US 20090313004A1

12 Patent Application Publication () Pub. No.: US 2009/0313004 A1

a9y United States

Levi et al.

43) Pub. Date: Dec. 17, 2009

(54) PLATFORM-INDEPENDENT APPLICATION
DEVELOPMENT FRAMEWORK
(75) Inventors: Yehuda Levi, Rishon Lezion (IL);
Guy Ben-Artzi, Palo Alto, CA
(US); Yotam Shacham, Palo Alto,
CA (US); Russell W. McMahon,
Woodside, CA (US); Amatzia
Ben-Artzi, Palo Alto, CA (US);
Alexei Alexevitch, Hertzlia (IL);
Alexander Glyakov, Petach Tikva
(IL); Tal Lavian, Sunnyvale, CA
(US)

Correspondence Address:
CONNOLLY BOVE LODGE & HUTZ LLP
1875 EYE STREET, N.W., SUITE 1100
WASHINGTON, DC 20006 (US)
(73) Assignee: REAL DICE INC., Carson City,
NV (US)

(21) Appl.No. 12/483,598

Related U.S. Application Data
(60) Provisional application No. 61/132,211, filed on Jun.

16, 2008.
Publication Classification

(51) Int.ClL

GOGF 9/455 (2006.01)

GO6F 9/44 (2006.01)

GOGF 9/45 (2006.01)
(52) US.CL oo, 703/28; 717/106; 717/140
57) ABSTRACT

Embodiments of the invention provide a platform-indepen-
dent application development framework for programming
an application. The framework comprises a content interface
configured to provide an Application Programming Interface
(API) to program the application comprising a programming
code to be executed on one or more platforms. The API
provided by the framework is independent of the one or more
platforms. The framework further comprises an application
environment configured to provide an infrastructure that is
independent of the one or more platforms and one or more
plug-in interfaces configured to provide an interface between

(22) Filed: Jun. 12, 2009 the application environment and the one or more platforms.
202 J Platform Independent Code
204 S Abstraction Layer
7 206b
505 /] Platform-1 Dependent Code Platform-2 Dependent Code
=)
208b

208 Ve Platform -1 binary code
a

Platform -2 binary code |/

106a 106b 106¢c 106n
e ya ya e
Application Application Application Application
Content Content Content Content
- » -» o
104 S Application Development Framework
Device Device Device Device
S S S S
102a 102b 102¢ 102n

FIG. 1

uonedqng uonedddy yusjey

8JO 1133US 6007 ‘LT "9q

IV $00£1£0/600T SN

US 2009/0313004 A1

Dec. 17,2009 Sheet 2 of 8

Patent Application Publication

< Old

q980¢

spoo Aleulg z- wuope|d opoo Aleulg |- wWiope|d

e
s 80¢

1r 17

490¢ /]

opon Wwapuads z-wiope|d apoy) Juspuada(] L-wiojeld

e
e 90¢

1r 1r

18Ae"1 UoloellsqQy

s Y0

iy

spon epusdepul wiope|d

US 2009/0313004 A1

Dec. 17,2009 Sheet 3 of 8

Patent Application Publication

€ oid

qgog |

apoo Argulg g- wlioneld

apoo Aleulq - wione|d

=4
’e 90¢€

17

ih)

ay0c
2p0s
uepuadaq zZ- wiojeld

e0L
9p0D
wepuada(|-wioneid

spon uspuadapu] wiofe|d

Content interface

iaN
)
N

Application Environment

404

Utility Module

406

Control infrastructure
Module

408

Asset management
Module

410

Plug-in Interface

NN
-
N

Plug-ins

N
.
N

104

uonedqng uonedddy yusjey

8JO 1 133US 6007 ‘LT "9Q

IV $00£1£0/600T SN

US 2009/0313004 A1

Dec. 17,2009 Sheet 5 of 8

Patent Application Publication

G Old
F->
---4 ¥0S eInpo sdepsiu] Jasn 204G sinpowy 21607
m <
] 505
e > 18[j0u0D
Q01 a|NpOo |INIoNJISEIU] |0JIU0D

Patent Application Publication Dec. 17,2009 Sheet 6 of 8 US 2009/0313004 A1

[e2}
L
O
73]
[¥2]
<L
©
O [N ©
(]
o (o)
[9)]
=
£,
T 3
=2
d
(1] {®]
RYs
(o]

::> Ass
FiG. 6

&

@

0

W

<[

8

.g) \g
_I CQ
| -

%

i

- W

85

c o

o c \\%
© ©
D

702
Ve

Abstract Functionality

Connect-server
706

Read bytes
708

Disconnect-server
710

Plug-in [nterface

704
Ve

Platform Specific Functionality

!

System socket is created and a connection aftempt is
made

|

Bytes are read from the socket

|

System socket disconnecis and released

J
412

FIG. 7

uonedqng uonedddy yusjey

8J0 £L1934S 6007 ‘LT 2Q

IV $00£1£0/600T SN

O

W

Provide an Application Programming Interface (API)
8072 S| to program an application comprising a programming
cade to be executed on one or more platforms

uonedqng uonedddy yusjey

W
Provide an application environment to program the
application, wherein the infrastructure is independent of
the one or more platforms

804 |

y

Provide an interface between the
306 /| application environment and the one or more platforms

}
(STOP >

FIG. 8

80 8133US 6007 ‘LT "9

IV $00£1£0/600T SN

US 2009/0313004 Al

PLATFORM-INDEPENDENT APPLICATION
DEVELOPMENT FRAMEWORK

CROSS-REFERENCE TO RELATED
APPLICATION

[0001] This application draws priority from U.S. Provi-
sional Patent Application No. 61/132,211, filed on Jun. 16,
2008, and hereby incorporated by reference herein in its
entirety.

FIELD OF THE INVENTION

[0002] The teaching herein generally relates to application
development framework and more specifically to platform
independent development framework for applications.

BACKGROUND OF THE INVENTION

[0003] Various users across the globe communicate or per-
form various activities on computer and device networks.
Moreover, the users interact with each other through the net-
works, such as the Internet. Typically, devices like personal
computers are used by the users to interact over the Internet.
The users can interact from various Internet websites or social
networking sites, for example, Facebook, Myspace, Hi5, and
Orkut etc. Recently, the development in mobile devices such
as cell phones, smartphones and PDAs, computers, laptops
and the like has enabled them to be used for performing
various activities on networks such as the Internet. Moreover,
the mobile devices can be used for real-time interaction with
other users on the network. The interaction or communication
can be in the form of chatting, playing interactive online
games, browsing, shopping, music, video, banking, business
and the like.

[0004] The rapid pace of innovation in technology has gen-
erated various types of devices and platforms. Moreover, the
number of devices is increasing rapidly. For example, there
are various operating systems available for the devices such
as Windows, Linux, Macintosh, and Symbian, etc. Moreover,
alarge number of J2ME platforms are available for the mobile
devices such as cell phones. Furthermore, the mobile devices
have a wide rage of capabilities in terms of screen size, screen
type, screen resolution, processor, and memory etc. The
applications for these devices have to be developed based on
their platforms. As a result, each application has to be devel-
oped based on each platform or ported to other platforms. For
example, in case of computer games the programming lan-
guages typically used are JAVA, C#, C++, Action Script, and
the like. Therefore, an application developed in Action Script
programming language may have to be ported to other pro-
gramming language when not supported by a device plat-
form.

[0005] Typically, the programming code of an application
is translated manually from one programming language to
another. However, manual translation requires specific and
in-depth knowledge of the programming languages of the
different operating systems. Moreover, manual translation is
a very time consuming process. Furthermore, the program-
ming languages are constantly developed or get modified.
Moreover, the applications have to be developed on specific
development platforms compatible with the programming
language used for development and the operating system of a
device. Therefore, knowledge of specific tools and Applica-
tion Programming Interface (API) for every device platform
may be required to program an application. Some existing

Dec. 17,2009

mechanisms, such as emulation of applications and virtual
machines are available to support applications on multiple
devices.

[0006] Incaseofvirtual machine mechanisms the program-
ming code of the application is separated into platform inde-
pendent code and platform dependent code. Platform inde-
pendent code is written in the virtual machine’s coding
language, which usually is a scripting language. Further, the
code may be compiled to a binary that only the virtual
machine itself knows how to execute. Since the code is never
compiled to a native platform binary and must run inside the
virtual machine space, there exist runtime overheads. More-
over, the existing mechanisms generate application program
codes that are large or require heavy processing time. The
problem is compounded with the continuously increasing
number of device platforms and technology.

[0007] What is needed in the art is a framework that is
required for development of applications independent of the
platform of the device.

SUMMARY

[0008] The invention provides a platform-independent
application development framework. The framework com-
prising: a content interface configured to provide an Applica-
tion Programming Interface (API) to program an application,
the application comprising a programming code to be
executed on one or more platforms, wherein the API is inde-
pendent of the one or more platforms; an application environ-
ment configured to provide an infrastructure to program the
application, wherein the infrastructure is independent of the
one or more platforms; and one or more plug-in interfaces
configured to provide an interface between the application
environment and the one or more platforms.

[0009] The invention further provides a platform-indepen-
dent application development framework. The framework
comprising: a content interface configured to provide an
Application Programming Interface (API) to program an
application, the application comprising a programming code
to be executed on one or more mobile device platforms,
wherein the API is independent of the one or more mobile
device platforms; an application environment configured to
provide an infrastructure to program the application, wherein
the infrastructure is independent of the one or more mobile
device platforms; and one or more plug-in interfaces config-
ured to provide an interface between the application environ-
ment and the one or more mobile device platforms.

[0010] The invention further provides an architecture for
platform-independent development of an application, the
application comprising a programming code to be executed
on one or more mobile device platforms, the architecture
comprising: an abstraction layer configured to: provide an
Application Programming Interface (API) to program the
application, wherein the API is independent of the one or
more mobile device platforms; provide an infrastructure to
program the application, wherein the infrastructure is inde-
pendent of the one or more mobile device platforms; and
provide an interface between the abstraction layer and the one
or more mobile device platforms.

[0011] The invention further provides a method for plat-
form independent development of F an application. The
method comprising: providing an Application Programming
Interface (API) to program an application, the application
comprising a programming code to be executed on one or
more platforms, wherein the API is independent of the one or

US 2009/0313004 Al

more platforms; providing an infrastructure to program the
application, wherein the infrastructure is independent of the
one or more platforms; and providing an interface between
the application environment and the one or more platforms.
[0012] An article of manufacture for platform independent
development of an application, comprising: an electronically
accessible medium including instructions, that when
executed by a processor, cause the processor to: provide an
Application Programming Interface (API) to program an
application, the application comprising a programming code
to be executed on one or more platforms, wherein the APT is
independent of the one or more platforms; provide an infra-
structure to program the application, wherein the infrastruc-
ture is independent of the one or more platforms; and provide
an interface between the application environment and the one
or more platforms.

BRIEF DESCRIPTION OF THE DRAWINGS
[0013] Having thus described the invention in general
terms, reference will now be made to the accompanying
drawings, which are not necessarily drawn to scale, and
wherein:

[0014] FIG. 1 is a simplified block diagram of a platform
independent development framework;

[0015] FIG. 2 shows functional overview of abstraction
layer according to an embodiment of the invention;

[0016] FIG. 3 shows functional overview of pre-processor
layer according to an embodiment of the invention;

[0017] FIG. 4 shows functional overview of a platform
independent development framework according to an
embodiment of the invention;

[0018] FIG. 5 shows functional overview of a control infra-
structure module according to an embodiment of the inven-
tion;

[0019] FIG. 6 shows functional overview of a asset man-
agement module according to an embodiment of the inven-
tion; and

[0020] FIG. 7 shows functional overview of a plug-in inter-
face according to an embodiment of the invention,

[0021] FIG. 8 is a flowchart illustrating the method for
platform independent development of an application, accord-
ing to an embodiment of the invention.

DETAILED DESCRIPTION OF THE INVENTION

[0022] Tllustrative embodiments ofthe technology now will
be described more fully hereinafter with reference to the
accompanying drawings, in which some, but not all embodi-
ments of the technology are shown. Indeed, the technology
may be embodied in many different forms and should not be
construed as limited to the embodiments set forth herein;
rather, these embodiments are provided so that this disclosure
will satisfy applicable legal requirements. Like numbers refer
to like elements throughout.

[0023] As a preliminary matter before exploring details of
various implementations, reference is made to FIG. 1 for
illustrating a simplified block diagram of a platform indepen-
dent development framework. FIG. 1 discloses a platform
independent framework that allows a rapid platform indepen-
dent application development, without the need for an appli-
cation developer to know each platform. As shown in FIG. 1,
devices 102a, 1025, 102¢ and 102# are connected through an
application development framework 104, which in turn is
connected to application contents 106a, 1065, 106¢ and 106#.

Dec. 17,2009

Devices 102a-n can be, but not limited to a mobile device
such as a cellular phone, a PDA and a smartphone, a laptop, a
personal computer and the like. Examples of application con-
tents 106a-z include a game, a message, a calendar, an
address, a notepad, a user interface and other applications to
be executed on devices 102a-n.

[0024] Devices 102a-n may have different hardware and
software platforms. Examples of software platforms include
operating systems such as Windows, Linux, Macintosh, Sym-
bian, and so forth. Moreover, devices 102a-» may have dif-
ferent hardware such as the screen size, screen resolution,
audio and video functionality, processors and so forth. There-
fore, development of an application for each of these plat-
forms may require application content 106a-» to be written in
various programming languages and functions compatible
with the platforms. For example, C++ programming language
may be used by Windows applications, while JAVA program-
ming language is primarily used for developing web applets.
Moreover, the resources required for each platform may be
different. For example, the type and size of an image to be
displayed may vary based on the screen size and screen reso-
lution of devices 102a-n. Therefore, application contents
106a-n may be developed based on the platform of devices
102a-n.

[0025] Application development framework 104 provides a
mechanism for developing application contents 106a-# for
devices 102a-n independently across multiple device plat-
forms. Therefore, application contents 106a-n developed
using application development framework 104 is pro-
grammed only once and can be used on various platforms of
devices 102a-n. In an embodiment of the invention, applica-
tion development framework 104 enables application content
106a-n to be developed based on platform specific require-
ment and platform independent requirements. In another
embodiment of the invention, application development
framework 104 provides cross-translation of programming
languages for various device platforms.

[0026] 1In case of conventional development or porting of
applications, the number of coding modules for ‘n’ number of
applications and ‘m’ number of devices can be n*m. For
example, when 4 applications are developed for 10 different
platforms of devices, then a total of 40 coding modules for
applications have to be developed. As is evident from the
above calculations, the number of coding modules increases
tremendously with increase in the number of applications and
the type of device platforms. However, in case of applications
developed through platform-independent application devel-
opment framework 104, the number of coding modules can be
n+m. For example, the application logic can be written in
platform independent code by using Application Program-
ming Interface (API) provided by application development
framework 104. Therefore, ‘n’ number of platform indepen-
dent logics is required for ‘n’ number of applications. Simi-
larly, using application development framework 104 can also
program the platform specific programming code for ‘m’
number of devices. Therefore, ‘m’ number of platform spe-
cific coding modules is required for ‘m” number of devices.
As aresult, a total of m+n. For example, when 4 applications
are developed for 10 different platforms of devices by using
application development framework 104, then a total of 14
coding modules for applications have to be developed. As a
result, the complexity of the programming code and develop-
ment time can be reduced.

US 2009/0313004 Al

[0027] Application development framework 104 uses
abstraction layer and pre-processor functionalities to enable
the programming code to be developed independent of the
device platforms. The abstraction layer and pre-processor
functionalities are described in detail in conjunction with
FIGS. 2 and 3 respectively.

[0028] FIG. 2 shows functional overview of an abstraction
layer 204 according to an embodiment of the invention. Gen-
erally, in the domain of software programming, an abstraction
layer enables separation of various details or functionalities
of a programming code from the device platform require-
ments. Abstraction layer 204 in the platform-independent
development architecture separates platform independent
code 202 from platform dependent codes 206a-b of an appli-
cation. For example, platform independent code 202 may be
the logic of the application and platform dependent codes
206a-b can be the programming code specific to devices 102.
Therefore, a developer that works on the logic or platform
engine of the application may not require knowledge about
the device interface. Moreover, the developer that works on
the application itself may not require the knowledge about the
device platform.

[0029] Platform independent code 202 and platform depen-
dent codes 206a-b are developed by using API provided by
application development framework 104. In an embodiment
of the invention, platform independent code 202 and platform
dependent codes 206a-b are parts of application content
106a-n. Platform dependent code 206a-b can be developed
based on the native language of the specific platforms. The
complete code of the application that contains the platform
independent code 202 and platform dependent code 206a-b
may be compiled to generate a binary codes 208a-b for the
device platforms. Therefore, the application developed con-
tains the complete code and any additional compornent or
code is not required. Moreover, the processing overheard is
low, because the application code is compiled into native
binary code of the platform. In an embodiment of the inven-
tion, application development framework 104 implements
abstraction layer 204 during the run-time of the application.
[0030] Abstraction layer 204 further provides infrastruc-
ture for the development of the application. The infrastructure
provided by abstraction layer 204 includes various utilities,
data structures, tools, design options, and resources required
to develop the application. Examples of data structures and
utilities include a set of collections like arrays and dictionar-
ies, and examples of tools include Extensible Markup Lan-
guage (XML) parsing, unicode string support and so forth.
Examples of resources include images, sounds, videos and
various other assets required by the application. In an
embodiment of the invention, abstraction layer 204 includes
different modules to develop the application. Examples of
modules include, but are not limited to, networking, file sup-
port, rendering, resource loading, system events, system
properties, and resource manipulation. Each of the modules
provided by abstraction layer 204 include a common func-
tionality, and a device platform specific functionality. The
device platform specific functionality is implemented in the
device plug-in and is explained in detail in conjunction with
FI1G. 7.

[0031] FIG. 3 shows functional overview of pre-processor
functionality according to an embodiment of the invention.
Generally, a pre-processor processes an input data to produce
an output to be used as input to a computer program. In case
of pre-processor manipulation, tags are embedded inside the

Dec. 17,2009

application code. The tags instruct the compiler on the sec-
tions to be compiled for different platforms. Therefore, as
shown in FIG. 3, application programming code comprises
platform independent code 302 and that in turn comprises
platform dependent codes 30da-b. The application program-
ming codeis compiled by a complier to generate native binary
codes 306a-b. Binary codes 306a-b can then be executed on
the specific device platforms for which the code has been
compiled. There are no layers between platform dependent
codes 304a-b and platform independent code 302, therefore
no runtime overhead is introduced in the execution of the
programming code.

[0032] Application development framework 104 imple-
ments pre-processor for device platform specific compilation
of application code. In an embodiment of the invention, pre-
processor functionality is implemented to map logical
resources and the real resources based on the device platform.
As a result, the binary codes only include needed resources
and therefore, the overhead for mapping is lower. Examples
of resources include images, sounds, video and so forth.
Moreover, the pre-processor functionality can be used to
override implementation of application for a specific device
inside the same device platform family. For example, a spe-
cific model of a mobile device of the Windows Mobile plat-
form may have a different screen resolution for displaying
images. Therefore, the Graphical User Interface (GUT) can be
tailored for the specific device platform by using pre-proces-
sor functionality. Moreover, the pre-processor is used for
translation of the programming code across different pro-
gramming languages. For example, the programming code of
a game may be for a mobile phone that only supports JAVA
programming language.

[0033] FIG. 4 shows functional overview of platform-inde-
pendent Application Development Framework (ADF) 104
according to an embodiment of the invention. ADF 104 com-
prises content interface 402, application environment 404,
plug-in interface 412, plug-ins 414.

[0034] Content interface 402 provides the API for develop-
ing the application in ADF 104. Further, content interface 402
includes application specific logic, GUT logic, various assets
such as images, sounds, fonts, texts, coordinates etc., and
other optional modules. Content interface 402 enables the
developerto select the modules for developing an application.
The modules provided by content interface 402 are part of
abstraction layer 204, and hence, they are independent from
the platform and application. Examples of modules include
but are not limited to, gaming module and social network
module.

[0035] Application Environment (AE) 404 provides infra-
structure to program the application. Examples of infrastruc-
ture include design options, utilities and tools that enable the
creation of applications. AE 404 is a part of abstraction layer
204, and hence, is independent from the platform of devices.
AF 404 comprises a utility module 406, a control infrastruc-
ture module 408, and an asset management module 410.
Utility module 406 provides multiple utilities and data struc-
tures for developing applications. The utilities and data struc-
tures provided by utility module 406 can be used for platform
independent application development of application logic,
GUI and other parts of the application. Examples of utilities
and data structures provided by utility module 406 include but
are not limited to collections of arrays, vector, dictionary and
the like, data types, GUI data types such as point, rectangle
and the like, eXtensible Markup Language (XML) support,

US 2009/0313004 Al

document object models, file support, logging support, ran-
dom number generators, serialize support, string manipula-
tion, time, time formatting support and so forth.

[0036] Control infrastructure module 408 of AE 404 con-
trols and manages the flow of'application in ADF 104. Control
infrastructure module 408 implements a Model-View-Con-
troller (MVC) architecture in which a controller is split into
logical modules or sub-controllers that communicate among
them and with the main controller using events. The use of
MVC architecture allows separation between the application
logic and GUI. Further, control infrastructure module 408
enables the display and handling of the GUT and application
logic. The various components and functionality of control
infrastructure module 408 are explained in detail in conjunc-
tion with FIG. 5.

[0037] Asset management module 410 of AE 404 manages
various assets for the application. Examples of assets include
but are not limited to images, sounds, videos, other GUI
related requirements for a platform, and so forth. Further,
asset management module 410 allows developing a different
GUIs for different types of device screen, which includes
support for different resolutions, orientations, and parameters
like keypad only and/or with mouse support etc. Furthermore,
asset management module 410 enables the use of different
asset formats per device platform. For example, one device
platform can use MP3 files and another can use WAV. There-
fore, assets can be used inside a generic code for development
of platform independent application. In an embodiment of the
invention, asset management module 410 is implemented at
pre-processing stage. As a result, the binary generated at
pre-processor only includes the required assets, and hence,
the processing overhead is reduced. The operation of asset
management module 410 is explained in detail, in conjunc-
tion with FIG. 6.

[0038] Plug-in interface 412 provides interfaces between
AF 404 and device platforms. Plug-in interfaces provide sys-
tem events, and optional interfaces like rich media support for
development of the applications. Plug-in interface 412 is used
when platform specific functionality is required for an appli-
cation. Plug-in interface 412 use plug-ins 414 to provide
interface between AE 404 and device platforms. Plug-ins 414
are computer programs that provide platform specific func-
tionality required to be implemented to add support for the
platforms. Plug-in interface 412 includes various modules
such as system flow, system events, system properties, net-
working file support, rendering, resource loading, resource
manipulation and so forth. In an embodiment of the invention,
each of these modules has a common functionality that is
implemented in abstraction layer 204 and a platform specific
functionality that is implemented in plug-ins 414. In an
embodiment of the invention, in case certain platform func-
tionality is not supported by a platform, then the functionality
is emulated. Moreover, AE 404 notifies the application in case
a particular functionality cannot be supported. For example,
video playback functionality may not be supported on a low-
end mobile device. Exemplary functioning of plug-in infra-
structure is explained in detail in conjunction with FIG. 7.

[0039] FIG. 5 shows functional overview of control infra-
structure module 408 according to an embodiment of the
invention. Control infrastructure module 408 includes a con-
troller 506, a logic module 502, and a user interface module
504. Control infrastructure module 408 implements Model-
View-Controller (MVC) architecture. Control infrastructure
module 408 isolates business logic from GUI considerations.

Dec. 17,2009

Logic module 502 comprises the logic data of the application.
The data of the application can be split among different
objects, collections and structures. Logic module 502 com-
municates with controller 506 and user interface module 504
to provide the data for the application. In an embodiment of
the invention, logic module 502 corresponds to the model in
the MVC architecture. User interface module 504 provides
GUI to display a complete or partial data from logic module
502. Moreover, user interface module can display additional
items, for example in the case of games, the animations and
transitions.

[0040] Controller 506 controls the flow of the application.
Controller 506 processes and responds to events, for example
auser action. Moreover, controller 506 decides various events
such as when to show a screen, when to change or update the
logic module 502 and so forth. In an embodiment of the
invention, control infrastructure module 408 may comprise
multiple sub-controllers under controller 506. Fach of the
sub-controllers may be responsible for a single module or part
of the logic. In an embodiment of the invention, sub-control-
lers can dispatch events to controller 506 that acts as a state
machine. Subsequently, based on these events, controller 506
can start or stop sub-controllers or modules. User interface
module 504 and controller 506 can communicate via asyn-
chronous events. In another embodiment of the invention,
events that are dispatched from user interface module 504 and
from the network are handled by controller 506 and the sub-
controllers. The sub-controllers can then decide to update the
logic module 502, move to the next state in the application etc.
Controller 506 and the sub-controllers can also dispatch
events to the user interface module 504. For example, con-
troller 506 may dispatch an event to start an animation. The
use of events between the user interface module 504 and
controller 506 provides better separation between their cor-
responding functionalities. Moreover, the developer of the
application may use only logic model 502 and user interface
module 504. Therefore, the developer may not program con-
troller 506. As a result, the design of the application is cleaner
and more flexible.

[0041] FIG. 6 shows functional overview of asset manage-
ment module 410 according to an embodiment of the inven-
tion. The screens of different devices platforms can typically
be categorized into computers, touch screens devices, or
mobile devices with only key navigation. Further, each of the
device platforms may have different screen resolutions. Asset
management module 410 provides assets based on the device
platforms and screen capabilities. Examples of real assets 608
include but are not limited to images, sounds, videos, and
other GUI related requirements for a platform, and so forth. In
an embodiment of the invention, different assets are split
based on different screen families and resolutions to generate
logical assets 604 for a GUI 602 by asset management module
410. The developer of the application only uses logical assets
604. Therefore, the real asset can be modified or tailored for
a device platform, while the logical use of the asset remains
the same. Further, asset management module 410 provides a
mapping between logical assets 604 and real assets 608.
Therefore, two different platforms that share the same screen
family or resolutions use exactly the same logical assets 604,
As a result, the same application will look identical on both
the platforms. However, the developer can customize the look
for a specific device platform. In an embodiment of the inven-
tion, the developer can customize the GUI based on the device

US 2009/0313004 Al

platform fragmentations. Therefore, the flexibility in devel-
oping the application is increased.

[0042] Asset-mapping module 606 defines which logical
assets 604 are used by each screen family or resolution com-
bination. In an embodiment of the invention, asset-mapping
module 606 includes a set of scripts for mapping logical
assets 604 to real assets 608. The scripts provided by asset-
mapping module 606 are managed through a GUT editor. Inan
embodiment of the invention, the scripts provided by asset-
mapping module 606 are managed manually. In an embodi-
ment of the invention, logical identifiers are associated with
logical assets 604. Asset-mapping module 606 maps logical
assets 604 to real assets 608 based on the logical identifiers.
Examples of logical identifier include the name, location,
size, or characteristics of logical assets 604.

[0043] Inanembodiment of the invention, GUI customiza-
tion of real assets 608 is done in the pre-processing stage. As
a result, runtime overhead for executing the application is
less. However, parts of the GUI can also be customized during
runtime. For example, the application can ask AE 404 for the
platform resolution, family, orientation etc., and then make
decisions based on it. In an embodiment of the invention, real
assets 608 are maintained in a single lossless format. For
example, images are maintained in a PNG format. Real assets
608 are converted to platform specific format during the pre-
processor stage. Therefore, no runtime overhead is encoun-
tered. Moreover, multiple real assets 608 in different formats
for the same screen resolution are not required to be main-
tained.

[0044] FIG. 7 shows exemplary functional overview of
plug-in interface 412 according to an embodiment of the
invention. Plug-in interface 412 is used when platform spe-
cific functionality is required for an application.

[0045] Exemplary flow for reading a number of bytes of
data from a web server is illustrated in FIG. 7, to explain the
function of plug-in interface 412. In an embodiment of the
invention, the files module is used to provide network con-
nectivity. The file module has two main components: an
abstract functionality 702 and a plug-in platform specific
functionality 704. Abstract functionality 702 includes various
functions that are independent of the device platform. For
illustration purposes, in case of networking the functions in
abstract functionality 702 include connect-server function
706, read bytes function 708, and disconnect-server function
710.

[0046] As shown, connect-server function 706 interfaces
with platform specific functionality 704 to create a system
socket and attempts to make a connection. Similarly, read
bytes function 708 interfaces with platform specific function-
ality 704 to read bytes from the socket. The disconnect-server
function 710 disconnects and releases the system socket. The
developer may use only abstract functionalities 702 of ADF
104, which are automatically translated to platform specific
functionalities 702.

[0047] FIG. 8 is a flowchart illustrating the method for
platform independent development of an application, accord-
ing to an embodiment of the invention. At step 802, an Appli-
cation Programming Interface (API) is provided to program
an application comprising a programming code. The pro-
gramming code can be executed on multiple platforms. In an
embodiment of the invention, the multiple platforms include
mobile device platforms. Examples of the application
include, but are not limited to, an online game for mobile
devices, a messaging application, a chat application and so

Dec. 17,2009

forth. The API is independent of device platform and is pro-
vided by ADF 104. Thereafter, at step 804, application envi-
ronment 404 is provided to program the application. Appli-
cation environment 404 provides and infrastructure that is
independent of the device platforms. Infrastructure includes
various utilities, data structures, tools, modules, assets and
other resources or modules required for developing or execut-
ing the application. Subsequently, at step 806, an interface is
provided between application environment 404 and the
device platforms. In an embodiment of the invention, the
interface is provided by plug-in interface 412.

[0048] Embodiments of the invention are described above
with reference to block diagrams and schematic illustrations
of methods and systems according to embodiments of the
invention. It will be understood that each block of the dia-
grams and combinations of blocks in the diagrams can be
implemented by computer program instructions. These com-
puter program instructions may be loaded onto one or more
general purpose computers, special purpose computers, or
other programmable data processing apparatus to produce
machines, such that the instructions which execute on the
computers or other programmable data processing apparatus
create means for implementing the functions specified in the
block or blocks. Such computer program instructions may
also be stored in a computer-readable memory that can direct
acomputer or other programmable data processing apparatus
to function in a particular manner, such that the instructions
stored in the computer-readable memory produce an article of
manufacture including instruction means that implement the
function specified in the block or blocks. Furthermore, such
computer program instructions may be made available for
download and/or downloaded over a communication net-
work.

[0049] While the invention has been described in connec-
tion with what is presently considered to be the most practical
and various embodiments, it is to be understood that the
invention is not to be limited to the disclosed embodiments,
but on the contrary, is intended to cover various modifications
and equivalent arrangements included within the spirit and
scope of the appended claims.

[0050] This written description uses examples to disclose
the invention, including the best mode, and also to enable any
person skilled in the art to practice the invention, including
making and using any devices or systems and performing any
incorporated methods. The patentable scope the invention is
defined in the claims, and may include other examples that
occur to those skilled in the art. Such other examples are
intended to be within the scope of the claims if they have
structural elements that do not differ from the literal language
of the claims, or if they include equivalent structural elements
with insubstantial differences from the literal languages of
the claims.

We clain:

1. A platform-independent application development

framework, comprising:

a content interface configured to provide an Application
Programming Interface (API) to program an applica-
tion, the application comprising programming code to
be executed on one or more platforms, wherein the API
is independent of the one or more platforms;

an application environment configured to provide an infra-
structure to program the application, wherein the infra-
structure is independent of the one or more platforms;
and

US 2009/0313004 Al

one or more plug-in interfaces configured to provide an
interface between the application environment and the
one or more platforms.

2. The framework of claim 1, wherein the content interface
is further configured to provide one or more assets for pro-
gramming the application.

3. The framework of claim 1, wherein the application envi-
ronment comprises:

a utility module configured to provide one or more

resources to program the application;

a control infrastructure module configured to manage the

flow of the application; and

an asset management module configured to manage one or

more logical assets.

4. The framework of claim 3, wherein the one or more
resources comprise one or more data structures.

5. The framework of claim 3, wherein the control infra-
structure comprises:

a model module configured to provide the data of the

application;

aview module configured to provide a user interface for the

data provided by the model module; and

a controller configured to handle one or more events

received from the model module and the view module.

6. The framework of claim 5, wherein the control infra-
structure further comprising one or more sub-controllers.

7. The framework of claim 6, wherein the one or more
sub-controllers are controlled by the controller.

8. The framework of claim 6, wherein the one or more
sub-controllers are configured to handle the one or more
events received from the model module and the view module.

9. The framework of claim 6, wherein the one or more
sub-controllers are configured to dispatch the one or more
events to the controller.

10. The framework of claim 3, wherein the one or more
assets provided by the asset management module are inde-
pendent of the one or more platforms.

11. The framework of claim 3, wherein the asset manage-
ment module is further configured to provide one or more
logical asset identifiers to the one or more logical assets.

12. The framework of claim 3, wherein the asset manage-
ment module is further configured to map the one or more
logical assets to one or more real assets based on the one or
more logical identifiers.

13. The framework of claim 1, wherein the one or more
plug-in interfaces are configured to compile the program code
to one or more native binary formats corresponding to the one
or more platforms.

14. The framework of claim 1, wherein the application
environment is further configured to emulate the application
on the one or more platforms.

15. The framework of claim 1, wherein the application
comprises the programming code of a mobile game.

16. The framework of claim 1, wherein at least one of the
one or more platforms is a mobile device platform.

17. The framework of claim 16, wherein the application
comprises the programming code of a mobile game.

18. The framework of claim 16, wherein the application
environment comprises:

a utility module configured to provide one or more

resources to program the application;

a control infrastructure module configured to manage the

flow of the application; and

Dec. 17,2009

an asset management module configured to manage one or
more logical assets for the at least one mobile device
platform.

19. An architecture for platform-independent development
of an application, the application comprising a programming
code to be executed on one or more mobile device platforms,
the architecture comprising:

an abstraction layer configured to:

provide an Application Programming Interface (API) to
program the application, wherein the API is indepen-
dent of the one or more mobile device platforms;

provide an infrastructure to program the application,
wherein the infrastructure is independent of the one or
more mobile device platforms; and

configured to provide an interface between the infra-
structure and the one or more mobile device plat-
forms.

20. The architecture of claim 19 further comprising an
emulation layer configured to emulate the application on the
one or more mobile device platforms.

21. The architecture of claim 19, wherein the plug-ins layer
is further configured to compile the programming code of the
application based on the characteristics of the one or more
device platforms.

22. The framework of claim 19, wherein the abstraction
layer comprises:

a utility module configured to provide one or more

resources to program the application;

a control infrastructure module configured to manage the

flow of the application; and

an asset management module configured to manage one or

more logical assets for the one or more mobile device
platforms.

23. A method for platform independent development of an
application, comprising:

providing an Application Programming Interface (API) to

program an application, the application comprising a
programming code to be executed on one or more plat-
forms, wherein the API is independent of the one or
more platforms;

providing an application environment to program the

application, wherein the infrastructure is independent of
the one or more platforms; and

providing an interface between the application environ-

ment and the one or more platforms.

24. The method of claim 23, wherein providing the API
comprises providing one or more assets to program the appli-
cation.

25. The method of claim 23 further comprising emulating
the application on the one or more platforms.

26. The method of claim 23, wherein generating the pro-
gramming code comprises providing one or more modules
for programming the application.

27. The method of claim 23, wherein generating the pro-
gramming code comprises providing one or more logical
assets.

28. The method of claim 23, further comprising download-
ing computer-executable instructions that, if executed on a
computer, cause the computer to implement said providing an
API, said providing an application environment, and said
providing an interface.

29. The method of claim 23, further comprising providing
for download computer-executable instructions that, if
executed on a computer, cause the computer to implement

US 2009/0313004 Al

said providing an API, said providing an application environ-
ment, and said providing an interface.

30. A computer-readable medium having computer-ex-
ecutable instructions that, if executed by a computing device,
cause the computing device to implement a method for plat-
form independent development of an application, compris-
ing:

providing an Application Programming Interface (APT) to

program an application, the application comprising pro-
gramming code to be executed on one or more plat-
forms, wherein the API is independent of the one or
more platforms;

providing an infrastructure to program the application,

wherein the infrastructure is independent of the one or
more platforms; and

Dec. 17,2009

providing an interface between the application environ-
ment and the one or more platforms.

31. The computer-readable medium of claim 30, wherein
providing the API comprises providing one or more assets to
program the application.

32. The computer-readable medium of claim 30, wherein
generating the programming code comprises providing one
or more modules for programming the application.

33. The computer-readable medium of claim 30, wherein
generating the programming code comprises providing one
or more logical assets.

EIE T

	Bibliography
	Claims
	Drawings
	Description
	Abstract

