
(12) United States Patent
Swedor et al.

(54) METHOD AND APPARATUS FOR USING A
COMMAND DESIGN PATTERN TO ACCESS
AND CONFIGURE NETWORK ELEMENTS

(75) Inventors: Olivier K. Swedor, Auvernier (CH); Tal
I. Lavian, Sunnyvale, CA (US); Robert
J. Duncan, San Francisco, CA (US)

(73) Assignee: Rockstar Consortium US LP, Plano,
TX (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.c. 154(b) by 1162 days.

(21) Appl. No.: 09/726,758

(22) Filed: Nov. 29, 2000

Related U.S. Application Data

(60) Provisional application No. 60/213,107, filed on Jun.
21,2000.

(51) Int. Cl.
G06F 15116 (2006.01)

(52) U.S. Cl.
USPC 7091226

(58) Field of Classification Search
USPC 715/513; 709/229, 223, 224; 370/401
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,848,233 A * 1211998 Radia et al. 726/13
6,167,448 A * 12/2000 Hemphill et al. 7091224

111111 111
US008782230B 1

(10) Patent No.: US 8,782,230 Bl
Jul. 15,2014 (45) Date of Patent:

6,292,489 Bl *
6,463,528 Bl *
6,546,419 Bl *
6,662,342 Bl *
6,880,005 Bl *
6,973,488 Bl *
7,054,901 B2 *

200210032768 Al *
2004/0133776 Al *

* cited by examiner

912001 Fukushima et al. 370/401
1012002 Rajakarunanayake et al. ... 713/1
412003 Humpleman et al. 7091223

1212003 Marcy 715/513
4/2005 Bell et al. 7091225

1212005 Yavatkar et aI 7091223
5/2006 Shafer 7091203
3/2002 Voskuil 7091224
7/2004 Putzolu 713/153

Primary Examiner - Tamara T Kyle

(74) Attorney, Agent, or Firm - DavidA. Dagg

(57) ABSTRACT

An XML accessible network device is capable of performing
functions in response to an XML encoded request transmitted
over a network. It includes a network data transfer service,
coupled to a network, that is capable of receiving XML
encoded requests from a client also connected to the network.
A service engine is capable of understanding and parsing the
XML encoded requests according to a corresponding DTD.
The service engine further instantiates a service using param­
eters provided in the XML encoded request and launches the
service for execution on the network device in accordance
with a command design parameter. A set of device APIs
interacts with hardware and software on the network device
for executing the requested service on the network device. If
necessary, a response is further collected from the device and
provided to the client in a response message.

21 Claims, 4 Drawing Sheets

u.s. Patent

Client 100

DTD202

Client 100'

Jul. 15,2014 Sheet 1 of 4

SNMP
Request

SNMP
Response

XML
Document

Response

~

FIG. 1 (Prior Art)

~

FIG. 2

..

..

SNMP
Request

SNMP
Response

XML
Document

Response

~

~

US 8,782,230 Bl

DTD202

Command
Design
Pattern

u.s. Patent

.....,
........ ./

DTD
202

./ -
Services

308

Jul. 15,2014 Sheet 2 of 4

Network Data

I Transfer Service 302

XML t
: Response

Document I
I
I
I

Service Device
Engine Software and

304 Hardware
306

Network Device 104'

FIG. 3

---DID Services
202 308

US 8,782,230 Bl

Packets ..
con tamIng
XML
docum ents

Packets
contai ning

e (if respons
any)

Service Engine 304

Service
Parser

Launcher Device
402

404 API's
406

Response Response
Fonnatter Retriever

410 408

FIG. 4

Memory
612

.-----
Device Code

502 '<t
0

f+-----.
trl
til

;:....

~

, ,

Service Engine 304, Transfer
service 302, Services 308

ORE 506

JVM 508

APls 504

Device Code 502

Operating System 512

...

Operating System 512

Device Hardware 514

FIG. 5

tius 614L

Service Engine 304, Transfer
service 302, Services 308

ORE 506

JVM 508

CPU 602

Switch
Fabric 604

Storage 608

Network
Port 610

Switch
Ports 606

FIG. 6

~
7Jl
•
~
~
~
~ = ~

2-
:-....
~Ul

N
o
.j;o.

rFJ

=­('D
('D
(.H

o
.j;o.

d
rJl

",010
-....l
010
N
N w = = """'"

u.s. Patent Jul. 15,2014 Sheet 4 of 4 US 8,782,230 Bl

ReceiveXML
encoded request

S702

" FIG. 7
ParseXML

request with DTD
S704

,
Instantiate service
with parsed values

S706

,
Invoke Operate

method of service
S708

,
Interact with

Device HW & SW Response
Required?

.. End to Execute Service

S710 S712 ~

l'
Retrieve

Response Info
S714

,
Format and

Forward
Response
Message

US 8,782,230 Bl
1

METHOD AND APPARATUS FOR USING A
COMMAND DESIGN PATTERN TO ACCESS
AND CONFIGURE NETWORK ELEMENTS

CROSS-REFERENCE TO RELATED
APPLICATIONS

2
request and launches the service for execution on the network
device using a command design parameter. A set of device
APIs interacts with hardware and software on the network
device for executing the requested service on the network
device. If necessary or desired, a response is further collected
from the device and provided to the client in a response
message.

In accordance with another aspect of the invention, a
method for causing a network device to locally perform a The present application is based on, and claims priority

from U.S. Provisional Appln. No. 60/213,107, filed Jun. 21,
2000. The present application is also related to U.S. applica­
tion Ser. No. 09/692,949 (NOR-12S20BA) and U.S. Appln.
Ser. No. 091727,341 (NOR-1267SHU), both commonly
owned by the assignee of the present application.

10 service comprises the steps of receiving at the network device
a document written in accordance with a markup language
and a corresponding document definition, parsing by the net­
work device the received document in accordance with the
corresponding document definition, and executing the service
on the network device in accordance with the parsed docu-

FIELD OF THE INVENTION 15 ment and a command design parameter.
In accordance with a further aspect of the invention, a

network device for locally performing a service in response to
a remote request comprises means for receiving at the net­
work device a document written in accordance with a markup

The present invention relates to network device configura­
tion and monitoring, and more particularly, to a method and
apparatus for accessing, configuring and controlling a device
stationed on a network using a command design pattern and
documents written in a markup language such as XML.

BACKGROUND OF THE INVENTION

20 language and a corresponding document definition, means
for parsing by the network device the received document in
accordance with the corresponding document definition, and
means for executing the service on the network device in
accordance with the parsed document and a command design

Computer networks continue to proliferate. As they do so,
they become increasingly complex and difficult to manage.
This problem is exacerbated when a variety of network
devices, computers, and software are combined together to
integrate large intranets with the Internet.

25 parameter.
In accordance with a further aspect of the invention, a

network device for locally performing a service in accordance
with a received document written in a document markup
language comprises a parser that is adapted to parse the

As shown in FIG. 1, when a client 100 wants to learn
information regarding a remote network device 104 stationed

30 received document in accordance with a document definition,
a service engine coupled to the parser that is adapted to
instantiate an object corresponding to the service in accor­
dance with the parsed received document, and to execute the
service in accordance with the instantiated object and a com­
mand design parameter.

on a network 102, code executing on client 100 formats a
message requesting such information and sends it to the net­
work device 104. Network device 104 must be prepro­
grammed with functionality for communicating in the proto- 35

col required by client 100's message and for kuowing exactly
how to get the information requested. If so, network device
104 can then respond with the requested information.

Simple network management protocol (SNMP) is one
example of a network protocol that allows clients to learn 40

information about remote network devices. SNMP allows
network devices 104 to send alerts to a manager 102, or to
send statistical information about traffic, but it limits the kind

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other features, aspects, and advantages
of the present invention will become more apparent from the
following detailed description when read in conjunction with
the following drawings, wherein:

FIG. 1 illustrates a conventional architecture for accessing,
configuring and controlling a network device using standard
network protocols;

FIG. 2 is a functional overview of an apparatus for access­
ing, configuring and controlling a network device using XML
encoded data and a command design parameter in accordance
with the present invention;

of information that can be sent to that which is pre-defined in
the management information blocks (MIBs) coded into the 45

network device. Accordingly, a new MIB needs to be rede­
fined each time a new type of information is maintained or is
needed about the device, thus making network management
and performance even more problematic. FIG. 3 further illustrates an example of a network device

50 that is configured in accordance with the present invention;
FIG. 4 further illustrates a service engine that can be

included in a network device according to the invention such
as that illustrated in FIG. 3;

SUMMARY OF THE INVENTION

The present invention relates to an apparatus and method
for more efficiently accessing, configuring and controlling a
network device using a common design pattern and docu- 55

ments written in a markup language such as the Extensible
Markup Language (XML).

In accordance with one aspect of the invention, an XML
accessible network device is capable of performing functions
in response to an XML encoded request transmitted over a 60

network. It includes a network data transfer service, coupled
to a network, that is capable of receiving XML encoded
requests from a client also connected to the network. A ser­
vice engine is capable of understanding and parsing the XML
encoded requests according to a corresponding document 65

type definition (DTD). The service engine further instantiates
a service using parameters provided in the XML encoded

FIG. 5 is an architectural view of a network device that is
configured in accordance with the present invention;

FIG. 6 is an example implementation of a network device
in accordance with the invention and the architecture depicted
in FIG. 5; and

FIG. 7 illustrates a process for accessing, configuring and
controlling a network device using XML encoded data in
accordance with the present invention.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

The present invention will now be described in detail with
reference to the accompanying drawings, which are provided

US 8,782,230 Bl
3 4

Generally, when the client computer 100' wants to access
or configure network device 104' (i.e., cause network device
104' to perform a service locally on the network device 104'),
it creates an XML request identifYing the service to be per­
formed, which XML document is encoded in the format
defined by DTD 202 but with parameters specific to the
desired access or configuration. Client 100' sends the docu­
ment over the network 102, which document is received by
the network device 104' in the form of data packets as is

as illustrative examples of preferred embodiments of the
present invention. Notably, the implementation of certain
elements of the present invention may be accomplished using
software, hardware or any combination thereof, as would be
apparent to those of ordinary skill in the art, and the figures
and examples below are not meant to limit the scope of the
present invention. Moreover, where certain elements of the
present invention can be partially or fully implemented using
known components, only those portions of such known com­
ponents that are necessary for an understanding of the present
invention will be described, and detailed descriptions of other
portions of such known components will be omitted so as not
to obscure the invention. Further, the present invention
encompasses present and future known equivalents to the
known components referred to herein by way of illustration.

10 conventionally done. In contrast to the conventional network
device 104, the network device 104' has been adapted to
include fnnctionality necessary to decode the XML encoded
request and to identify the service to be performed. Using a
common design pattern, the network device 104' allows the

15 service to perform tasks necessary to complete the request,
including, if required, interacting with the hardware and soft­
ware of the device to perform a service locally on the network
device 104'. If further needed or desired by the client com­
puter, network device 104' may create and format a response

FIG. 2 is a functional overview of one embodiment of the
present invention. As shown, a client 100' is connected in the
conventional manner to a network such as the Internet or an
intranet (i.e. LAN/WAN/MAN) 102, which in turn is con­
nected to a network device 104' (e.g. router, switch, hub or
similar device capable of processing fixed-length or variable­
length packets in a network). It should be noted that although
the features and advantages of the present invention are par­
ticularly well suited to routers, switches and hubs, and will be 25

described in more detail below with reference to such devices,
other network-aware devices can be adapted for use in the
present invention, and so the invention is not to be limited to
these particular illustrative devices. For example, network
device 104' may also include gateways, multiplexers and 30

other known or future equivalents, including those having a
packet forwarding architecture.

20 to client computer 100', which mayor may not also be an
XML encoded document.

As is apparent from FI G. 2, in contrast with the prior art, the
present invention provides communications for accessing and
configuring network elements using XML documents and a 35

common design pattern. As is known, XML is a metalan­
guage built upon the Standard Generalized Markup Language
(SGML), and is a tool for defining text markup languages,
defined by the World Wide Web Consortium (W3C). An
XML-defined language comprises a set of tags, attributes, 40

and constraints on how to use them. XML is a simple, open,
portable, extensible means of representing data. Unlike
HTML, XML tags tell what the data means, instead of just
how to display it. Further information regarding XML can be
found from the W3C web pages at http://www.w3 .orglXML. 45

FI G. 3 illustrates a network device 104' in accordance with
the present invention in further detail. As shown in FIG. 3,
network device 104' comprises, in part, a network data trans­
fer service 302, a service engine 304 that accesses local
copies ofDTD 202 and services 308, and device software and
hardware 306. It should be apparent that network device 104'
can contain or include other components for performing con­
ventiona� switching and routing functions, for example. How­
ever, the details of such additional components are not pre­
sented here so as not to obscure the present invention. Further,
although DTD 202 and services 308 are shown as local stor­
ages, it should be apparent that such storage need not be
permanent. For example, DTDs and services may be retrieved
from a remote server via a URL, and just a temporary repre­
sentation can be resident on device 104' as needed by service
engine 304 according to techniques well understood by those
of skill in the art.

Device hardware and software 306 represents conventional
switch or router fnnctionality that has been adapted for use in
the present invention. In one possible implementation, where
network device 104' is an Accelar/Passport family router
switch from Nortel Networks, device hardware and software
306 includes an ASIC-based forwarding architecture, with
switch ASICs comprising most of the device's switch fabric
and handling most forwarding tasks among switch ports in
accordance with resident forwarding rules. For such a device
104', device hardware and software 306 further includes a
CPU and associated memory coupled to the switch fabric that
runs the VxWorks real-time OS, and existing applications
stored in memory and executed by the CPU that run as
VxWorks "tasks" for monitoring and controlling and config­
uring the ASIC forwarding hardware via a switch-specific
API. It should be apparent that other types of switches and

Those skilled in the art, after being taught by the present
disclosure, will appreciate that there are many flavors ofXML
and SGML and that many markup languages are equivalent to
XML for adaptation and implementation according to the
present invention. XML is described in detail in this applica- 50

tion because of its wide acceptance and adoption. However,
equivalents to XML that are within the scope of the invention
can include, for example, XSL, XSLT, XPath, XLink,
XPointer, HyTime, DSSSL, CSS, SPDL, CGM, ISO-HTML,
and others. 55 routers may be used in accordance with the invention, and that

other operating systems such as Linux, PSOS, Vertex and
RMX may comprise the device's operating system.

As is further known, the format of an XML document is
defined by a Document Type Definition (DTD). Accordingly,
the present invention includes local copies ofDTD 202 at the
sending and receiving ends of the XML document. There can
be just one DTD 202 that defines all commnnications for all
applications, or there may be different DTDs 202 for different
types of applications, and those skilled in the art will under­
stand the possible variations. Further, there are many ways
known in the art that such local copies of DTD 202 can be
retrieved and obtained by network device 104', and the details
thereof will not be presented so as not to obscure the inven-
tion.

Services in storage 308 preferably include applications that
enhance the network management capabilities of the device

60 104' above and beyond that which is possible with a conven­
tional network device 104. Such applications may include
means for setting and reporting system variables that are not
limited by pre-configured MIBs. Such applications may fur­
ther include means for configuring the forwarding architec-

65 ture so as to enable the device to filter network traffic con-
taining packets generated from activities not essential to a
company's business, such as browsing the Internet. Other

US 8,782,230 Bl
5 6

Service engine 304 is generally responsible for receiving
XML encoded docnments, for parsing the documents to iden­
tify the requested service and any specific run-time param­
eters, for causing the device 104' to perfonn the requested
service in accordance with the common design pattern and, if
appropriate, obtaining and formatting a response to the
requesting client.

Service engine 304 is further illustrated in FIG. 4. As
shown, it includes a parser 402, a service launcher 404, device

examples of services can include event loggers and monitors,
means for establishing different levels of quality of service in
packet forwarding decisions, and the like. Although the dis­
cussion below will center on services that are launched using
a command design parameter in accordance with the inven­
tion, it should be noted that device 104' may also include
functionality for executing similar remotely downloaded,
installed and managed services, which additional similar ser­
vices may also be stored in storage 308.

In one example of the invention, device hardware and
software 306 also includes an Oplet Runtime Environment
(ORETM, a trademark of Nortel Networks), which is a plat­
form for secure downloading, installation, and safe execution

10 APIs 406, response retriever 408 and response fonnatter 410.
Although shown separately for clarity of the invention, the
different blocks shown in FIG. 4 can be implemented in
various combinations either together or separately. Moreover,
some or all of the functionalities may be partially or fully

15 included as functionalities of the ORETM in the example of the
invention where the ORETM is included in the network device
104'.

of services on a network device such as a switch or router, the
downloaded services (i.e. Oplets) being locally stored in ser­
vices storage 308. In such an example of the invention, the
network data transfer service 302 and service engine 304 may
actually be implemented as one or more services (i.e. Oplets)
managed by the ORETM (not necessarily having a command 20

design parameter). The ORETM is described in more detail in
other publications, including publications posted at the web­
site www.openetlab.org, and so will not be described in detail
here so as not to obscure the invention. Although use of the
invention in network devices equipped with an ORETM is 25

considered one preferred implementation, the invention is not

Parser 402 receives the XML document from the network
data transfer service 302 (preferably along with a handle for
the individual request), and retrieves the necessary DTD
based on the required identifier in the XML docnment. Using
the appropriate DTD, parser 402 performs processing based
on the XML tags defined in the DTD and extracts out the
values for each included in the XML docnment. These
parsed-out values are provided to the service launcher 404.
There are several different conventionally available XML
parsers that can be used to implement parser 402, such as
Document Object Model (DOM), Simple API for XML
(SAX) and Java Document Object Model (JDOM). In one

so limited. Further, the functionalities provided by the
ORETM that are useful for the present invention will be appar­
ent to those skilled in the art after being taught by the present
specification and can be separately provided. 30 example of the invention, parser 402 is implemented by an

Aelfred XML parser from Open Text. The Aelfred parser gen­
erates SAX events for each parsed XML tag. These parsed­
out values and SAX events are supplied to service launcher
404.

Network data transfer service 302 is, for example, an
HTTP server such as one provided by Apache. This is
because, in one example of the invention, the XML encoded
requests and device responses (if any) are exchanged using
the HTTP protocol. As is known, HTTP is an application- 35

level protocol that is generic, stateless, and can be used for
many tasks other than transferring hypertext, which is its most
widely known use. In one example of the invention, the HTTP
communications take place over TCP/IP connections. The
most widely used HTTP methods for handling communica- 40

tions are GET, HEAD and POST. The service engine 304 is
registered with the HTTP server (by port number, for
example) so that when XML encoded requests according to
the invention are received by service 302, service engine 304
can be activated and provided with the XML encoded request. 45

The HTTP server keeps handles for all received requests
pointing to the requesting client's address (perhaps with a
timeout), and when responses from service engine 304 are
received along with the handle, the HTTP server provides the
response back to the requesting client using HTTP methods. 50

At a minimnm, the DTD and the XML document should at
least specifY one of the services 308 to be performed. For
example, the DTD may include a definition such as:

<!ELEMENT service>
<!ATTLIST service

class CDATA #IMPLIED
source CDATA #IMPLIED
id ID #IMPLIED>

This allows an XML document to specify a "service" having
"class," "source" and "id" parameters. Accordingly, a client
wishing to launch a service on a remote device would create
an XML document specifying a "service" with at least a
desired "class." Such a corresponding XML document may
include the following text (as well as an identifier of the DTD
that defines its structure):

It should be apparent that other techniques for sending
XML files through the HTTP protocol could be used. More­
over, in another alternative of the invention, responses may be
forwarded back to the requesting client in various presenta­
tion alternatives such as providing HTML pages for browser 55

<service class="Address" id="ID_2">
</service>

This XML document requests the network device 104' to
launch a "service" having a class of "Address." Accordingly,
in this example of the invention, when the network device
1 04' receives the XML document, parser 402 will retrieve the
DTD indicated by the identifier in the docnment. Using this access.

Device hardware and software 306 is adapted in accor­
dance with the invention to forward packets using the HTTP
protocol and addressed to network device 104' to the network
data transfer service 302, if an HTTP server is not already
provided in the device. This can be done in many ways known
to those skilled in the art, and may depend on the particular
packet forwarding architecture of the device. For example,
where packets addressed to the device are automatically for­
warded to the device's CPU, the device's kernel packet han­
dling need only be aware of, and be able to communicate
packets with, the HTTP server.

DTD, it will understand that a "service" having a class of
"Address" should be launched. Accordingly, it will send a
message to service launcher 404 to launch a service defined

60 by the class "Address," which can, for example, cause the
physical address of the device to be set or reported.

It should be noted that the source or byte code correspond­
ing to the service "class" may be originally available locally
on the device 104' or it may be remotely located and specified

65 by a URL or other path descriptor to a class file containing
such source or byte code. In one example of the invention
where the Java progr3llllling language is used, the "class"

US 8,782,230 Bl
7

identifier is a class whose byte code can be included in a Java
Archive (JAR) file. If the byte code corresponding to the
specified "class" is located with a URL, the service engine
304 (perhaps in cooperation with transfer service 302) down­
loads the file for local access in storage 308. Additionally or
alternatively, the service engine 304 may check whether an
object corresponding to the requested service has already
been instantiated using the "id" parameter.

8
which method the service engine 404 calls using the JVM to
set the property to the "value" parsed from the XML docu­
ment.

If the service includes any runtime parameters, the DTD
and XML documents should specify those as well, although 10

the service should be able to execute using default param­
eters. Depending on the service requested, there mayor may
not be a requested response to be sent back to the client. For
example, one requested service may be to provide traffic
statistics of the device, for which a response would be col- 15

lected from the device hardware and software and returned to
the client. Meanwhile, another requested service may be to
adjust priorities of certain traffic flows, for which a response
from the device hardware and software would not necessarily

According to an aspect of the invention, all services do not
continually run on the device 104'. Rather, individual services
are launched as requested by clients so as to perform func­
tionality when needed. Moreover, services according to the
invention are designed to be executed using a command
design parameter so that the service engine 404 need not be
aware of the internal code used to implement the service.

Therefore, all services designed in accordance with the
invention include an "operate" method which serves as the
command design parameter. In the example of the invention
where services are implemented using the Java progranm1ing
language, this can be done by requiring all services to be
based on, or to "implement" a standard interface class. For
example, each service class may implement an interface class
defined as:

public interface Operation
be requested. As an example of a requested service with 20

runtime parameters, a requested service may be to report on
device throughput, collected a variable number of seconds
apart, with the report repeatedly provided back to the client
once per variable number of minutes.

{
public Object operate();

}
Each service class thus provides its own implementation of
the "operate" method of the Operation interface. After instan­
tiating the service class (perhaps also after "setting" various
properties of the service object using parameters from the

Using the above example of the service of class "Address," 25

the DTD may further include a definition such as:
<!ELEMENT property (valuelnull)*> parsed document), service launcher 404 calls this specific

"operate" method. Accordingly, service launcher 404 can
cause various types of services to be performed without need-

<!ATTLIST property
name CDATA #REQUIRED>

<!ELEMENT value (#PCDATA)*>
<!ATTLIST value

class CDATA #IMPLIED
id ID #IMPLIED
source IDREF #IMPLIED>

This allows a "property" with a "name" to be assigned a
"value." A corresponding XML document may then be cre­
ated by the requesting client that contains the following text:

<property name="city">
<value id="ID_3">San Francisco</value>

</property>
<property name="country">

<value id="ID_ 4">USA</value>
</property>

When these definitions and this text are combined with the
previously-described XML-encoded request, the combined
XML text could, for example, cause a service of class
"Address" to set a city field and a country field in the device
address system variables to San Francisco and USA, respec­
tively.

In one example of the invention where the source code
corresponding to a service is provided as Java classes, service
launcher 404 includes a Java Virtual Machine (JVM) that is
ported to the device 104' and operates as a task on the device
CPU under an operating system such as Vx Works. The JVM
receives the byte code corresponding to the Java class from
storage 308 and instantiates an object corresponding to the
service using a no arguments constructor. Alternatively, ser­
vice launcher 404 identifies an already-instantiated object
corresponding to the service using an "id" parameter or the
like. Further, during or before instantiating the object, service
engine 404 may detect that certain other class files are needed
and operate to download or access them as well.

Once instantiated, service engine 404 sets properties in the
object using any parameters also provided in the XML docu­
ment and parsed out by parser 402. For example, for each
property "name" there may be a corresponding "set" method
(e.g. for the "city" property, there is a "setCity" method),

30 ing to know their implementation. This is akin to putting the
code needed to process the requested service in the request
itself.

Device APIs 406 includes functionality to interact with
device hardware and software 306 to perform the requested

35 service and to receive any responses from the device's device
hardware and software. For example, where a service
requests a network parameter of the device such as the
device's name, the device APIs 406 will interact with the
device hardware and software to retrieve the name (e.g. a

40 string) from the device's system variables (e.g. MIB) and
provide it to response retriever 408, along with an identifier of
the service that requested the parameter.

It should be appreciated that the actual implementation of
device APIs 406 depends on the code used to implement

45 services 308, as well as the device hardware and software. In
one example of the invention, all services 308 use a common
code language such as C/C++. In such an example, device
APIs 406 comprises APIs that provide a common interface for
all such services to the existing code fUillling on the device

50 104'. Accordingly, services 308 can be designed to execute on
various platforms, with a known set of APIs providing a
common interface to the services, while providing a variable
interface with the existing code, depending on the device. The
design and implementation of suchAPIs are within the skill of

55 those in the art given the existing code, the device operating
system and the design of services 308.

In another example, device APIs 406 communicate with
existing conventional applications of network device 104
through a loopback address of the device. For example, the

60 service requested by the received XIVIL document may
request access to network parameters of the device. Specifi­
cally, the requested service launched by the service engine
can access the network parameters of the device by specifying
the loopback address, which can then access the parameters

65 through a network protocol stack such as an SNMP stack.
It should be apparent that the above two examples are not

necessarily mutually exclusive. Further, other example

US 8,782,230 Bl
9

implementations of device APIs 406 are possible. Moreover,
it should be apparent that some services 308 need not require
APIs to fully operate.

Response retriever 408 keeps track of the services that
require responses from the device hardware and software and
initiates response messages to the requesting client when
responses are received. It receives from service launcher 404
identifiers of the services that have been launched, as well as
handles to the XML encoded request that caused the service

10
other network management applications as described above.
Memory 612 includes code for execution by CPU 602.

It should be apparent that components corresponding to
CPU 602, switch fabric 604, switch ports 606, storage 608,
network port 610, memory 612 and bus 614 are also provided
in a conventional network device 104. Accordingly, as should
be further apparent from FIG. 6, adapting a conventional
network device 104 in accordance with the invention merely
requires updating memory 612 to include executable software

10 corresponding to the above-described functionality of the to be launched. When responses are received from device
APIs 406, they are preferably received along with the identi­
fier of the service. Response retriever 408 can then correlate
the response to the XML encoded request to whom the
response belongs and forward the response to response for­
matter 410 along with the handle to the XML encoded 15

request.

invention.
FIG. 7 illustrates an example of a process by which an

XML encoded request received by the network device 104' is
fulfilled in accordance with the present invention.

As shown in FIG. 7, when interaction with the network
device 104' is desired, the client computer 100' encodes the
request by constructing an XML encoded docnment corre­
sponding to the request and in accordance with a correspond­
ing DTD. This XML document is sent across the network 102

Response formatter 410 formats response messages to be
sent back to the requesting client. It receives from response
retriever 408 a response along with an identifier of the XML
encoded request, formats a response message for transmis­
sion back to the requesting client, and forwards the response
message to the network data transfer service 302. Network
data transfer service 302 can then send the message back to
the requesting client by using the handle of the XML encoded
request to retrieve the header information contained in the
packets carrying the XML encoded request. In one example
of the invention, responses are also XML encoded documents
that will instantiate a response object on the client. In this
example, response formatter 410 may also access DTDs such
as DTD 202 for formatting a response. However, it should be
apparent that many other variations of formatting a response
other than using XML documents are possible.

20 using a standard network protocol such as HTTP and received
by network device 104' (block S702). The XML docnment is
received by the network data transfer service 302 running on
the network device 104' and provided to the service engine
304. The service engine 304 parses the XML docnment using

25 the corresponding DTD identified in the document (block
S704). The parsed document corresponds to one of the ser­
vices provided or retrieved for local access in storage 308.
Accordingly, service engine 304 instantiates a copy (oriden­
tifies an already-instantiated copy) of the service with the

30 properties specified in in the parsed document (block S706).
The instantiated service is then launched for execution by
invoking the "operate" method of the service or similar com­
mand design parameter (block S708). The requested service
may require interaction with the device software and hard-

It should be further apparent that there are many possible
ways of implementing response retriever 408 and response
formatter 410, and that they may be omitted altogether. For
example, response retriever 408 and/or response formatter
410 may be partially or fully implemented by either or both of
services 308 and device APIs 406.

35 ware for execution, as indicated in block S710. If a response
message back to the requesting client 100' is required by the
service (determined in block S712), the response from the
device hardware and/or software is retrieved (block S714),

FIG. 5 is an architectural view of an example of network
device 104' in accordance with the principles of the present 40

invention.

and a response message is formatted and forwarded to net­
work data transfer service 302 for transmission back to client
100' (block S716).

Although the present invention has been particularly
described with reference to the preferred embodiments, it
should be readily apparent to those of ordinary skill in the art

45 that changes and modifications in the form and details may be
made without departing from the spirit and scope of the
invention. It is intended that the appended claims include such
changes and modifications.

As shown in this example, interaction with the device hard­
ware 514 (e.g. switch fabric, ports, memory, etc.) is per­
formed through the device operating system 512 (e.g.
VxWorks). The device code (e.g. routing software, etc.) 502
interacts with the device operating system 512. Application
programming interfaces (API's) 504 (e.g. Java, C/C++, etc.)
interact directly with the device hardware 514 and/or via
device operating system 512. API's 504 may further interact
with device hardware and operating system through device 50

drivers (not shown). Java Virtual Machine (JVM) 508 prefer­
ably includes all functionality provided by a conventional
JVM and is ported to the device 104' and operating system
512. Oplet Runtime Environment™ (ORE) 506 interacts with
the NM to coordinate the downloading, management and 55

execution of services 308. Service engine 304 interacts with
ORE 506 for execution of services 308. Service engine 304
and transfer service 302, during operation, may also interact
with API's 504, which further interact with device code 502.

FIG. 6 illustrates an example implementation of a network 60

device 104' having the architecture illustrated in FIG. 5.
As shown, network device 104' includes a CPU 602, switch

fabric 604, storage 608, network port 610 and memory 612 all
communicating via a bus 614. Switch fabric 604 further com­
municates with switch ports 606. Storage 608 can comprise 65

memory for storing program and device data. Network port
610 can provide a loop back address for access by services and

What is claimed is:
1. A network device for locally performing a service, com­

prising:
a parser for receiving a service request from a requesting

client, the service request being in a first format and
including a markup language document and a request
identifier, for retrieving a document type definition iden­
tified by the markup language docnment, and for extract­
ing parameter values from and generating events for
each tag in the markup language document defined in the
document type definition, wherein the markup language
document and docnment type definition specifY a
requested service using class, source, and identifier
parameter values, wherein the identifier parameter value
indicates the document type definition and wherein the
class parameter value indicates a service class;

a service launcher for receiving the parameter values and
events from the parser, determining whether an object
corresponding to the requested service has already been

US 8,782,230 Bl
11

instantiated, receiving the service class from storage,
and, in response to determining that the requested ser­
vice has not already been instantiated, instantiating an
object corresponding to the service based on the service
class, and for calling an operate method of the instanti­
ated object to launch the requested service, wherein the
operate method is also implemented by each of a plural­
ity of other service classes;

a response retriever for keeping track of services that
require responses, receiving at least one response, and 10

for correlating the at least one response to the requesting
client; and

a response formatter for receiving the at least one response
from the response retriever and formatting a response 15

message based on the at least one response for transmis­
sion back to the requesting client, the response message
being in a second format, different from the first format.

2. The network device according to claim 1, wherein the
requested service comprises an HTTP server. 20

3. The network device according to claim 1, wherein the
markup language comprises XML.

4. The network device according to claim 3, wherein the
document type definition comprises an XML DTD.

5. The network device according to claim 1, wherein the 25

service launcher identifies the byte code for the requested
service from a plurality of classes responsive to the class
parameter value.

6. The network device according to claim 1, wherein the
requested service configures a packet forwarding architecture 30

in the network device to filter network traffic.
7. The network device according to claim 6, wherein the

packet forwarding architecture comprises a packet forward­
ing switch fabric.

8. The network device according to claim 7, wherein the
requested service causes changes in how packets are for­
warded through the packet forwarding switch fabric.

35

9. The network device according to claim 7, wherein the
requested service monitors performance indicators of how 40

packets are forwarded through the packet forwarding switch
fabric.

10. The network device according to claim 1, wherein the
requested service accesses a MIB on the network device.

11. A method for causing a network device to locally per- 45

form a service, comprising:
receiving, by a parser from a requesting client, a service

request being in a first format and including a markup
language document and a request identifier;

retrieving, by the parser, a document type definition iden- 50

tified by the markup language document;
extracting, by the parser, parameter values from and gen­

erating events for each tag in the markup language docu­
ment defined in the document type definition, wherein
the markup language document and document type defi- 55

nition specify a requested service using class, source,
and identifier parameter values, wherein the identifier
parameter value indicates the document type definition
and wherein the class parameter value indicates a service
class; 60

receiving, by a service launcher from the parser, parameter
values and events;

determining, by the service launcher, whether an object
corresponding to the requested service has already been
instantiated; 65

receiving, by the service launcher from storage, the service
class;

12
instantiating, by the service launcher in response to deter­

mining that the requested service has not already been
instantiated, an object corresponding to the service
based on the service class;

calling, by the service launcher, an operate method of the
instantiated object to launch the requested service,
wherein the operate method is also implemented by each
of a plurality of other service classes;

keeping track, by a response retriever, of services that
require responses;

receiving, by the response retriever, at least one response;
correlating, by the response retriever, the at least one

response to the requesting client;
receiving, by a response formatter, the at least one response

from the response retriever; and
formatting, by the response formatter, a response message

based on the at least one response, for transmission back
to the requesting client, the response message being in a
second format, different from the first format.

12. The method of claim 11, wherein the requested service
comprises an HTTP server.

13. The method of claim 11, wherein the markup language
comprises XML.

14. The method of claim 13, wherein the document type
definition comprises an XML DTD.

15. The method of claim 11, further comprising identify­
ing, by the service launcher, the byte code for the requested
service from a plurality of classes responsive to the class
parameter value.

16. The method of claim 11, wherein the requested service
configures a packet forwarding architecture in the network
device to filter network traffic.

17. The method of claim 16, wherein the packet forwarding
architecture comprises a packet forwarding switch fabric.

18. The method of claim 17, wherein the requested service
causes changes in how packets are forwarded through the
packet forwarding switch fabric.

19. The method of claim 17, wherein the requested service
monitors performance indicators of how packets are for­
warded through the packet forwarding switch fabric.

20. The method of claim 11, wherein the requested service
accesses a MIB on the network device.

21. A network device for locally performing a service,
comprising:

a parser for receiving a service request from a requesting
client, the service request including a markup language
document and a request identifier, for retrieving a docu­
ment type definition identified by the markup language
document, and for extracting parameter values from and
generating events for each tag in the markup language
document defined in the document type definition,
wherein the markup language document and document
type definition specifY a requested service using class,
source, and identifier parameter values, wherein the
identifier parameter value indicates the document type
definition and wherein the class parameter value indi­
cates a service class;

a service launcher for receiving the parameter values and
events from the parser, determining whether an object
corresponding to the requested service has already been
instantiated, receiving the service class from storage,
and, in response to determining that the requested ser­
vice has not already been instantiated, instantiating an
object corresponding to the service based on the service
class, and for calling an operate method of the instanti-

US 8,782,230 Bl
13

ated object to launch the requested service, wherein the
operate method is also implemented by each of a plural­
ity of other service classes;

a response retriever for keeping track of services that
require responses, wherein, for a service requiring mul­
tiple responses, receiving multiple responses for the ser­
vice and for correlating the multiple responses to the
requesting client; and

a response formatter for receiving the at least one response
from the response retriever and formatting a response 10

message based on the at least one response for transmis­
sion back to the requesting client.

* * * * *

14

