
111111 111

(12) United States Patent
Lavian et ai.

(54) INTERFACE METHOD AND SYSTEM FOR
ACCESSING INNER LAYERS OF A
NETWORK PROTOCOL

(75) Inventors: Tal Isaac Lavian, Sunnyvale, CA (US);
Robert James Duncan, San Francisco,
CA (US); Robert F. Jaeger, Silver
Spring, MD (US)

(73) Assignee: Nortel Networks Limited, Billerica,
MA(US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.c. 154(b) by 833 days.

(21) Appl. No.: 09/753,019

(22) Filed: Dec. 29, 2000

(51) Int. CI? .. G06F 13/00
(52) U.S. CI. ... 709/230
(58) Field of Search 709/200, 227,

709/228, 230, 231; 719/328; 370/229, 230

US006845397Bl

(10) Patent No.: US 6,845,397 BI
Jan. 18,2005 (45) Date of Patent:

(56) References Cited

U.S. PATENT DOCUMENTS

5,537,417 A * 7/1996 Sharma et al. 709/228
6,678,246 B1 * 1/2004 Smyth 370/230

* cited by examiner

Primary Examiner-Robert B. Harrell
(74) Attorney, Agent, or Firm-Nortel Networks Limited

(57) ABSTRACT

A method of performing network communications includes
receiving a datagram for transmitting information over a
network, selecting a layer in a network protocol stack to
establish communication over the network using an inner
layer application programming interface (ILAPI), establish
ing an inner layer socket at the selected network layer using
the IL API without accessing other layers in the layered
network protocol stack, and transmitting the datagram
packet over the selected layer using the inner layer socket.

26 Claims, 5 Drawing Sheets

~- 300
312

314 302 \ 316
----.-----._\ -----~-- -------_ ... -----

OSI
Layers 5-

7

Inner Layer
Application

Programming Interface
(IL API)

334

320

324

330

328 I
.-------p--~--;-~-.,--i-c-a-:-I ----, -··------··~-~-,~~i~~~-- .----- .. ----\

Layer 332

310

Data

u.s. Patent Jan. 18,2005 Sheet 1 of 5 US 6,845,397 BI

102"" L 118
/128 R .

Transmit /_. ecelve
Application r.. _. -' -------------. -. -~ Application

L--'-'-::;...--_~' , l ,L--'-'---...;;;-_--'

_ /V104\\./130 132,\/l i120~~
Ii', I I

. TCP/UDP 1 \ .. /110 114~t'136\i TCP/UDP

D- --IP LLL IP r.--[IP : IP

<l: \ ,

=:! ~ 106 '1/134 ~ 112 116~ ,I r-12_2_~--,,----_---, =:!

Data Link Data Link I Data Link
I ~. __ ~ __ ~

\ 108 '

Data Link

,

"" 126

100/

FIG. 1

u.s. Patent Jan. 18,2005 Sheet 2 of 5

202

204

206

Transport Layer

TCP UDP UOP

Application

Inner Layer API]

208

Network Layer

Appletalk IPV4 IPV6 IPX

218

FIG. 2

US 6,845,397 BI

210

Data Link Layer

FOOl Ethernet

228

u.s. Patent Jan. 18,2005 Sheet 3 of 5 US 6,845,397 BI

~- 300

__ 3_~~_~ ___ ~_~_~_____ ___________ _ __
------ ------- -- OSI Inner Layer

312
314

Application

r--------------

324

ICMPI
IGMP

330

Ethernet
Header

Application Layers 5- :-- Application
7 Programming Interface

-------------~~----~~~~:~--:----:~--------------:-----: (I L AP I)

__ ----L-_--, OSI *- -1 rcp V 334
UDP Layer: Socket r

4 i 338
---- ---- -~-;-~~------------ I P "'---:::L"'-in-k--'

Socket 336 Socket

306 ______________ L _______________________________________ _______________________________ :
~~-L--~ OSI i

: I
IP ARP RARP Layer: ;

3 :'

Physical
Layer

OSI Layer
1-2

332
---- ----- ---- -.- -------- --~----- ------- -------- ----------------

310

IP TCP
Header Header

FIG. 3

Data
Ethernet
Trailer

u.s. Patent Jan. 18,2005 Sheet 4 of 5 US 6,845,397 BI

400

~

402~

MEMORY V 414

Application /
V 416

Inner Layer API

V- 418
Inner Layer Extensions

V 420 404~
Virtual Machine Runtime

Environment V- 422

TCPJIP V· 423 Processor
Network Resources V· 424
Operating System

/412

Network seCOndary] Input-Output Communication
Storage Ports

Port

406/ 408/ 410/

FIG. 4

u.s. Patent Jan. 18,2005 Sheet 5 of 5 US 6,845,397 BI

Start J
502

11,

\ Create Datagram For Transmission
Over Network

504
.r

\ Select Network Layer To Establish
Communication

506 "

\ Open Socket At Selected Layer Of
Network Protocol Using IL API

508
1,

\ Communicate At Selected Layer
Using IL API Socket

1

End J

FIG. 5

US 6,845,397 Bl
1

INTERFACE METHOD AND SYSTEM FOR
ACCESSING INNER LAYERS OF A

NETWORK PROTOCOL

2
FIG. 1 is a block diagram illustrating a network using an

inner layer application programming interface (IL API) to
communicate between nodes on the network.

FIELD OF THE INVENTION
FIG. 2 is a block diagram demonstrating the various

5 protocols an application can interface with using the ILAPI.

The present invention relates to the field of computer data
networking and an interface method and system for access
ing inner layers of a network protocol.

BACKGROUND OF THE INVENTION

The use of layered data communications protocols pro
motes system interoperability, vendor portability and sim
plicity in system integration. Each protocol layer operates at
a different layer of abstraction and performs different types

10

FIG. 3 is a block diagram illustrating how the IL API
works to provide access to the Internet Protocol (IP) stack.

FIG. 4. is a block diagram depicting a computer system
that provides the IL API and IP stack to applications.

FIG. 5 is a flow-chart diagram illustrating the operations
associated with communicating over the IP stack using the
ILAPI.

DETAILED DESCRIPTION OF THE
INVENTION

FIG. 1 is a block diagram illustrating a network 100 using
an inner layer application programming interface (ILAPI) to
communicate between nodes on network 100. Network 100

of data manipulation and formatting. Because each layer is 15
concerned with events at its own level of abstraction,
different software designers can work together to design the
protocols. Layers of the network protocol can also be
replaced individually without significant communication
incompatibilities problems arising.

The Internet Protocol (IP) stack is a widely used layered
communication protocol. Applications use the IP stack to
transmit and receive data over a variety of different local and
wide area networks. Typically, a transmitting application
passes application data to a transport layer in the IP stack,
which in turn adds routing information to the data and passes 25

the results to a data link layer. The data link layer also adds
additional header information and passes the resulting infor
mation to a physical layer, where it is finally transmitted
over the network.

20 includes a transmit application 102 with a corresponding
TCP/IP stack 104, a data link layer 106 and a inner layer
application programming interface (IL API) 108 facilitating
communication between transmit application 102 and layers
within TCP/IP stack 104. Further, network 100 also includes
a first intermediate gateway or router node represented by IP
stack 1110 and data link layer 112 and a second intermediate
gateway or router node represented by IP stack 114 and data
link layer 116. Receive application 118 in network 100 has
a TCP/IP stack 120, data link layer 122 and a IL API 124.

30 Physical connection 126 provides a connection to each of
these nodes through their respective data link layers using a
physical access protocol such as CSMNCD.

A receiving application associated with a receiving IP
stack receives and processes the information. Each layer of
the receiving IP stack performs various communication
functions and format conversions in reverse going from the
physical layer, the data link layer, the network layer, the
transport layer, and then to the receiving application. In a 35

conventional network, applications send and receive mes
sages from each other and use the IP stack as a conduit for
data. Notwithstanding these messages, other information
being transmitted between the sending and receiving IP
stacks is not typically made available to either the sending 40

or receiving applications.
While layered protocols such as used in a conventional IP

stack have some advantages, they are have been obtained by
lowering programmatic flexibility. For example, application
data is encapsulated with protocol-generated headers whose 45

content cannot be accessed and controlled by the application
itself. Applications are masked from the inner operation of
a network protocol and network operation. This inflexibility
makes it difficult for an application to send data encapsulated
with a non-standard header when required or monitor opera- 50

tion of the network.

SUMMARY OF THE INVENTION

Conventional layered communications provides applica
tions with application to application or peer-to-peer or
communication capabilities. Information at the lower layers
of the protocol stack are masked from the application
through abstract interfaces. This simplifies network pro
gramming over the IP stack but does not provide much
flexibility if access to these other layers is desired. IL API
108 and ILAPI 124 provides this communication capability
to both transmit application 102 and receive application 118.
For example, transmit application 102 and receive applica
tion 118 have access to IP stack 110 and IP stack 114 directly
using their respective IL API. Additionally, transmit appli
cation 102 and receive application 118 also have access to
other protocol layers using the ILAPI such as data link layer
112 and data link layer 116.

FIG. 2 illustrates many different types of network infor
mation available at these different layers in the protocol
stack. This block diagram illustrates an application 202
passing through an IL API 204 to gain access to a transport
layer 206, a network layer 208, and a data link layer 210. At
transport layer 206, application 202 has access to the trans
port protocols TCP 212, UDP 214, and other transport 216.

A method of performing network communications
includes receiving a datagram for transmitting information
over a network, selecting a layer in a network protocol stack 55 TCP 212 or Transmission Control Protocol is a connection

oriented protocol that provides a reliable, full-duplex, byte
stream for a user process. Most conventional Internet appli
cations use TCP 212 and allow TCP 212 to interface with the
IP layers below. UDP 212 or User Datagram Protocol is a

to establish communication over the network using an inner
layer application programming interface (ILAPI), establish
ing an inner layer socket at the selected network layer using
the IL API without accessing other layers in the layered
network protocol stack, and transmitting the datagram 60

packet over the selected layer using the inner layer socket.

BRIEF DESCRIPTION OF THE DRAWINGS

The features and aspects of the present invention will
become more fully apparent from the following detailed
description, appended claims, and accompanying drawings
in which:

connectionless protocol also for user processes, however, it
does not guarantee that UDP datagrams will ever reach their
intended destination. Because TCP and UDP both access the
IP layer the protocol is often referred to as simply TCP/IP.

Network layer 208 provides application 202 with access
65 through IL API 204 to information carried over Appletalk

218, IPv4 220, IPv6 222, and IPX 224. These protocols
provide packet delivery services and routing capabilities for

US 6,845,397 Bl
3

transport protocols such as TCP 212 and UDP 214. Net
works based on Appletalk 218 and IPX 224 can be integrated
to work with the TCP and UDP transport protocols. In
addition, routers, switches, hubs and other network devices
exchange status and network routing information describing 5

network layer resources using ICMP (Internet Control Mes
sage Protocool) and IGMP (Internet Gateway Message
Protocol). Appletalk 218 provides packet delivery services
primarily to computers designed by Apple Computer of
Cupertino, Calif. IPv4 220 (version 4) provides 32-bit 10

addresses and IPv6 222 (version 6) provides 64-bit
addresses in the Internet Protocol (IP) defined in specifica
tion DOD-SID-I777. Further references to the IP protocol
include these additional protocols described above.

Application 202 also has access to data link layer 210 15

through ILAPI 204. Fiber distributed data interface (FDDI)
protocol 226 is a standard for data transmission on fiber
optic lines in a local area network that can extend in range
up to 200 km (124 miles). FDDI protocol 226 is based on the
token ring protocol and in addition can support thousands of 20

users. In addition, application 202 can also access informa
tion from Ethernet 228 through IL API 204. Ethernet 228 is
the most widely-installed local area network technology and
specifies sharing physical access over coaxial cable or
special grades of twisted pair wires (lOBASE-T) providing 25

transmission speeds from several Mbps to Gbps. Devices are
connected to the cable and compete for access using a
Carrier Sense Multiple Access with Collision Detection
(CSMNCD) protocol.

FIG. 3 is a block diagram illustrating how the IL API 30

works to provide access to a Internet Protocol (IP) stack 300.
IP stack 300 includes application 302, transport layer 304,
network layer 306, data link layer 308 each connected to IL
API 312. In one implementation, layers in IP stack 300
produce an Ethernet packet 310 with a data payload and
headers from each of the various layers. 35

4
Application 314 operates in a similar manner with respect

to data link layer 308. To gain access to data link layer 308,
application 314 establishes a session directly to data link
layer 308 through link socket 338. Once the session through
link socket 338 is created, application 314 has access to
resources in data link 330 and physical layer 332. For
example, application 314 can create customized headers for
an Ethernet packet 310 creating TCP Header and IP Header
as illustrated in Ethernet packet 310 in FIG. 3. Ethernet
header and Ethernet trailer are added by an Ethernet type
data link 330. This provides an application with additional
flexibility when developing network management software
or developing text routines that need access to lower layers
of the network protocol stack.

FIG. 4. is a block diagram depicting a computer system
400 that provides the IL API and IP stack to applications.
Computer system includes a memory 402, a processor 404,
a network communication port 406, a secondary storage
408, and input-output ports 410. Processor can be a general
purpose processor such as manufactured by Intel Corpora-
tion of Santa Clara Calif. or can be a specialized ASIC or
other type of processor device. Network communication
port 406 can be implemented as a Ethernet card or built-in
communication port on a computer and secondary storage
408 is a hard-disk, CDROM, or other mass storage device.
Input-output ports includes ports for corresponding periph
eral devices such as keyboard, mouse, printer, display, and
scanner.

Memory 402 includes an application 414, an inner layer
API (IL API) 416, inner layer extensions 418, virtual
machine runtime environment 420, TCP/IP protocol 422,
network resources 423 and operating system 424. Applica-
tion 414 is an application that can access one or more
different layers of a network protocol stack such as TCP/IP
protocol 422. Generally, application 414 should be a user
application but may need to be run with increased permis
sions such as "root" or "superuser" due to the sensitive
information accessible within the inner layers of TCP/IP
protocol 422.

Inner layer API 416 is the interface routines linked into
application 414 that provides direct access to the transport,
the network, data link layers and physical layers in the
protocol stack. Inner layer extensions 418 include any
supporting routines necessary to make the IL API 416
available on the given platform. In some cases, this could
involve recompiling an operating system kernel to include

In conventional network communication, application 314
and application 316 communicate through either TCP 318 or
UDP 320 for connection or connectionless type communi
cation over a network. As an alternative, both application
314 and application 316 can communicate with transport 40

layer 304 through TCP Socket 334 in ILAPI 312. Although,
additional information is not available, a more uniform
implementation is achieved by offering the transport inter
face with IL API 312.

45 these particular functionalities not previously available to
applications. In an object-oriented implementation, such as
using the Java programming language by Sun Microsystems
of Mountain View, Calif., these extensions can be dynami
cally loaded at run-time or immediately when they are
loaded into the overall system. Because Java allows

Application 314 and application 316 can use IL API 312
to access network layer 306 and data link layer 308 in ways
previously unavailable. For example, application 314 can
access Internet Control Message Protocol (ICMP)/Internet
Group Multicast Protocol (IGMP) 324 resources and interact
with routers, switches, hubs, gateways, and hosts commu
nicating with each other about errors and system control.
ICMP provides message control and error-reporting protocol
between a host server and a gateway to the Internet. ICMP
uses Internet Protocol (IP) datagrams that IL API 312
provides to an application. On conventional systems, this
information is processed by the TCP/IP protocol and is not
available directly to the application. IGMP is used to support
multicasting between nodes on a network and provides
resources to applications through IL API 312 in a similar
manner. Application 314 also has access to ARP 326 and
RARP 328 resources. Application 314 opens a socket using
IP Socket 336 interface and establishes a direct connection
with network layer 306. Because application 314 bypasses
transport layer 318, ARP 326 and RARP 328 resources are
exposed and available for application 314 to process. For
example, ARP 326 resources include Media Access Control
(MAC) addresses associated with each Ethernet device on a
network.

50 d ynamic loading of routines, inner layer extensions 418 can
be loaded as application 414 requires.

Virtual machine runtime environment 420 is typically
used with an object-oriented programming language such as
Java. If a non-object oriented or interpreted programming

55 language is not being used, then virtual machine runtime
environment 420 may not be required. For Java, a Java
Virtual Machine or JVM simulates a virtual machine and
provides hardware independent computing capabilities in
addition to dynamic loading of libraries, applications, and

60 applets in real-time over a network.
TCP/IP 422 is the conventional layered protocol stack

typically available on most computers and computer-like
platforms. As previously mentioned, TCP/IP generally only
provides applications with access to the transport layer but

65 with ILAPI 416, application 414 accesses the network layer,
the data link layer, and the physical layer in addition to the
transport layer. Network resources 423 represent the various

US 6,845,397 Bl
5

tables and other network resources on a network device.
These resources include information stored in routing tables,
ARP tables, ICMP/IGMP related tables, tables for storing
physical port information and any other tables or resources
used to manage and or describe an aspect of a network 5

device.
Operating system 424 manages resources on computer

system 400 so they are used efficiently and uniformly.
FIG. 5 is a flow-chart diagram illustrating the operations

associated with communicating over the IP stack using the 10

IL API. Initially, an application creates a datagram to be
transmitted over a network (502). The datagram or packet is
self-contained, independent entity of data carrying sufficient
information to be routed from the source to the destination
computer without reliance on earlier exchanges between this
source and destination computer and the transporting net- 15
work. The packet needs to be self-contained without reliance
on earlier exchanges because there is no connection of fixed
duration between the two communicating points as there is,
for example, in most voice telephone conversations. This
kind of protocol is therefore referred to as connectionless.

Given several layers to communicate with, application
20

selects a network layer to establish communication (504). In
part, the layer selected depends on the type of datagram the
application has created. If the application creates a transport
session using a transport socket such as TCP 334 in FIG. 3,
the application provides the data and necessary headers. 25
However, a network session uses a network socket such as
IP Socket 446 in FIG. 3 and the application needs to create
the appropriate network layer TCP header or UDP header
around the data or payload section of each packet. Similarly,
if the application creates a link layer session using link
socket 338 then the application must also include IP header 30

information in the packet.

6
Ethernet Socket s=New Ethernet Socket (source Ethernet

Address);

Byte size;

Byte buffer=new byte[size];
s.send(ep);
s.rcv(buf);

The Code Example A details the use of a combination
sendlreceive Java link layer socket "s" whose address is
"source Ethernet Address". A datagram packet "ep" is cre
ated for use in an Ethernet networking environment, where
"ep" is intended to be sent to a destination "destination
Ethernet Address". A receive buffer "buf' is created for
socket "s", and given size "size". After "ep" is sent by Java
link layer socket "s", Java link layer socket "s" receives any
return packets in buffer "buf".

Another example of the use of Java link layer sockets is
given below in code example B.

CODE EXAMPLE B

Ethernet Address destination=new Ethernet Address;

Ethernet Address source=new Ethernet Address;

Byte [] buf=new byte [2000];
Ethernet Packet ep=new Ethernet

destination);
II put the data into the buffer buf

Packet (buf,

Ethernet Socket es=new Ethernet Socket (source);
es.send(ep);
es.receive(ep);

II now look at data in the buffer buf
In the code example B, a buffer "buf" is utilized as a

bi-directional sendlreceive buffer for supporting the socket
"es".

While specific implementations have been described
herein for purposes of illustration, various modifications
may be made without departing from the spirit and scope of
the invention. For example, implementations and examples
are provided with reference to TCP/IP however, an alternate
implementation could also be adapted to work with the Open

The application also selects a layer in the network pro
tocol stack depending on the layer a resource associated with
the network device uses for communication. For example,
the ICMP and IGMP tables are resources that use the IP 35

protocol because they communicate that the network layer in
the protocol stack. Similarly, an ARP table is a resource that
uses the link layer to communicate information about the
network device, in particular an Ethernet or MAC address of
the network device. 40 Systems Interconnection (OSI) network model. In the OSI

communication model, IP is in layer 3, and other layers are
as illustrated in FIG. 3. Inner sockets for the transport,
network and data link layer are described but an inner socket
for a physical layer could also be implemented. The physical

The application then opens a socket at the selected layer
of the network protocol using the IL API (506). Often, the
communication occurs over a "raw" type of socket rather
than a "cooked" socket. The information is considered raw
because control characters and other information in the data
stream are not stripped out or interpreted by other programs
before being delivered to the application. For example, two
common types of packets sent or received over raw sockets
are ICMP packets and IGMP packets. Specific resources
such as routing tables, ICMP and IGMP tables are identified
with predetermined or well-known socket identifiers. Appli
cations open an inner layer socket using these specific socket
identifiers to access the information in these particular
resources. Alternatively, the application can open inner layer
sockets with other socket identifiers to intercept other types
of information being transmitted across the particular net
work protocol layer.

Communication continues between the application and
the selected layer or specific resource until the application
ends or the connection is terminated (508).

45 layer would provide information about the ports on a net
work device and information about the physical media being
used. Additional implementations could be created using
conventional procedural programming languages such as
"c" as well as object-oriented programming environmentsl
languages such as Java or C++. Furthermore, although

50 aspects of the present invention are described as being stored
in memory and other storage mediums, one skilled in the art
will appreciate that these aspects can also be stored on or
read from other types of computer-readable media, such as
secondary storage devices, like hard disks, floppy disks, or

55 CD-ROM; a carrier wave from the Internet; or other forms
of RAM or ROM. Accordingly, the invention is not limited
to the above-described embodiments, but instead is defined
by the appended claims in light of their full scope of
equivalents.

In one implementation using the Java object-oriented 60

programming environment, an application may contain
source code that generates and utilizes Java link layer
sockets as shown in the following code example A.

What is claimed is:
1. A method of performing network communications,

comprising:
receiving a datagram for transmitting information over a

network;
CODE EXAMPLE A

Ethernet Packet ep=New Ethernet Packet (data, destina
tion Ethernet Address);

65 selecting a layer in a network protocol stack to establish
communication over the network using an inner layer
application programming interface (IL API);

US 6,845,397 Bl
7

establishing an inner layer socket at the selected network
layer using the ILAPI without accessing other layers in
the layered network protocol stack; and

transmitting the datagram packet over the selected layer
using the inner layer socket.

2. The method of claim 1, wherein selecting a layer in a
network protocol stack further includes determining if the
information produced at a layer in the network protocol
stack corresponds to the information being transmitted
through the datagram.

3. The method of claim 1, wherein the IL API provides a
transport socket to access transport layer information in the
network protocol, a network socket to access network layer
information in the network protocol, and a link socket to
access link layer information in the network protocol.

4. The method of claim 1, wherein the IL API provides a
different socket communication interface for each layer of
communication available in the network protocol.

5. The method of claim 1, wherein said datagram includes
header information associated with a transport layer for
communication over a transport socket.

6. The method of claim 5, wherein the network protocol
stack is compatible with TCP/IP and the transport socket
uses a TCP or UDP transport layer protocol.

7. The method of claim 1, wherein said datagram includes
header information associated with a network layer for
communication over a network socket.

8. The method of claim 7, wherein the network protocol
is compatible with TCP/IP and the network socket uses the
IP network layer protocol.

9. The method of claim 1, wherein said datagram includes
header information associated with a link layer for commu
nication over a link socket.

10. The method of claim 9, wherein the network protocol
is compatible with TCP/IP and the link socket uses a link
layer protocol.

8
15. The apparatus of claim 13, wherein instructions in the

IL API provides a transport socket to access transport layer
information in the network protocol, a network socket to
access network layer information in the network protocol,

5 and a link socket to access link layer information in the
network protocol.

10

16. The apparatus of claim 13, wherein instructions in the
IL API provides a different socket communication interface
for each layer of communication available in the network
protocol.

17. The apparatus of claim 13, wherein said datagram
includes header information associated with a transport layer
for communication over a transport socket.

18. The apparatus of claim 17, wherein the network
protocol stack is compatible with TCP/IP and the transport

15 socket uses either TCP or UDP transport layer protocol.
19. The apparatus of claim 13, wherein said datagram

includes header information associated with a network layer
for communication over a network socket.

20. The apparatus of claim 19, wherein the network
protocol is compatible with TCP/IP and the network socket

20 uses an IP network layer protocol.
21. The apparatus of claim 13, wherein said datagram

includes header information associated with a link layer for
communication over a link socket.

22. The apparatus of claim 21, wherein the network
25 protocol is compatible with TCP/IP and the link socket uses

a link layer protocol.
23. The apparatus of claim 13, further including instruc

tions in an application that communicate with the IL API
using object-oriented instructions and wherein the IL API

30 interfaces with the network protocol through instructions
executable on a virtual-machine compatible with the net
work protocol stack.

24. The apparatus of claim 23, wherein the object
oriented instructions are compatible with the Java program-

35 ming language.
25. An apparatus for performing network communication,

comprising:
means for receiving a datagram for transmitting informa

tion over a network;

11. The method of claim 1, wherein an application com
municates with the ILAPI using object-oriented instructions
and the ILAPI interfaces with the network protocol through
instructions executable on a virtual-machine compatible
with the network protocol stack.

12. The method of claim 11, wherein the object-oriented 40

instructions are compatible with the Java programming
language.

means for selecting a layer in a network protocol stack to
establish communication over the network using an
inner layer application programming interface (IL
API);

13. An apparatus for performing network communication,
comprising:

a processor;

a memory for storing instructions when executed on the
processor that causes the processor to,

receiving a datagram for transmitting information over a
network;

selecting a layer in a network protocol stack to establish
communication over the network using an inner layer
application programming interface (IL API);

45

50

establishing an inner layer socket at the selected network
layer using the ILAPI without accessing other layers in 55

the layered network protocol stack; and

transmitting the datagram packet over the selected layer
using the inner layer socket.

14. The apparatus of claim 13, wherein instructions that
select a layer in a network protocol stack further include 60

instructions that determine if the information produced at a
particular layer in the network protocol stack corresponds to
the desired information available through the network pro
tocol.

means for establishing an inner layer socket at the
selected network layer using the ILAPI without access
ing other layers in the layered network protocol stack;
and

means for transmitting the datagram packet over the
selected layer using the inner layer socket.

26. A computer program, tangibly stored on a computer
readable medium, comprising instructions for performing
network communication when executed on a processor, by:

receiving a datagram for transmitting information over a
network;

selecting a layer in a network protocol stack to establish
communication over the network using an inner layer
application programming interface (IL API);

establishing an inner layer socket at the selected network
layer using the ILAPI without accessing other layers in
the layered network protocol stack; and

transmitting the datagram packet over the selected layer
using the inner layer socket.

* * * * *

