modifying said mapping information. 
29. The network switch according to claim 28, wherein 

said switch is configured to modify said mapping information 
in response to a utilization level of at least one link interface 
in said plurality oflink interfaces. 

45 Link Control ("HDLC"), Point-to-Point Protocol ("PPP"), 
Frame Relay, Asynchronous Transfer Mode ("ATM"), Giga
bit Ethernet, or Internet Protocol ("IP"). 

* * * * * 


