
111111 111

(12) United States Patent
Ben-Artzi et al.

(54) METHODS AND APPARATUS FOR
AUTOMATIC TRANSLATION OF A
COMPUTER PROGRAM LANGUAGE CODE

(75) Inventors: Guy Ben-Artzi, Palo Alto, CA (US);
Yotam Shacham, Palo Alto, CA (US);
Yehuda Levi, Rishon Lezion (IL);
Russell William McMahon, Woodside,
CA (US); Amatzi Ben-Artzi, Palo Alto,
CA (US); Alexei Alexevitch, Hertzlia
(IL); Alexander Glyakov, Petach Tikva
(IL); Tal Lavian, Sunnyvale, CA (US)

(73) Assignee: Beek Fund B.V. L.L.C., Dover, DE (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.c. 154(b) by 1409 days.

(21) Appl. No.: 12/484,622

(22) Filed: Jun. 15,2009

(65)

(60)

(51)

(52)

(58)

Prior Publication Data

US 2009/0313613 Al Dec. 17,2009

Related U.S. Application Data

Provisional application No. 611132,264, filed on Jun.
16,2008.

Int. Cl.
G06F 9/45
G06F 11/00
U.S. Cl.

(2006.01)
(2006.01)

USPC 717/137; 7171143; 717/139; 714/52
Field of Classification Search
USPC .. 717/136-139
See application file for complete search history.

US008762962B2

(10) Patent No.:
(45) Date of Patent:

US 8,762,962 B2
Jun. 24,2014

(56) References Cited

U.S. PATENT DOCUMENTS

5,768,564 A * 6/1998 Andrews et al. 717/137
6,317,871 Bl* 1112001 Andrews et al. 717/137
6,378,126 B2 * 4/2002 Tang 717/143
6,886,115 B2 * 4/2005 Kondoh et al. 714/52

2003/0145011 Al * 7/2003 Su et al. 707/100
2004/0031023 Al * 212004 Li 717/140
2004/0111694 Al * 6/2004 Wang etal. 717/100
2004/0237072 Al * 1112004 Gelissen 717/139
2005/0097514 Al * 5/2005 Nuss 717/114
2006/0212859 Al * 912006 Parker et al. 717/143
2006/0288028 Al * 1212006 Waldvogel et al. 707/101
2007/0234285 Al * 1012007 Mendoza et al. 717/114
2008/0141230 Al * 6/2008 Rowlett et al. 717/143
2008/0216060 Al * 912008 Vargas 717/137
2008/0313282 Al * 1212008 Warilaetal. 7091206
2010/0146492 Al 6/2010 Shacham et al.

* cited by examiner

Primary Examiner - Don Wong
Assistant Examiner - Mohammad Kabir
(74) Attorney, Agent, or Firm - Novak Druce Connolly
Bove + Quigg LLP

(57) ABSTRACT

Embodiments of the methods and apparatus for automatic
cross language program code translation are provided. One or
more characters of a source programming language code are
tokenized to generate a list of tokens. Thereafter, the list of
tokens is parsed to generate a grammatical data structure
comprising one or more data nodes. The grammatical data
structure may be an abstract syntax tree. The one or more data
nodes of the grammatical data structure are processed to
generate a document object model comprising one or more
portable data nodes. Subsequently, the one or more portable
data nodes in the document object model are analyzed to
generate one or more characters of a target programming
language code.

51 Claims, 8 Drawing Sheets

(~_Sta;-rt~)
J

Select a feature of the source programming language

Ves

304

Is the selected feature or
a similar feature present in
the target programming
anguage?

310

Is there any other feature
In the source
programming language?

302

u.s. Patent

a
o

'"
~

ill
.~
c:::
ill
~
a
I-

Juo.24,2014 Sheet 1 of8

co
o

'"
~

...q­
o

~

Q)
(f)
(tI

n..

ITl~
o .0

N
o

Il
o

'"
~

~

0 -~
Q)
c:::
Q)

(!)

Q)
o
.~

o

~

'"
.....
Q)

~
(tI
c::: «

ttl
N o

US 8,762,962 B2

(9

LL

204 206

C++ Features JAVA Features

C++ specific JAVA specific
212 featu res 214 featu res

Common /' "- Common
Features

~

Features
220 220

202

Feature Map 208

AS3 Features

AS3 specific
216 featu res

/' Common ;- I ...
..... '" Features

.... 1;-

220

FIG.2

210

C# Features

C# specific
218 features

Common
Features

220

~
7Jl
•
~
~
~
~ = ~

2-
?
N
~ ...
N
o

rFJ

=­('D
('D
N
o
QO

d
rJl
QO

~
0'1
N
\c
0'1
N

= N

u.s. Patent Juo.24,2014 Sheet 3 of8 US 8,762,962 B2

c_Sta,----rt)

J
Select a feature of the source programming language

Yes

304

Is the selected feature or
a similar feature present in
the target programming
language?

No

Remove the feature of the source
programming language

Is there any other feature
in the sou rce
programming language?

No

C __ SIO __ P)

FIG. 3

302

Yes

Retain the selected
feature

306

308

I ·1 ·1 sl ul tli =1 31 +1 21 ; I . I . II ~
7

402

Tokenizer

Regular
Expression

Rules

404

FIG. 4

106
408a
f

Sum

=

I....---...,~ 3

+

2

,

406

408b
1~

Identifier

Assignment Operator

Number

Addition Operator

Number

Semicolon Keyword

~
7Jl
•
~
~
~
~ = ~

2-
?
N
~ ...
N
o

rFJ

=­("D
("D
o
QO

d
rJl
QO

~
0'1
N
\c
0'1
N

= N

408a 408b
~8

Sum Identifier

= Assignment Operator

3 Number

+ Addition Operator c==> Parser I q
2 Number

, Semicolon Keyword

406

FIG. 5

r--..,
i
i

!
i
:5

\

I
I

I Assignment Operator
3 [Sum=3+2;]

I
I I

Identifier Binary Expression
[Sum] J [3+2]

504c I
I I I

Number Operator Number
[3] [+] [2]

-
504d 504e 504f

--------7--

502

~
7Jl
•
~
~
~
~ = ~

2-
?
N
~ ...
N
o

rFJ

=­('D
('D
Ul
o
QO

d
rJl
QO

~
0'1
N
\c
0'1
N

= N

r------------------------------------... --... - -----------

, ,

!
!
I

606a J

J
var Keyword

[var]

Declaration
[var i:int;]

1
Name Type

[i] lint]
r

i 606b 6d6c 6d6d L ________________ y ________________________________ J

602

)"110

Generator q q

FIG. 6

.-_ .. _ _ _ _ _----_ .. _ .. _ .. _---.. -----... --------........ -_,
, ' , ' , ' , ' , ' , '

~
I

". Declaration
[var i:int;]

I
r I

Name Type
[i] lint]

606c 606d
L-----------T --------------------------------

604

~
7Jl
•
~
~
~
~ = ~

2-
?
N
~ ...
N
o

rFJ

=­('D
('D
0\
o
QO

d
rJl
QO

~
0'1
N
\c
0'1
N

= N

u.s. Patent Juo.24,2014 Sheet 7 of8

D
~

C\I OJ ..- ~ ..-
'--.., ro

c «

D
r -.... --------------------------...... --......... --........ -............. i
I I

! !
! !
I t

I ~ !
0,),.......,

,...-- 0..-
>.£

I 0,
I co

h 1-

C
0'7"".::' .- --c ro .-I... •• ro .;: I--
(.) co
Q) > 0

" ro
co
0
co

0,)

l- E=-ro
z

"
~

~!
o '
col

I __ J

-.::t
o co

US 8,762,962 B2

I"-

<.9
u..

u.s. Patent Juo.24,2014 Sheet 8 of8 US 8,762,962 B2

Start

, II

802 \. Tokenize one or more characters of a source programming
language code to generate a list of tokens

, II

804 Parse the list of tokens to generate an abstract syntax tree

, II

806 "'\ Process the abstract syntax tree to generate a document
object model

'v
808

"'\
Analyze one or more nodes in the documents object model

to generate one or more characters of a target
programming language code

\11

(Stop)

FIG. 8

US 8,762,962 B2
1

METHODS AND APPARATUS FOR
AUTOMATIC TRANSLATION OF A

COMPUTER PROGRAM LANGUAGE CODE

CROSS-REFERENCE TO RELATED
APPLICATION

2
support multiple devices. However, the existing mechanisms
generate application program codes that are large or require
heavy processing time. The problem is compounded with the
continuously increasing number of device platforms and
technology.

A mechanism is therefore desirable to automate the task of
cross translating one programming language into another.

This application draws priority from U.S. Provisional
Patent Application No. 611132,264, filed on Jun. 16, 2008,
and hereby incorporated by reference herein in its entirety. 10

SUMMARY

FIELD OF THE INVENTION

The invention relates to computer aided translation of pro­
gramming languages and more specifically the invention
relates to real-time automatic translation of computer pro­
gramming language code.

BACKGROUND OF THE INVENTION

Various users across the globe communicate or perform
various activities on computer and device networks. More­
over, the users interact with each other through the networks,
such as the Internet. Typically, the users use devices like
personal computers to interact over the Internet. The users can
interact from various Internet web sites or social networking
sites, for example, Facebook, Myspace, HiS, and Orkut etc.
Recently, the development in mobile devices such as cell
phones, smartphones and PDAs, computers, laptops and the
like has enabled them to be used for performing various
activities on networks such as the Internet. Moreover, the
mobile devices can be used for real-time interaction with
other users on the network. The interaction or communication
can be in the form of chatting, playing interactive online
games, browsing, shopping, music, video, banking, business
and the like.

The rapid pace of innovation in technology has generated
various types of devices and platforms. Moreover, the number
of devices is increasing rapidly. For example, there are vari­
ous operating systems available for the devices such as Win­
dows, Linux, Macintosh, and Symbian, etc. Moreover, a large
number of J2ME platforms are available for the mobile
devices such as cell phones. Furthermore, the mobile devices
have a wide rage of capabilities in terms of screen size, screen
type, screen resolution, processor, and memory etc. The
applications for these devices have to be developed based on
their platforms. Therefore, each application has to be ported
to other platforms. For example, in case of computer games
the programming languages typically used are JAVA, C#,
C++, Action Script, and the like. Therefore, an application
developed inAction Script programming language may have
to be ported to other programming language when not sup­
ported by a device platform. Further, new applications are
being continuously developed for different device platforms.

Typically, the programming code of an application is trans­
lated manually from one programming language to another.
However, manual translation requires specific and in-depth
knowledge of the programming languages of the different
operating systems. Moreover, manual translation is a very
time consuming process. Furthermore, the programming lan­
guages are constantly developed or get modified. Moreover,
the applications have to be developed on specific develop­
ment platforms compatible with the programming language
used for development and the operating system of a device.
As a result, a completed revision of the application code may
be required to make the interaction possible. Some mecha­
nisms, such as emulation of applications are available to

The invention provides a method for automatic translation
of a computer program language code. The method comprises
tokenizing one or more characters of a source programming

15 language code to generate a list of tokens. The list of tokens is
parsed to generate an abstract syntax tree, wherein the
abstract syntax tree comprises one or more data nodes. There­
after, the one or more data nodes of the abstract syntax tree are
processed to generate a document object model, wherein the

20 document object model comprises one or more portable data
nodes. Subsequently, the one or more portable data nodes in
the document object model are analyzed to generate one or
more characters of a target programming language code.

The invention further provides a computer-implemented
25 method for automatic translation of a computer program lan­

guage code for real-time applications. The computer imple­
mented method comprises tokenizing one or more characters
of a source programming language code to generate a list of
tokens based on a set of expression rules. The list of tokens is

30 parsed to generate an abstract syntax tree based on a set of
grammar rules, wherein the abstract syntax tree comprises
one or more data nodes. Thereafter, the one or more data
nodes of the abstract syntax tree are processed to generate a
document object model, wherein the document object model

35 comprises one or more portable nodes. Subsequently, the one
or more portable nodes of the document object model are
analyzed to generate one or more characters of a target pro­
gramming language code.

The present invention further provides an apparatus for
40 automatic translation of a computer program language code.

The apparatus comprises a tokenizer configured tokenize one
or more characters of a source programming language code to
generate a list of tokens. Further, the apparatus comprises a
parser configured to parse the list of tokens to generate an

45 abstract syntax tree, wherein the abstract syntax tree com­
prises one or more data nodes; a generator configured to
process the one or more data nodes of the abstract syntax tree
to generate a document object model, wherein the document
object model comprises one or more portable data nodes; and

50 an analyzer configured to process the one or more portable
data nodes in the document object model to generate one or
more characters of a target programming language code.

The present invention further provides a computer-read­
able medium having computer-executable instructions for

55 performing a method for language translation of a computer
program code, said method comprising the steps of: tokeniz­
ing one or more characters of a source programming language
code to generate a list of tokens based on a set of expression
rules; parsing the list of tokens to generate an abstract syntax

60 tree based on a set of grammar rule, wherein the abstract
syntax tree comprises one or more data nodes; processing the
one or more data nodes of the abstract syntax tree to generate
a document object model, wherein the document object
model comprises one or more portable nodes; and analyzing

65 the one or more portable nodes of the document object model
to generate one or more characters of a target programming
language code.

US 8,762,962 B2
3

The present invention further provides a computer-imple­
mented system for automatic translation of a computer pro­
gram language code, comprising: means fortokenizing one or
more characters of a source programming language code to
generate a list of tokens; means for parsing the list of tokens
to generate an abstract syntax tree, wherein the abstract syn­
tax tree comprises one or more data nodes; means for pro­
cessing the one or more data nodes of the abstract syntax tree
to generate a document object model, wherein the document
object model comprises one or more portable data nodes; and
means for analyzing the one or more portable data nodes in
the document object model to generate one or more charac­
ters of a target programming language code.

BRIEF DESCRIPTION OF THE DRAWINGS

Having thus described the invention in general terms, ref­
erence will now be made to the accompanying drawings,
which are not necessarily drawn to scale, and wherein:

FIG. 1 is a functional overview of an apparatus for auto­
matic translation of a source programming language code to
a target programming language, in accordance with an
embodiment of the invention;

4
Macintosh, Symbian, and so forth. Moreover, devices 102a-b
may have different hardware such as the screen size, screen
resolution, audio and video functionality, processors and so
forth. Therefore, the applications executing on the devices
102a and 102b have to be compatible with the operating
systems and platform of these devices.

The compatibility of the application may be maintained by
translating the programming language code of the application
based on the platforms of device 102a to 102b. Examples of

10 the application include software games or rich media appli­
cations. In case of software games or rich media, the devel­
opment environment can be typically divided into four object
oriented programming languages: C++, JAVA, Action Script,

15 and C#. Therefore, translation of programming language
code is generally required across these object oriented pro­
gramming languages. Moreover, these object oriented pro­
gramming languages share various similar features and thus
can be translated into one another. For example, each of the

20 above programming languages share the features such as 'if
statement', 'arguments', 'binary expressions', and so forth.
Exemplary feature map for the above mentioned program­
ming languages is explained in detail in conjunction with
FIG. 2. FIG. 2 illustrates an exemplary feature map for a program­

ming language code, in accordance with an embodiment of 25

the invention;
Apparatus 104 automatically translates the programming

language code of the application for devices 102a and 102b.
FIG. 3 illustrates a flowchart diagram for normalizing a

source programming language code, in accordance with an
embodiment of the invention;

As shown in FIG. 1, apparatus 104 comprises a tokenizer 106,
parser 108, a generator 110, and an analyzer 112. Apparatus
104 is hereinafter referred to as translator 104. Tokenizer 106

FIG. 4 illustrates operation of a tokenizer, in accordance 30

with an embodiment of the invention;
transforms streams of characters from the source program­
ming language code into a list of tokens. In an embodiment of
the invention, the source programming language is a com­
puter game development language. Exemplary operation of
tokenizer 106 is explained in detail in conjunction with FIG.

FIG. 5 illustrates operation of a parser, in accordance with
an embodiment of the invention;

FIG. 6 illustrates operation of a generator, in accordance
with an embodiment of the invention;

FIG. 7 illustrates operation of an analyzer, in accordance
with an embodiment of the invention; and

35 4. Parser 108 analyzes the list of tokens generated by token­
izer 106 to determine a grammatical data structure. The gram­
matical data structure is defined on the basis of the program­
ming languages to be cross-translated. The grammatical data FIG. 8 illustrates a flowchart diagram for translation of a

source programming language code to a target programming
language, in accordance with an embodiment of the inven- 40

tion.

structure is hereinafter referred to as anAbstract Syntax Tree
(AST). Exemplary operation of parser 108 is explained in
detail in conjunction with FIG. 5. Generator 110 operates on

DETAILED DESCRIPTION OF THE INVENTION

Illustrative embodiments of the invention now will be 45

the AST generated by parser 108 to generate a Document
Object Model (DOM). The DOM is a simplified data struc­
ture of the AST. Exemplary operation of generator 110 is
explained in detail in conjunction with FIG. 6. The DOM is
transformed by analyzer 112 into programming code of a described more fully hereinafter with reference to the accom­

panying drawings, in which some, but not all embodiments of
the invention are shown. Indeed, the invention may be embod­
ied in many different forms and should not be construed as
limited to the embodiments set forth herein; rather, these
embodiments are provided so that this disclosure will satisfy
applicable legal requirements. Like numbers refer to like
elements throughout.

FIG. 1 is a functional overview of an apparatus 104 for
automatic translation of a source programming language
code to a target programming language. As shown, device
102a and 1 02b may communicate to interact and share infor­
mation. Devices 102a and 102b can be, but not limited to a
mobile phone, a laptop, a personal computer, a smartphone
and the like. In an embodiment of the invention, devices 102a
and 102b are mobile devices communicating through net­
work 100. Similarly, various other devices can be connected
over network 100. Devices 102a and 102b may interact with
each other by using applications such as chatting, games,
messaging, and so forth. Devices 102a-b may have different
hardware and software platforms. Examples of software plat­
forms include operating systems such as Windows, Linux,

target programming language. Exemplary operation of ana­
lyzer 112 is explained in detail in conjunction with FIG. 7.
Consequently, the programming code of the source program-

50 ming language is translated into the programming code of the
target programming language by translator 104. In an
embodiment of the invention, the source programming lan­
guage is a computer game development language.

FIG. 2 shows an exemplary feature map 202 for program-
55 ming languages. Different programming languages comprise

different features. However, various features in the object
oriented programming languages may be similar or common.
Generally, a feature in one programming language can be
emulated in other programming languages. For example, a

60 feature inAction Script 3 (AS3) programming language, the
'star notation' can be emulated by the 'void*' feature in C++
or 'object' feature in JAVA programming language. As
another example, 'pure virtual' feature in C++ programming
language can be emulated by 'assert(false)' feature in AS3

65 programming language. Moreover, the features of one pro­
gramming language can be mapped equivalently to features
of the other programming languages without emulation. The

US 8,762,962 B2
5

programming languages that have common features or the
features can be mapped to each other are referred to as equiva­
lent programming languages.

As shown, in FIG. 2, feature map 202 is drawn for C++,
JAVA, Action Script 3 (AS3), and C# programming lan­
guages. However, feature map 202 is not limited to these
programming languages only. Feature map 202 comprises
C++ features 204, JAVA features 206, AS3 features 208, and
C# features 210. C++ features 204 comprise C++ specific
features 212. Similarly, JAVA specific features 214, AS3 spe­
cific features 216, and C# specific features 218 are the fea­
tures that are specific to these programming languages only.
Examples of C++ specific features 212 include, but are not
limited to 'operator overloading, 'function overloading',
'templates' and so forth. Examples of JAVA specific features
214 include, but are not limited to 'function overloading',
'generics', 'iterators' and so forth. Examples of AS3 specific
features 216 include, but are not limited to 'rest notation,
'start expression, 'for-in statement' and so forth. Examples of
C# specific features 218 include, but are not limited to 'reflec­
tion' and so forth. Programming language specific features
such as C++ specific features 212, JAVA specific features 214,
AS3 specific features 216, and C# specific features 218, may
require different run-time environment requirements. For
example, emulating generic data types for a target program­
ming language may require significant code space. Similarly,
emulation of a target programming language code that does
not involve the concept of threads may require huge process­
ing overhead. As yet another example, LISP is a program­
ming language that contains various high level functional­
ities. Moreover, the design of LISP programming language is
different from programming languages such as JAVA, C++,
C#, and the like. Therefore, emulation of a programming code
written in LISP may require huge overhead for programming
language code space and processing resources. The program­
ming languages that do not have common features or the
features cannot be mapped to each other are referred to as
non-equivalent programming languages.

As shown in FIG. 2, feature map 202 comprises common
features 220 for each of the programming languages. Com­
mon features 220 are the features that are common to these
programming languages. Therefore, common features 220
can be cross-translated across these programming languages.
In an embodiment of the invention, common features 220 can

6
the source programming language may be equivalent to the
features of the target programming language. The features in
the source programming language that are common or
equivalent to the features in the target programming language
are hereinafter referred to as equivalent features. Moreover,
some feature of the source programming language may not be
available or supported in the target programming language.
The features of the source programming language that are not
available or supported in the target programming language

10 are hereinafter referred to as non-equivalent features. In an
embodiment of the invention, the features and corresponding
definitions of the features for the source and the target pro­
gramming languages are maintained in a database. The

15 source programming language is nonnalized based on the
equivalent and non-equivalent features. In an embodiment of
the invention, the programming languages are normalized by
a normalizer. The normalizer is a module in translator 104,
which processes the features of the source and the target

20 programming languages.
At step 302, a feature of the source programming language

is selected. Thereafter, at step 304 it is detennined if the
feature is available in the target programming language. At
step 306, the selected feature from the source programming

25 language is matched with the features of the target program­
ming language. Therefore, in case an equivalent feature is
available in the target programming language, then the
equivalent feature is retained. In an embodiment of the inven­
tion, the features are matched on the basis of feature defini-

30 tion. In another embodiment of the invention, the features are
matched based on semantic meaning of the definition. In yet
another embodiment of the invention, the features are mapped
based on the output received from execution of the features.

In case the feature is non -equivalent to features in the target
35 programming language, then the non-equivalent feature is

removed, at step 308. In an embodiment of the invention, the
non-equivalent features are replaced with an equivalent fea­
ture of the target programming language.

Subsequently, at step 310 it is determined if other features
40 in the source programming language required to be pro­

cessed. Thereafter, the above steps are performed iteratively
to process all the features of the source programming lan­
guage. As a result, the source and the target programming
languages are made equivalent and can be cross-translated.

FIG. 4 illustrates operation oftokenizer 106, in accordance
with an embodiment of the invention. As shown, tokenizer
106 comprises a collection of regular expression rules 404. In
an embodiment of the invention, tokenizer 106 is a lexical
analyzer. Regular expression rules 404 define a finite state

be emulated across these programming languages. Examples 45

of common features 220 include, but are not limited to 'access
visibility', 'arguments', 'Boolean literal', 'member',
'method', 'switch statement', 'if statement', and so forth.
Common features 220 can be translated between the pro­
gramming languages without losing performance, i.e., space
usage or processing resources and processing time.

50 machine for tokenizer 106. Regular expression rules 404
represent patterns that may be contained in text analyzed by
tokenizer 106. Example definitions of various types of regular
expressions may be:

Analysis of common features 220 enable the assessment of
the portability of the programming languages. Moreover, the
object oriented programming languages can be made portable
by analyzing the common features 220 and nonnalizing the
programming languages. The normalizing of programming
languages is discussed in conjunction with FIG. 3.

FIG. 3 illustrates a flowchart diagram for nonnalizing the
source programming language according to an embodiment
of the invention. The source programming language and the
target programming language include features or functions
that enable the development of rich media content applica­
tions. Inan embodiment of the invention, the source program­
ming language and the target programming language are
object oriented programming languages. The source pro­
gramming language and the target programming language
may have some common features. Further, some features in

Identifier: is a sequence ofletters 'a'-'z' or 'i'\-'Z'.
55 Assignment operator: is the character '='

Addition operator: is the character '+'
Semicolon: is the character ';'
Number: is a sequence of characters '0' -'9'

The programming code of source programming language
60 is processed as stream of characters by tokenizer 106. An

input stream 402 of characters represent an expression in the
source programming code: 'Sum=2+3;'.As shown in FIG. 2,
input stream 402 comprises the regular expression as input
characters'S' ,'u', 'm' ,'=',2, '+',3, and ';'. Input stream 402 is

65 scauned one input character at a time by tokenizer 106. The
scauned input stream 402 is processed on the basis of regular
expression rules 404. As a result, a list of tokens 406 is

US 8,762,962 B2
7

generated. Therefore, every time a rule in regular expression
rules 404 is completed a new token is added to the output list.

In an embodiment of the invention, list of tokens 406
comprises colunms of token list 408a and token type list
408b. Token list 408a comprises the tokens generated from
input stream 402 and the token type list 408b comprises the
description for the type of tokens. Tokens in list of tokens 406
are categorized block of text. Referring to list of tokens 406,
the token 'Sum' in tokens 408a is defined by tokenizer 106 as
an 'identifier' in type 408b. Similarly, the complete program­
ming code of the source programming language can be pro­
cessed to form a list of tokens. Subsequently, list of tokens
406 is processed by parser 108 to generate structured infor­
mation.

FIG. 5 illustrates operation of parser 108, in accordance
with an embodiment of the invention. List of tokens 406
generated by tokenizer 106 does not provide any information
on contextual correctness of the tokens. Therefore, the order
of tokens in the list may not be contextually correct. For
example, the expression 'Sum 3+=2;' is not a correct expres­
sion. However, this expression can be processed by tokenizer
106 to generate a list of tokens. Parser 108 analyzes list of
tokens 406 generated by tokenizer 106. In an embodiment of
the invention, parser 108 performs syntactic analysis oflist of
tokens 406. Parser 108 can implement top-down parsing, in
an embodiment of the invention. Therefore, tokens in list of
tokens 406 are consumed from left to right. In another
embodiment of the invention, parser 108 can implement bot­
tom-up parsing. Therefore, parser 108 locates the basic ele­
ments in list of tokens 406 and then locates the elements
containing the basic elements.

Parser 108 analyzes list of tokens 406 to generate an
Abstract Syntax Tree (AST) 502. AST 502 is a grammatical
data structure and defines the relationship between the tokens
in list of tokens 406. AST 502 is generated based on grammar
rules defined in parser 108. The grammar defined in parser
108 can be context-free grammar or attribute grammar.

Exemplary grammar rules in parser 108 include:
Assigmnent Statement.;.-Identifier=Expression;
Expression.;.-Literal OR Binary Expression
Binary Expression.;.-Expression Operator Expression
Literal.;.-Number OR Identifier

8
(AS3) programming language. The variable declaration for
this example in AS# programming language is 'var i:int;' .

Data node 606a ofAST 602 is referred to as the parent node
of data nodes 606b, 606c, and 606d. Generator 11 0 analyzes
AST 602 to identifY portable data nodes. Data nodes 606a-d
in AST 602 comprises meta structure and metadata of the
programming code. However, the metadata may not be
required for generation ofDOM 604, as the meta-structure is
deduced from the other data nodes in AST 602. Therefore,

10 data node 606b is removed by generator 110, because data
node 606a is a declaration node and the meta-structure of data
node 606b can be deduced from node 606a. Therefore, DOM
604 contains only portable data nodes from AST 602. As a
result, DOM 604 includes a simple data structure of the

15 programming code and is generic to any programming lan­
guage. The above example explains the operation of genera­
tor 11 0 from the perspective of AS3 programming language.
However, the same process can essentially be performed on
anAST developed for any programming language code and is

20 not limited to any particular programming language code.
FIG. 7 shows operation of analyzer 112 according to an

exemplary embodiment of the invention. Analyzer 112 pro­
cesses a document object model to generate programming
code in the target programming language. Analyzer 112 pro-

25 cesses the structure ofDOM 604 to translate the input code of
source programming language into an output code 702 cor­
responding to the target programming language. Output code
702 is generated based on the features of the target program­
ming language. For example, output code 702 may be 'int i'

30 in case the target programming language is JAVA. Analyzer
112 processes the portable data nodes of DOM 604 in a
standard depth first manner. Therefore, as shown for DOM
604, portable data node 606a, which is the parent node, is
processed first followed by portable data nodes 606c and

35 606d.
Analyzer 112 processes nodes 606 to generate tokens cor­

responding to a DOM node in the target programming lan­
guage code. In an embodiment of the invention, to generate
DOM of the target programming language, analyzer 112

40 executes functions that map between the meta-structure of the
source programming language feature and the character
stream of the target programming language. Therefore, DOM
604 is parsed to generate an abstract syntax tree and thereaf-The arrows in the above rules indicate the direction of the

pattern matching reduction. Therefore, based on the above
example a statement such as 'Sum=3+2' is termed as an 45

assignment statement. Similarly, based on the above rules, the
statement '3+2' is termed as a Binary Expression.

ter, the abstract syntax tree is converted to programming code
of the target programming language by analyzer 112. In an
embodiment of the invention, the processing by analyzer 112
comprises recursive scanning of DOM 604 to generate the
target programming language code. Example pseudo-code of
functions that analyzer 112 executes for translating DOM 604
to AS3 or Java are discussed below:

The grammar rules in parser 108 can be recursive. There­
fore, one or more rules may be applied recursively on an
expression to prepare AST 502. AST 502 comprises data 50

nodes 504. Data nodes 504 comprise a hierarchal data struc­
ture that represents the structure of the program code. For
example, data node 504c comprises binary expression and
data nodes 504d, 504e, and 504{comprise number and opera­
tor, which are subsets of the binary expression. In an embodi- 55

ment of the invention, the grammar rules can reference token
definition rules to define data nodes of AST 502. Therefore,
AST 502 comprises structural information and relation
between data nodes 504. In an embodiment of the invention,
parser 108 can be programmed based on the rules required for 60

analyzing list of tokens 406.
FIG. 6 illustrates operation of generator 110, in accordance

with an embodiment of the invention. Generator 110 operates
on AST 602 to generate a Document Object Model (DOM)
604. DOM 604 is a simplified data structure of AST 602. As 65

shown in FIG. 6, AST 602 is an exemplary data structure
representation of a variable declaration in the Action Script 3

2

4

7

9
10

Example 1

Functions for Conversion ofDOM 604 to Java
Programming Language

Function DeconstructASTToJava(node)
{
If (node is of type Declaration)
Print(DeconstructDeclaration ToJ ava(node»
Else

Function DeconstructDeclarationToJava (node)
{

Print(DeconstructType(node.getChild(1»);

US 8,762,962 B2

11
12
13
14

9
-continued

Print(" ");
Print(DeconstructName(node.getChild(O»);
Print(";");

10

Analyzer 112 may run the functions in example 1 on DOM
604 to generate output code 702. As shown in example 1, the
function DeconstructASTTolava(node) is defined in the lines 10

1 to 7. This function reads the parent node of DOM 604,
which is portable data node 606a and calls the function
DeconstructDeclarationTolava(node) defined in the lines 8 to

of the invention. At step 802, an input stream of one or more
characters of a source programming language code is
received at tokenizer 106. Subsequently, the input stream is
analyzed lexically to generate a list of tokens. Examples of the
characters in the input stream include alphabets, numerals,
special characters, mathematical operators, their combina­
tion and so forth. In an embodiment of the invention, the
characters are processed sequentially to generate the list of
tokens.

The order of tokens in the list of tokens may not be con­
textually correct. Therefore, the list of token is analyzed syn­
tactically by parser 108 to generate a grammatical data struc­
ture, at step 804. In an embodiment of the invention, the
grammatical data structure is a hierarchical data structure and
is referred to as anAbstract Syntax Tree (AST). Thereafter, at
step 806, theAST is processed by generator 110 to generate a
document object model. Document object model is a simpli­
fied grammatical data structure in a hierarchical data structure
format. Subsequently, the document object model is pro­
cessed by analyzer 112 to generate a target list of tokens. The
target list of tokens is thereafter processed by analyzer 112 to
generate the target programming language code, at step 808.

14, when portable data node 606a is a type of declaration. The
function DeconstructDeclarationTolava(node) reads the 15

child nodes in DOM 604, which are portable data nodes 606c
and 606d. Subsequently, the function DeconstructDeclarati­
onTolava(node) generates output code 702. In this case out­
put code 702 is 'int i;', which is a proper integer declaration in
lAVA programming language. Similarly, various other func- 20

tions can be written to analyze other types of data nodes in the
tree structure of DOM 604 and completely translate source
programming language code to target programming language
code.

Embodiments of the invention are described above with
reference to block diagrams and schematic illustrations of

2

4

7

9
10
11
12
13
14
15

Example 2

Functions for Conversion of DOM 604 to
ActionScript3 Programming Language

Function DeconstructASTToAS3 (node)
{

If (node is of type Declaration)
Print(DeconstructDeclaration ToAS3 (node»;
Else

Function DeconstructDeclarationToAS3 (node)
{

Print("var ");
Print(DeconstructType(node.getChild(1 »);
Print(":");
Print(DeconstructName(node.getChild(2»);
Print(";");

Analyzer 112 may run the functions in example 2 on DOM
604 to generate output code 702. As shown in example 2, the
function DeconstructASTToAS3(node) is defined in the lines
1 to 7. This function reads the parent node of DOM 604,
which is portable data node 606a and calls the function
DeconstructDeclarationToAS3(node) defined in the lines 8 to
15, when portable data node 606a is a type of declaration. The
function DeconstructDeclarationToAS3(node) reads the
child nodes in DOM 604, which are portable data nodes 606c
and 606d. Subsequently, the function DeconstructDeclarati­
onToAS3(node) generates output code 702. In this case out­
put code 702 is 'var: int i;', which is a proper integer decla­
ration in AS3 programming language. Similarly, various
other functions can be written to analyze other types of data
nodes in the tree structure ofDOM 604 and completely trans­
late source programming language code to target program­
ming language code. In an embodiment of the invention,
DOM 604 can be analyzed to generate an output code in any
other equivalent programming language.

25 methods and systems according to embodiments of the inven­
tion. It will be understood that each block of the diagrams and
combinations of blocks in the diagrams can be implemented
by computer program instructions. These computer program
instructions may be loaded onto one or more general purpose

30 computers, special purpose computers, or other program­
mable data processing translator to produce machines, such
that the instructions which execute on the computers or other
programmable data processing translator create means for
implementing the functions specified in the block or blocks.

35 Such computer program instructions may also be stored in a
computer-readable memory that can direct a computer or
other programmable data processing apparatus to function in
a particular manner, such that the instructions stored in the
computer-readable memory produce an article of manufac-

40 ture including instruction means that implement the function
specified in the block or blocks. Furthennore, such computer
program instructions may be made available for download
and/or downloaded over a communication network.

While the invention has been described in connection with
45 what is presently considered to be the most practical and

various embodiments, it is to be understood that the invention
is not to be limited to the disclosed embodiments, but on the
contrary, is intended to cover various modifications and
equivalent arrangements included within the spirit and scope

50 of the appended claims.
This written description uses examples to disclose the

invention, including the best mode, and also to enable any
person skilled in the art to practice the invention, including
making and using any devices or systems and performing any

55 incorporated methods. The patentable scope the invention is
defined in the claims, and may include other examples that
occur to those skilled in the art. Such other examples are
intended to be within the scope of the claims if they have
structural elements that do not differ from the literal language

60 of the claims, or if they include equivalent structural elements
with insubstantial differences from the literal languages of
the claims.

We claim:
FIG. 8 illustrates a flowchart diagram for cross translation 65

of the source programming language code to a target pro­
gramming language code, in accordance with an embodiment

1. A method, executed by electronic computer hardware in
combination with software, for automatic translation of a
computer program language code, comprising:

US 8,762,962 B2
11

tokenizing one or more characters of a source program­
ming language code to generate a list of tokens;

parsing the list of tokens to generate a grammatical data
structure, wherein the grammatical data structure com­
prises one or more data nodes;

processing the one or more data nodes of the grammatical
data, structure to generate a document object model,
wherein the document object model comprises one or
more portable data nodes; and

analyzing the one or more portable data nodes in the docu- 10

ment object model to generate one or more characters of
a target programming language code;

normalizing the source programming language, wherein
one or more features of the source programming lan- 15

guage are managed based on one or more features of the
target programming language, comprising:

identifYing one or more non-equivalent and one or more
equivalent features from the one or more features in the
source programming language, wherein the one or more 20

non-equivalent features and the one or more equivalent
features are identified based on the one or more features
of the target programming language; and

removing the one or more non-equivalent features of the
source programming language; 25

12
processing the one or more data nodes of the grammatical

data structure to generate a document object model,
wherein the document object model comprises one or
more portable data nodes; and

analyzing the one or more portable data nodes in the docu­
ment object model to generate one or more characters of
a target programming language code;

wherein processing the one or more data nodes of the
grammatical data structure comprises:

scarming the one or more data nodes in the grammatical
data structure to identifY one or more meta data nodes
having a metadata structure that can be deduced from at
least one declaration node; and

removing the one or more metadata nodes to generate the
one or more portable data nodes, wherein the portable
data nodes have a metadata structure that cannot be
deduced from at least one declaration node.

11. The method of claim 1, wherein analyzing the one or
more portable data nodes in the document object model com­
prises:

processing recursively the one or more portable data nodes
in the document object model to generate a target list of
tokens; and

analyzing the target list of tokens to generate the one or
more characters of the target programming language
code. wherein equivalent features are features that are configured

to be mapped the source programming language and the
target programming language.

2. The method of claim 1, wherein the grammatical data
structure comprises an abstract syntax tree.

12. The method of claim 1, further comprising download­
ing computer-executable instructions that, if executed by a
computing device, cause the computing device to execute

30 said tokenizing.
3. The method of claim 1, wherein the source programming

language and the target programming language are object
oriented programming languages.

4. The method of claim 1, wherein the source programming
language and the target programming language comprise one 35

or more equivalent features.

13. The method of claim 1, further comprising download­
ing computer-executable instructions that, if executed by a
computing device, cause the computing device to execute
said parsing.

14. The method of claim 1, further comprising download­
ing computer-executable instructions that, if executed by a
computing device, cause the computing device to execute
said processing.

5. The method of claim 1, further comprising downloading
computer-executable instructions that, if executed by a com­
puting device, cause the computing device to execute said
normalizing.

6. The method of claim 1 wherein normalizing the source
programming language comprises:

15. An apparatus including electronic computer hardware
40 in combination with software, for automatic translation of a

computer program language code, the apparatus comprising:
a tokenizer configured to tokenize one or more characters

of a source programming language code to generate a
list of tokens;

identifYing one or more non-equivalent features from the
one or more features in the source programming lan­
guage, wherein the one or more non-equivalent features 45

are identified based on the one or more features of the
target programming language; and

replacing the one or more non-equivalent features with the
one or more equivalent features of the source program­
ming language.

7. The method of claim 1 further comprising emulating the
source programming language, wherein one or more non­
equivalent features of the source programming language are
emulated.

50

8. The method of claim 1, wherein tokenizing comprises 55

processing the one or more characters of the source program­
ming language code based on a set of expression rules.

9. The method of claim 1, wherein parsing comprises pro­
cessing the list of tokens based on a set of grammar rules.

10. A method, executed by electronic computer hardware 60

in combination with software, for automatic translation of a
computer program language code, comprising:

tokenizing one or more characters of a source program­
ming language code to generate a list of tokens;

parsing the list of tokens to generate a grammatical data 65

structure, wherein the grammatical data structure com­
prises one or more data nodes;

a parser configured to parse the list of tokens to generate a
grammatical data structure, wherein the grammatical
data structure comprises one or more data nodes;

a generator configured to process the one or more data
nodes of the grammatical data structure to generate a
document object model, wherein the document object
model comprises one or more portable data nodes; and

an analyzer configured to process the one or more portable
data nodes in the document object model to generate one
or more characters of a target programming language
code

wherein the generator is further configured to:
scan the one or more data nodes in the abstract syntax

tree to identifY one or more metadata nodes having a
meta data structure that can be deduced from at least
one declaration node; and

remove the one or more metadata nodes to generate the
one or more portable data nodes having a metadata
structure that cannot be deduced from at least one
declaration node.

16. The apparatus of claim 15, wherein the source pro­
gramming language and the target programming language
comprise one or more equivalent features.

US 8,762,962 B2
13

17. An apparatus including electronic computer hardware
in combination with software, for automatic translation of a
computer program language code, the apparatus comprising:

a tokenizer configured to tokenize one or more characters
of a source programming language code to generate a
list of tokens;

a parser configured to parse the list of tokens to generate a
grammatical data structure, wherein the grammatical
data structure comprises one or more data nodes;

a generator configured to process the one or more data 10

nodes of the grammatical data structure to generate a
document object model, wherein the document object
model comprises one or more portable data nodes; and

an analyzer configured to process the one or more portable
data nodes in the document object model to generate one or 15

more characters of a target progranlilling language code;
a normalizer configured to:

identify one or more non-equivalent and one or more
equivalent features from the one or more features in
the source programming language, wherein the one or 20

more non-equivalent features and the one or more
equivalent features are identified based on the one or
more features of the target programming language;
and

remove the one or more non-equivalent features of the 25

source programming language;

14
29. A non-transitory computer-readable medium having

computer-executable instructions for performing a method
for language translation of a computer program code, said
method comprising:

tokenizing one or more characters of a source program­
ming language code to generate a list of tokens based on
a set of expression rules;

parsing the list of tokens to generate a grammatical data
structure based on a set of grammar rule, wherein the
grammatical data structure comprises one or more data
nodes;

processing the one or more data nodes of the grammatical
data structure to generate a document object model,
wherein the document object model comprises one or
more portable nodes; and

analyzing the one or more portable nodes of the document
object model to generate one or more characters of a
target progranlilling language code;

wherein processing the one or more data nodes of the
grammatical data structure comprises:
scanning the one or more data nodes in the grammatical

data structure to identify one or more metadata nodes
having a meta data structure that can be deduced from
at least one declaration node; and

removing the one or more metadata nodes to generate
the one or more portable data nodes having a metadata
structure that cannot be deduced from at least one
declaration node.

wherein equivalent features are features that can be
mapped between the source programming language and
the target programming language.

18. The apparatus of claim 17, wherein the normalizer is
further configured to remove the one or more non-equivalent
features of the source progranlilling language.

30. The computer-readable medium of claim 29, wherein
30 the grammatical data structure comprises an abstract syntax

19. The apparatus of claim 15, wherein the tokenizer com­
prises a finite state machine.

20. The apparatus of claim 15, wherein the grammatical 35

data structure comprises an abstract syntax tree.
21. The apparatus of claim 15, wherein the tokenizer is

configured to process the one or more characters of the source
programming language code based on a set of expression
rules.

22. The apparatus of claim 15, wherein the parser is con­
figured to process the list of tokens based on a set of grammar
rules.

40

23. The apparatus of claim 15, wherein the generator is
configured to scan the one or more data nodes in the gram- 45

mati cal data structure to identify one or more portable data
nodes.

24. The apparatus of claim 15, wherein the analyzer is
configured to recursively process the one or more portable
data nodes in the document object model to generate a target 50

list of tokens.
25. The apparatus of claim 15, further comprising an emu­

lator configured to emulate one or more features non-equiva­
lent of the source programming language.

26. The apparatus of claim 15, wherein the one or more 55

data nodes in the abstract syntax tree represent a grammatical
data structure of the list of tokens.

27. The apparatus of claim 15, wherein the analyzer is
further configured to:

process recursively the one or more portable data nodes in 60

the document object model to generate a target list of
tokens; and

analyze the target list of tokens to generate the one or more
characters of the target programming language code.

28. The apparatus of claim 15, wherein the source pro- 65

gramming language and the target programming language are
object oriented programming languages.

tree.
31. The computer-readable medium of claim 29, wherein

the list of tokens is parsed based on a set of granlillar rules.
32. The computer-readable medium of claim 29, wherein

the source programming language is a computer-game devel­
opment language.

33. The computer-readable medium of claim 29, wherein
analyzing the one or more portable data nodes in the docu­
ment object model comprises:

processing recursively the one or more portable data nodes
in the document object model to generate a target list of
tokens; and

analyzing the target list of tokens to generate the one or
more characters of the target progranlilling language
code.

34. The computer-readable medium of claim 29, wherein
the source programming language and the target program­
ming language are object oriented progranlilling languages.

35. A system including electronic computer hardware in
combination with software, for automatic translation of a
computer program language code, comprising:

means for tokenizing one or more characters of a source
programming language code to generate a list of tokens;

means for parsing the list of tokens to generate a grammati­
cal data structure, wherein the grammatical data struc­
ture comprises one or more data nodes;

means for processing the one or more data nodes of the
grammatical data structure to generate a document
object model, wherein the document object model com­
prises one or more portable data nodes; and

means for analyzing the one or more portable data nodes in
the document object model to generate one or more
characters of a target programming language code;

wherein the means for processing the granlillatical data
structure comprises:
means for scanning the one or more data nodes in the

grammatical data structure to identifY one or more

US 8,762,962 B2
15

meta data nodes having metadata structure that can be
deduced from at least one declaration node; and

means for removing the one or more metadata nodes to
generate the one or more portable data nodes having a
meta data structure that cannot be deduced from at
least one declaration node.

36. The system of claim 35, wherein the grammatical data
structure comprises an abstract syntax tree.

37. The system of claim 35, wherein the list of tokens
comprises one or more categorized blocks of the one or more 10

characters of the source programming language code.
38. The system of claim 35, wherein the source program­

ming language is a computer-game development language.
39. The system of claim 35, wherein the target program­

ming language is a computer-game development language.
40. The system of claim 35 further comprising means for 15

normalizing the source programming language, wherein one
or more features of the source programming language are
managed based on one or more features of the target program­
ming language.

41. The system of claim 40, wherein the means for normal- 20

izing the source programming language comprises:
means for identifying one or more non-equivalent and one

or more equivalent features from the one or more fea­
tures in the source programming language, wherein the
one or more non -equivalent features and the one or more 25

equivalent features are identified based on the one or
more features of the target programming language; and

means for removing the one or more non-equivalent fea­
tures of the source programming language.

42. The system of claim 35, wherein the means for analyz- 30

ing the one or more portable data nodes in the document
object model comprises:

means for processing recursively the one or more portable
data nodes in the document object model to generate a
target list of tokens; and

16
means for analyzing the target list of tokens to generate the

one or more characters of the target programming lan­
guage code.

43. The system of claim 35, wherein the source program­
ming language and the target programming language are
object oriented programming languages.

44. The method of claim 1, wherein the grammatical data
structure defines a relationship between tokens in the list of
tokens.

45. The method of claim 1, wherein the grammar rules
applied in the parsing to generate the grammatical data struc­
ture can be context-free grammar or attribute grammar.

46. The apparatus of claim 15, wherein the grammatical
data structure defines a relationship between tokens in the list
of tokens.

47. The apparatus of15, wherein the grammar rules applied
by the parser to generate the grammatical data structure can
be context-free grammar or attribute grammar.

48. The computer readable medium of claim 29, wherein
the grammatical data structure defines a relationship between
tokens in the list of tokens.

49. The computer readable medium of claim 1, wherein the
grammar rules applied in the parsing to generate the gram­
matical data structure can be context-free grammar or
attribute grammar.

50. The system of claim 35, wherein the grammatical data
structure defines a relationship between tokens in the list of
tokens.

51. The system of claim 35, wherein the grammar rules
applied by the means for parsing to generate the grammatical
data structure can be context-free grammar or attribute gram­
mar.

* * * * *

