
(12) United States Patent
Lavian et al.

(54) OBJECT-ORIENTED NETWORK
MANAGEMENT INTERFACE

(75) Inventors: Tal Lavian, Sunnyvale, CA (US);
Robert James Duncan, San Francisco,
CA (US)

(73) Assignee: Nortel Networks Limited, St. Laurent,
Quebec (CA)

(*) Notice: Subject to any disclaimer, the tenn of this
patent is extended or adjusted under 35
U.S.c. 154(b) by 632 days.

(21) Appl. No.: 09/632,294

(22) Filed: Aug. 4, 2000

Related U.S. Application Data

(63) Continuation-in-part of application No. 09/522,332,
filed on Mar. 9, 2000.

(51) Int. Cl.
G06F 151173 (2006.01)

(52) U.S. Cl. 7091223; 709/217; 709/224;
709/229; 707/101; 370/254

(58) Field of Classification Search 709/223,
709/224,229,217; 707/101,206; 717/136-140;

370/254
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,799,313 A * 811998 Blackman et al. 707/103 R

111111 111
US007260621 B 1

(10) Patent No.:
(45) Date of Patent:

US 7,260,621 Bl
Aug. 21, 2007

5,850,544 A * 12/1998 Parvathaneny et al. 707/101

6,058,103 A * 5/2000 Henderson et al. 3701254

6,078,927 A * 6/2000 Blackman et al. 707/103 R

6,219,673 Bl* 4/2001 Blackman et al. 707/103 R

6,253,215 Bl* 6/2001 Agesen et al. 707/206

6,292,829 Bl* 9/2001 Huang et al. 7091223

* cited by examiner

Primary Examiner-Yves Dalencourt
(74) Attorney, Agent, or Firm-Guerin & Rodriguez, LLP

(57) ABSTRACT

A system and method is provided for using an object­
oriented interface for network management. An example
system and method receives a management information base
(MIB) including information related to one or more aspects
of a network device, extracts a subset of information from
the MIB describing at least one aspect of the network device,
and generates a set of object-oriented classes and object­
oriented methods corresponding to the subset of infonnation
in the MIB. In addition, this system and method interfaces
with network management information on a network device,
by providing a management infonnation base (MIB) includ­
ing information related to one or more aspects of a network
device, and using a set of object-oriented classes and object­
oriented methods that corresponds to the MIB and informa­
tion related to one or more aspects of the network device.

25 Claims, 6 Drawing Sheets

Receive Request For
602 Network Parameters

612

Send SNMP
Request Through
Network Protocol

("Ioopback"
Address) Of Local

Network Device

614
Network Protocol On
Local Network Device

Converts Request
Into SNMP Request

For A Network

604

From Application
Executing On 606

Network Device

Is Request
or MIS Information
Targeted At Local

Network
Device?

Send SNMP
Request For

Network
Parameters To

No Network Address
OfTarget

Network Device

u.s. Patent Aug. 21, 2007 Sheet 1 of 6 US 7,260,621 Bl

108 110
Application Authentication

Server Server

100/

Network

Network
Device

Network
Monitor
Server

Network
Device

111

106

116

FIG. 1

104

Target
Network
Device

Client Node
With User
Interface

112

114

u.s. Patent Aug. 21, 2007 Sheet 2 of 6 US 7,260,621 Bl

----- 112

202~
V 226 MEMORY

I Client Application ~
/224

Mobile Agent
Module V 222

Object-Oriented MIB Interface

V 221

MIB Compiler V 220

MIB Map
216 "'- Native SNMP Virtual

Variable Stack Machine /218
Interface Runtime V

204

214",- Annotation Environme
/212

Processor
Layer \ nt

RTOS\

\217

/211

208\
I

210 \
I

Network
206", Communication Secondary Input-Output

Port l/207 Storage Ports
I Loopback r

Address

FIG. 2

u.s. Patent Aug. 21, 2007 Sheet 3 of 6 US 7,260,621 Bl

Start

302 "
\ Receive Management Information

Base Definitions For Network Device

304 "

\ Parse And Process MIB Definitions
For Network Device

306 . "

\ Generate Oqject Oriented M I B
Interface And MIB Map

Corresponding To MIB Definitions

"
End

FIG. 3

u.s. Patent Aug. 21, 2007 Sheet 4 of 6 US 7,260,621 Bl

403

FIG. 4

u.s. Patent Aug. 21, 2007 Sheet 5 of 6 US 7,260,621 Bl

(Start

"
502
~

Network Management Server
Requests That A Network Device

Load Operations Associated With A
Task

"
504 Network Device Accesses

~ Application Server For Application
Corresponding To Requested

Process

,
506
~

Application Server Locates
Application And Transfers To

Network Device

r

508
~ Network Device Loads Application

And Executes Requested Process

r

510
~

Network Device Results Are
Provided To Network Management

Services

r

End

FIG. 5

u.s. Patent Aug. 21, 2007 Sheet 6 of 6

602

612

Send SNMP

Start

Receive Request For
Network Parameters

From Application
Executing On

Network Device

Is Request
or MIB Information
Targeted At Local

Network
Device?

Request Through
Network Protocol

("Ioopback"

611

Address) Of Local ~_N.:..:o-<
Network Device

614
Network Protocol On
Local Network Device

Converts Request
Into SNMP Request

For A Network
Parameter

620

Access MIB
Information

Directly?

Access MIB
Information For

Requesting Local
Network Device

US 7,260,621 Bl

606

Send SNMP
Request For

Network
Parameters To

No Network Address
Of Target

Network Device

608

SNMP Stack On
Target Network Device

Retrieves Network
Parameters

610

Results Returned To
Application Executing

On Local Network
Device

SNMP Stack
Retrieves M I B

Request

Results Returned To
I--~ Application Executing

On Local Network 1----------1~
Device

616
618

End
FIG. 6

US 7,260,621 Bl
1

OBJECT-ORIENTED NETWORK
MANAGEMENT INTERFACE

This application is a continuation-in-part and claims pri­
ority from u.s. application Ser. No. 09/522,332, entitled
METHOD AND APPARATUS FOR ACCESSING NET­
WORK INFORMATION ON A NETWORK DEVICE, filed
Mar. 9, 2000.

TECHNICAL FIELD 10

2
tion below. Other features of the invention will be apparent
from the description and drawings, and from the claims.

DESCRIPTION OF DRAWINGS

The accompanying drawings, which are incorporated in
and constitute a part of this specification, illustrate an
embodiment of the invention and, together with the descrip­
tion, serve to explain principles of the invention.

FIG. 1 is a block diagram of an example network.
FIG. 2 is a block diagram example of a network device

architecture. This invention generally relates to using software appli­
cations in network management.

BACKGROUND

FIG. 3 illustrates the operations used in one embodiment
to convert network parameters for a network device into an

15 object-oriented compatible interface for accessing those
network parameters.

Computer networks are becoming increasingly complex
and difficult to manage. This is driven in part by the
ever-increasing variety of network devices, computers, and
software being combined together to integrate large enter- 20

prise-based intranets with the Internet. Network manage­
ment tools have been produced to monitor these complex
combinations of hardware and software and help trouble­
shoot network failures when they occurred.

Traditional network management tools use a protocol 25

called simple network management protocol (SNMP) to
monitor network devices such as routers, switches, hubs,
remote access devices, or even computers in a network. The
protocol used to interface with SNMP includes rudimentary

30 commands to operate on data such as to "get" a variable,
"set" a variable, or "test" a variable.

Having just a few simple commands make it difficult to
perform network management tasks. Specifically, it can be
difficult using these basic commands to develop sophisti- 35

cated network management applications to monitor and
troubleshoot a network. Each task may need to be custom­
ized to the parameters and capabilities of each network
device. Further, a network management task sending com­
binations of these commands to one or more network 40

devices connected to the network may wait a significant
period of time for all the necessary results to be returned.
Network delays can be caused by network congestion and
the nnique processing bottlenecks associated with each

FIG. 4 depicts the relationship between a management
information database (MIB) and the corresponding object­
oriented MIB classes in one embodiment.

FIG. 5 illustrates the operations a network management
server (NMS) performs to gather network parameters from
a network device.

FIG. 6 illustrates the operations used by a network device
to gather network parameters.

DETAILED DESCRIPTION

Systems and methods described herein are used to dis­
tribute network management tasks to one or more network
devices connected to a network. A network application
distributed to each network device collects relevant network
parameters from each network device and transmits the
results back to a central NMS or to other network devices on
the network for further analysis. Each network application
can be programmed to perform a series of complex opera­
tions using an object-oriented progrannning language such
as Java. The network application interfaces on each network
device provides an application progrannning interface (API)
compatible with the particular programming language. This
API is compatible with legacy network management proto­
cols such as simple network management protocol (SNMP)
and, therefore, can be adapted to work with a wide range of
legacy compatible devices.

Tools used to generate the API consistent with the present
network device.

SUMMARY

In one aspect of the present invention, a method of
interfacing with network management information on a
network device, includes receiving a management informa­
tion base (MIB) including information related to one or
more aspects of a network device, extracting a subset of
information from the MIB describing at least one aspect of
the network device, and generating a set of object-oriented
classes and object-oriented methods corresponding to the
subset of information in the MIB.

45 invention include a management information database
(MIB) to object-oriented software compiler and a MIB map.
The compiler uses existing MIB information to generate an
object oriented MIB interface to the underlying MIB infor­
mation collected on each network device. The compiler also

In another aspect of the invention, a method of interfacing
with network management information on a network device,
includes providing a management information base (MIB)
including information related to one or more aspects of a
network device, and using a set of object-oriented classes
and object-oriented methods that corresponds to the MIB
and information related to one or more aspects of the
network device.

The details of one or more embodiments of the invention
are set forth in the accompanying drawings and the descrip-

50 generates a MIB map to determine if access to the MIB
information is made directly to the storage location of the
MIB database or through a network address and network
management protocol associated with the network device.

FIG. 1 illustrates an exemplary communication system
55 100 including a network device 102, a network device 104,

a network device 106, and a target network device 112.
Network devices 102, 104, 106, and target network device
112 includes switches, routers, hubs, and similar devices
capable of processing fixed-length or variable-length pack-

60 ets in a network.
Network device 102 facilitates the transfer of applications

from an application server 108 to the other network devices
and nodes on the network. Server 108 provides applications
that can execute directly on network devices 102-106 and

65 target network device 112. The variety of network applica­
tions available for downloading from application server 108
increases the network management capabilities of each

US 7,260,621 Bl
3

network device. For example, application server 108 may
provide an application to a network device that enables the
device to filter network traffic containing data packets gen­
erated from activities not critical to business, such as brows­
ing the Internet. The resulting increase in bandwidth can be
used for more critical business needs.

4
executing on target device 112 to access local storage areas
and resources using the local network protocol stack and
local network parameters rather than accessing the storage
area on the network device directly. By using the network
protocol stack, network applications can access network
parameters on a local device and a remote device in a
unifonn mauner. For example, a network management appli­
cation executing on target network device 112 can access
network parameters associated with a remote network

Network device 104 enables authentication server 110 to
authenticate downloading of applications from application
server 108 to other network devices within communication
system 100. Authentication server 110 can identify a net­
work device on the network and determine if that device
should or should not receive a particular application. For
example, authentication server 110 may authenticate a par­
ticular application and detennine if the application should be
downloaded to a network device in communication system
100. This feature could be used to prevent introduction of
viruses or other unauthorized software onto the network.
Additionally, authentication server 110 may also determine

10 device or a local network device through network commu­
nication port 206 by specifYing either the network address of
the remote network device or the local device respectively.
Specifically, the network management application executing
on the local device can access network parameters of the

15 local network device by specifYing loop back address 207.
In effect, loop back address 207 provides indirect access to
the network parameters of the local device through the
network protocol stack.

Secondary storage 208 may include a disk drive, CD-if a network device within communication system 100 has
proper authorization to download an application. 20 ROM, or any other storage device used by target network

device 112. Input-output ports 210 include physical connec­
tions for terminals, printers, pointing devices, keyboards, or
any other device useful for configuring, operating, or con-

Network device 106 facilitates communication between a
network monitor server (NMS) 116 and other network nodes
and processes within communication system 100. Tradition­
ally, an NMS will send network commands to the network
devices and, in return, receive input from the network 25

devices, including network parameters. This traditional
approach to network management requires NMS 116 to
perform a majority of the processing for network manage­
ment. In contrast, system 100 distributes processing to the
network devices that are in communication with the net­
work. This reduces the processing load and frees up NMS
116 so that it can process more critical tasks. For example,
network device 102 may monitor network traffic between it
and network 111 to reduce the processing load on NMS
server 116. In such a case, NMS 116 might receive a 35

notification from network device 102 when device 102
detects that the network bandwidth has exceeded a prede­
termined threshold.

trolling target network device 112.
During execution of one embodiment, modules in

memory 202 include a real time operating system (RTOS)
212, an annotation layer 214, a native variable interface 216,
a simple network management protocol (SNMP) stack 217,
a virtual machine runtime environment 218, a management

30 information database (MIB) map 220, a MIB compiler 221,
an object-oriented MIB interface 222, a mobile agent mod­
ule 224, and a client application 226. Alternate embodiments
of the invention can include additional or fewer modules
depending on the specific functions required for operation
and the design decisions made to implement the invention.
For example, RTOS 212 provides improved perfonnance on
target network device 112 by executing instructions as they
arrive without interruption or delay. However, if the design
allows for a reasonable delay while processes are preempted

40 and swapped out of memory, then a general-purpose oper­
ating system may be used in lieu of RTOS 212. The
general-purpose operating system may also be used if it is
less costly to implement than the real-time system and

Target network device 112 depicts an example network
device monitored by either a user or central NMS 116. The
client node user interface 114 allows the user to perfonn
network management tasks that execute directly on target
network device 112. NMS 116 is used to monitor larger and
more frequent management tasks dealing with groups of
network devices or the overall network. For example, NMS 45

server 116 can execute software agents on different network
devices and monitor overall traffIc being processed by a
group of network devices counected to the network.

FIG. 2 illustrates an architecture used, for example, on
target network device 112 and compatible with the network 50

management system. In this example, target network device
112 includes a memory 202, a processor 204, a network
communication port 206, a secondary storage 208, and
input-output ports 210 in communication with each other
over a bus 211. Although the example architecture depicted 55

in FIG. 2 includes specific components, alternate embodi­
ments can be implemented using additional or fewer com­
ponents than used in this example while remaining compat­
ible with the network management system. The specific
components used in the architecture for target network 60

device 112 can vary depending on the specific functions to
be performed and design decisions made for the particular
implementation.

Network communication port 206 is compatible with a
variety of physical and logical network protocols including, 65

for example, TCP/IP and Novell NetWare. A loop back
address 207 enables network management applications

compatible with a wider variety of existing software pack­
ages.

Annotation layer 214 provides an interface between appli­
cations accessing the MIB database associated with a net­
work device and the actual storage locations for the MIB
database on the network device. This layer is necessary
because different hardware devices tend to store the under­
lying MIB database information in different locations on the
network device. For example, one network device may store
port speed address in a central lookup table of RAM while
other network devices may store the port speed addresses for
each port on separate ASIC chips associated with each port.
Using annotation layer 214, an application can request MIB
database information without specifying the actual location
of data on the network device.

SNMP stack 217 implements a network management
protocol used by different networks to exchange network
management infonnation while monitoring network com­
munication. Typically, SNMP stack 217 exchanges network
information with other nodes on the network through mes­
sages called protocol data units (PDUs). The PDUs contain
variables with titles and values and are generally capable of
"getting" network parameters, "setting" network param-
eters, or "testing" for network events occurring on network

US 7,260,621 Bl
5

devices. For example, SNMP stack 217 may transmits a
PDU to a remote network device to detennine if the remote
device has a tenninal attached to it. If the terminal is
attached to the remote network device, SNMP stack 217 will
receive back a PDU containing information that may iden­
tify and describe the specific tenninal. Each PDU typically
includes a variable title and a value of the variable.

Native variable interface 216 provides direct access to
underlying SNMP data stored on a network device. Each
device on the network requires a different native variable 10

interface 216 customized to the specific features of the
device hardware and software. As new network devices are
produced or added to a network, a new interface 216 is
customized to the specific hardware and software require­
ments. While this customization process increases the 15

research and development costs, it also increases the effi­
ciency associated with retrieving network parameters from a
network device because the information is accessed directly.

Alternatively, network parameters may also be retrieved
using SNMP stack 217 and loopback address 207. This 20

eliminates the need for native variable interface 216 and

6
using SNMP stack 217 and loopback address 207 in the
manner previously discussed. This allows a network man­
agement device to access network parameters on an SNMP
compatible network device using existing SNMP features
built into the network device. Once a native variable inter­
face 216 is developed for the network device, MIB map 220
can be reconfigured to access network parameters through
the faster and more efficient native variable interface 216.

Object-oriented MIB interface 222 provides an interface
for applications to access MIB information using object­
oriented classes and methods. Initially, a MIB compiler 221,
discussed in further detail below, receives a list of MIB
variables and generates the classes and method found in the
object-oriented MIB interface 222. At least two types of
variables-scalar variables and table variables-are acces­
sible through object-oriented MIB interface 222. A scalar
variable is a single variable with an identifier that identifies
the variable and a value associated with the variable. If an
application requests a scalar variable, object oriented MIB
interface 222 returns an object-oriented instance of that
scalar variable. For example, a network management appli-
cation may request a scalar variable identifYing the number
of resent packets on the network device. Alternatively,
object-oriented MIB interface 222 may request a table of

reduces the corresponding costs associated with developing
the native variable interface. In lieu of accessing the network
parameters directly, a network management application sub­
mits requests to loop back address 207 of a network device.
Within the requests are SNMP compatible commands for­
mulated to retrieve the desired network parameters. Local
processes on the network device monitoring loop back
address 207 pass the request to SNMP stack 217 which, in
tum, accesses the network parameters as requested. The
same local processes then return the resulting network
parameters back through SNMP stack 217 and through
loop back address 207 and back to the network management
application requesting the infonnation.

25 information from the underlying SNMP layer. In response,
the underlying SNMP layer would provide an object table
and corresponding methods for accessing each of the entries
within the table. As an example, one type of object table may
include a list of network addresses associated with network

30 devices in a subnet and methods for an application to

Virtual machine runtime environment 218 processes 35

object-oriented instructions for execution on processor 204,
and may include a virtual machine (VM) and a correspond­
ing development kit (DK) having object-oriented class
libraries. The VM simulates a processor and executes on
many different hardware platforms. Instructions from a 40

variety of applications are interpreted by the VM and
executed on processor 204. One virtual machine run time
environment 218 includes a Java virtual machine (NM) and
the Java foundation classes. The Java virtual machine is one
type of virtual machine that promotes platfonn independent 45

computing using the Java programming language.

manipulate the entries in such a table.
Mobile agent module 224 provides a framework for

executing a variety of mobile agents. Client application 226
represents one such mobile agent application as illustrated in
FIG. 2. Accordingly, mobile agent module 224 interfaces
between the mobile agent and the underlying execution
environment, thus allowing a mobile agent to operate on a
variety of network devices and operating environments.

For example, mobile agent module 224 implemented in
accordance with the Java Bean™ application-programming
interface defines a portable, platfonn-neutral set of APIs for
software components to communicate with each other in
accordance with the Java Beans conventions. In addition,
mobile agents implemented using Java Bean components are
able to plug into other component architectures, such as
Microsoft's COMIDCOMIActive X architecture. In this
capacity, mobile agent module 224 acts as a bridge between
mobile agents developed using Java Beans and other com­
ponent object models or component architectures. For
example, mobile agent module 224 may receive Java
instructions from client application 226 and convert them
into instructions compatible with the COMIDCOMIActive
X environment or alternatively, may convert these same Java
instructions into byte codes to run on a virtual machine in
virtual machine run time environment 218. It should be
appreciated that client application 226 may be any type of
network management application designed for execution on
target network device 112.

FIG. 3 illustrates the operations for generating an inter­
face to MIB information from an object-oriented applica­
tion. Initially, MIB compiler 221 receives MIB definitions
for a network device (step 302). The MIB definitions are in
a non-object oriented fonnat. These definitions may be
stored in a database as a series of identifiers and correspond-

In operation, MIB map 220 facilitates converting object­
oriented requests for MIB infonnation into requests for
network parameters either through SNMP stack 217 or
native variable interface 216. MIB map 220 determines how 50

network parameters in a MIB should be accessed for dif­
ferent types of network devices. For example, MIB map 220
can be implemented with a table that converts requests for
network parameters through native variable interface 216 or
SNMP stack 217 into a series of object-oriented method 55

calls. The map includes a database listing the network
parameters related to the management of a network device
and a set of object-oriented methods for manipulating the
network parameters. MIB map 220 maps requests for net­
work parameters from a set of operations to access and 60

manipulate the network parameters to a database having the
actual network parameter infonnation. Each request for a
network parameter may invoke one or more object-oriented
methods depending on the complexity associated with
retrieving and processing the data. 65 ing values suffIcient to describe the network parameters

associated with a particular network device. Each network
device may have a unique MIB definition depending upon

If a new type of network device is added to the network,
MIB map 220 will initially access the network parameters

US 7,260,621 Bl
7

its capabilities and operating characteristics. Common MIB
definitions, however, are arranged in a predetermined hier­
archical order as illustrated in FIG. 4 and described below.

8
network applications ready for execution on target network
device 112. Application server 108 receives the request,
locates the application, and then transfers it to the appro­
priate network device (step 506). In one implementation,
application server 108 transfers a network application from
application server 108 to the network device each time or
session the network device executes the application. Alter­
natively, an application may remain resident in a network
device permanently or for a given period of time once it is

Next, MIB compiler 221 extracts network parameters for
the specific network device from the MIB definitions (step
304). This involves lexically recognizing and parsing each
token in the MIB definitions for the network device. MIB
compiler 221 then generates an object-oriented MIB appli­
cation-programming interface or MIB interface and MIB
map 220 corresponding to the MIB definitions (step 306).
The object-oriented MIB interface creates classes corre­
sponding to the MIB hierarchy and methods for accessing
each of the variables in the MIB definition. MIB map 220
assists in mapping object-oriented class definitions and
method calls into corresponding combinations of SNMP
primitives (e.g., get, set, and test) used by SNMP stack 217
or native variables.

10 initially downloaded from the application server.
The network device loads and executes the requested

application (step 508). Using the application, the network
device may perform a variety of network management
functions. For example, the network device may be asked to

15 monitor network traffic on a nearby network and notifY the
central NMS when a node on the network becomes inactive

FIG. 4 illustrates an exemplary mapping from MIB defi­
nitions 400 to corresponding MIB classes 403 and object­
oriented methods. The MIB definitions are in a non-object 20

oriented format. For example, MIB definitions 400 may
include a MIB data group 402A, a vendor specific group
404A, an SNMP group 406A, a system group 408A, an IP
group 410A, a TCP group 412A and an interface group
414A, to name a few. These MIB information groups define 25

how network information is organized and can be addressed
on a network device. These specific groups contain network
information organized according to industry standards.

or the network traffic increases beyond a particular thresh­
old.

Once the information or results are generated, the network
device provides information back to the NMS for processing
(step 510). If a central NMS is not present, the network
device may broadcast results over the network to other
network devices monitoring and processing the network
information.

FIG. 6 illustrates the operations used to access network
parameters on a network device consistent with the present
invention. Specifically, a network management application
such as client application 226 in FIG. 2 executes these
operations to access network parameters stored directly on a
local network device or to access network parameters stored
on a remote network device. By accessing network param-
eters on a remote device, one network device can act as a
proxy for obtaining network parameters from another net­
work device. This is particularly useful if, for example, the
remote network device is an older device or otherwise
incompatible with features of the present invention. For
example, a network management application executing on a
local network device can be used to access parameters on a
remote network device designed without a virtual machine

For example, vendor specific group 404A includes an area
that vendors can define their own network parameters and 30

proprietary information. SNMP group 406A includes defi­
nitions for protocol data units (PDUs) used for network
nodes to communicate. IP group 410A includes information
corresponding to the network communication layer. For
example, IP group 410A may include the IP address of a 35

network device and nearby routers or switches. TCP group
412A, which includes information corresponding to the
transport protocol layer, may include a list of all active
connections communicating using a "socket" interface as
well as the ports and corresponding services.

MIB compiler 221 in FIG. 2 receives the MIB definitions
400 in FIG. 4 in a database that lists the network parameters
related to the management of a network device. MIB com­
piler 221 converts these MIB definitions 400 into corre­
sponding MIB objects 403 including data class 402B, ven- 45

dor's specific class 404B, SNMP class 406B, system class
408B, IP class 410B, TCP class 412B, and interface class
414B. Through this conversion, MIB compiler 221 then
creates the methods an application can use to access network
parameters in the MIB database corresponding to the 50

classes.

40 or that is not capable of executing network management
applications designed consistent with the present invention.
The network management application can be an object­
oriented application written in lava that uses remote method

In operation, an object-oriented network management
application is downloaded into a network device accesses
the MIB database through the object-oriented interface.

FIG. 5 illustrates the operations used by a NMS to manage
a network device. Initially, the NMS requests that a network
device load a set of operations associated with a particular
task (step 502). This offloads a portion of the network
management processing to the target network devices and
frees up the NMS to handle other requests. In addition, this
reduces network traffic caused by sending numerous PDUs
with SNMP messages.

In response to the request to load a set of operations, the
network device accesses an application server having the
application(s) capable of performing the set of operations
associated with the task (step 504). For example, an appli­
cation server 108 as shown in FIG. 1 stores hundreds of

invocation (RMI), lINI, COM/DCOM or other distributed
computing mechanisms to process information on a remote
computer system. lava, RMI, lINI and derivatives of lava
are trademarks of Sun Microsystems, Inc. of Mountain
View, Calif. COM/DCOM are products developed by
Microsoft of Redmond, Wash.

As shown in FIG. 6, a network management application
initially begins execution on a local network device. The
network management application executing on the local
network device requests a network parameter typically
found in the MIB (step 602). For example, a network

55 management application may request MIB information cor­
responding to the current count and the cumulative count of
packets being transmitted to determine if the capacity of a
network device has been met or exceeded.

The network management application then determines if
60 the requested network parameter is associated with the local

network device or a remote network device (step 604). If the
network parameter is associated with a remote network
device, the network management application forms and
sends a request for the network parameter to the remote

65 network address of the network device (step 606). For
example, the network management application may request
that SNMP stack 217 (see FIG. 2) create a PDU to gather

US 7,260,621 Bl
9

MIB infonnation on the remote device. This request can be
formed using an object-oriented programming language
such as Java. SNMP stack 217 then transmits the request for

10
tokens according to a hierarchical relationship between
the set of network parameters; and

producing an object-oriented interface, for use by an
object-oriented application to access the subset of
information in the non-object oriented MIB, by gener­
ating a set of object-oriented classes and object-ori­
ented methods corresponding to the set of tokens.

a network parameter over the network to the remote network
device for processing. A network protocol such as TCP/IP
associated with that remote network device receives the
request for the network parameter. The SNMP stack on the
remote device processes the request and retrieves the
requested network parameter, which includes MIB infonna­
tion (step 608). Once the network parameter is received on
a remote network device, the corresponding SNMP stack
packages the result into a PDU and sends the results back to
SNMP stack 217 for processing by the network application
executing on a local network device (step 610).

2. The method of claim 1, wherein infonnation in the
non-object oriented MIB corresponds to a set of network

10 parameters organized in a hierarchy and used to describe
aspects of the network device.

3. The method of claim 1, wherein a relationship among
the object-oriented classes is a hierarchy that corresponds to
the non-object oriented MIB.

4. The method of claim 1, wherein the methods generated
include methods capable of accessing and manipulating
objects instantiated from at least one of the object-oriented
classes.

If the network management application requests network 15

information associated with the local network device (step
604), the network management application can access the
requested network parameters in at least two different ways.
The network management application can access the net­
work parameters on the local network device directly (step
611) using a software interface customized for the network
device (step 620). For example, the network management
application can use a native variable interface to access
network parameters on the local network device.

5. The method of claim 4, wherein the methods include
20 one or more of the operations used to operate on the

non-object oriented MIB.
6. The method of claim 5, wherein the operations used to

operate on the non-object oriented MIB are selected from a
group of operations including get, set, and test of SNMP

25 (simple network management protocol) variables. Alternatively, the network management application may
access local network parameters on a local network device
using existing network protocol. Initially, the network man­
agement application sends a request for a network parameter
through the network protocol of the local network device
using the "loopback" address (step 612). This loop back 30

address is a self-referential address which identifies the local
network device on the network without sending packets of
information over the actual network. For example, sending

7. A method of interfacing with network management
information on a network device, comprising:

providing a non-object oriented management infonnation
base (MIB) including infonnation related to one or
more aspects of a network device;

extracting a set of tokens from the infonnation, the set of
tokens corresponding to a set of network parameters
describing the network device; and

using a set of object-oriented classes and object-oriented
methods to access the non-object oriented MIB and the
set of tokens corresponding to a set of network param­
eters describing the network device.

a request to the loop back address establishes a data route
directly back to the network protocol stack on the local 35

network device. The network management application
essentially uses SNMP stack 217 on the local network
device to create a PDU to request the corresponding network
parameter (step 614). SNMP stack 217 then retrieves the
requests for the particular network parameter (step 616). The
results, are then returned to network management applica­
tion 226 executing on local network device (step 618).

8. The method of claim 7, wherein infonnation in the
non-object oriented MIB corresponds to a set of network

40 parameters organized in a hierarchy and capable of describ­
ing aspects of the network device.

9. The method of claim 7, wherein a relationship among
the object-oriented classes is a hierarchy that corresponds to
the non-object oriented MIB.

While specific implementations have been described
herein for purposes of illustration, various modifications
may be made without departing from the spirit and scope of 45

the invention. For example, although aspects of the present
invention are described as being stored in memory and other
storage mediums, they can also be stored on or read from
other types of computer-readable media, such as secondary
storage devices, like hard disks, floppy disks, or CD-ROM,

10. The method of claim 7, wherein the object-oriented
methods are capable of accessing and manipulating objects
instantiated from at least one of the object-oriented classes.

11. The method of claim 10, wherein the object-oriented
methods correspond to one or more of the operations used to

50 operate on the non-object oriented MIB.
a carrier wave from the Internet, or other forms of RAM or
ROM. Accordingly, the invention is not limited to the
above-described embodiments, but instead is defined by the
appended claims and their full scope of equivalents.

12. The method of claim 11, wherein the one or more
operations used to operate on the non-object oriented MIB
are selected from a group of operations including get, set,
and test of SNMP (simple network management protocol)

55 variables.
What is claimed is:
1. A method of interfacing with network management

information on a network device, comprising:
receiving a non-object oriented management infonnation

base (MIB) at a network device, the non-object ori- 60

ented MIB including infonnation related to one or more
aspects of the network device;

extracting a subset of information from the non-object
oriented MIB describing at least one aspect of the
network device by lexically recognizing a set of tokens 65

corresponding to a set of network parameters that
describes aspects of the network device and parsing the

13. An apparatus to interface with network management
information on a network device, comprising:

a receiver module configured to receive a non-object
oriented management infonnation base (MIB) includ­
ing information related to one or more aspects of the
network device;

an extraction module configured to extract a subset of
information from the non-object oriented MIB describ­
ing at least one aspect of the network device, wherein
the extraction module extracts infonnation from the
non-object oriented MIB by lexically recognizing a set
of tokens corresponding to a set of network parameters

US 7,260,621 Bl
11

describing the network device and parsing the tokens
according to a hierarchical relationship between the set
of parameters; and

a generation module configured to produce an object­
oriented interface, for use by an object-oriented appli­
cation to access the subset of information in the non­
object oriented MIB, by generating a set of object­
oriented classes and object-oriented methods
corresponding to the set of tokens.

14. The apparatus of claim 13, wherein information in the 10

non-object oriented MIB corresponds to a set of network
parameters organized in a hierarchy and used to describe the
network device.

15. The apparatus of claim 13, wherein the relationship
among the object-oriented classes is a hierarchy that corre- 15

sponds to the non-object oriented MIB.
16. The apparatus of claim 13, wherein the object-ori­

ented methods generated include object-oriented methods
capable of accessing and manipulating objects instantiated
from at least one of the object-oriented classes.

17. The apparatus of claim 16, wherein the object-ori­
ented methods include one or more of the operations used to
operate on the non-object oriented MIB.

20

18. The apparatus of claim 17, wherein the operations
used to operate on the non-object oriented MIB are selected 25

from a group of operations including get, set, and test of
SNMP (simple network management protocol) variables.

19. An apparatus for interfacing with network manage­
ment information on a network device, comprising:

12
information in the non-object oriented MIB, by gener­
ating a set of object-oriented classes and object-ori­
ented methods corresponding to the lexically recog­
nized and parsed tokens.

21. A method of interfacing with network management
information on a network device, comprising:

adding a new network device to a network of one or more
network devices, the new network device and each of
the one or more network devices having one or more
network management parameters stored in a non-object
oriented management information base (MIB);

distributing an object-oriented network management
application to the new network device from the one or
more network devices, the object-oriented network
management application operable to generate an
object-oriented request for one or more network param-
eters stored in a non-object oriented MIB;

determining that the network management application is
requesting one or more network parameters stored
locally in the non-object oriented MIB of the new
network device;

creating a native variable interface, the native variable
interface being an object-oriented application interface
that provides direct access to the one or more network
parameters stored locally using object-oriented classes
and methods; and

accessing the one or more network parameters stored
locally through the native variable interface.

22. The method of claim 21, wherein the step of creating
a first storage area configured to store a non-object

oriented management information base (MIB) includ­
ing information related to one or more aspects of a
network device, the information including a set of
tokens corresponding to a set of network parameters
describing the network device; and

30 a native variable interface includes initially accessing indi­
rectly one or more network parameters stored locally that
describe features of the new network device using a loop­
back address of the new network device, including sending
an simple network management protocol (SNMP) protocol

a second storage area configured to store a set of object­
oriented classes and object-oriented methods that is
used to access the non-object oriented MIB and the set
of tokens corresponding to the set of network param­
eters describing the network device.

20. An apparatus for interfacing with network manage­
ment information on a network device, comprising:

means for receiving a non-object oriented management
information base (MIB) including information related
to one or more aspects or a network device;

means for extracting a subset of information from the
non-object oriented MIB describing at least on aspect
of the network device, wherein the extraction means
extracts information from the non-object oriented MIB

35 data unit (PDU) to the loopback address of the new network
device, the SNMP PDU to retrieve the one or more network
parameters stored locally that describe features of the new
network device, and using the features of the new network
device to customize the native variable interface.

40 23. The method of claim 22, wherein the step of sending
an SNMP PDU to the new type of network device includes
using an SNMP stack associated with the new network
device.

24. The method of claim 22, wherein the step of accessing
45 indirectly one or more network parameters stored locally

that describe features of the new network device includes

by lexically recognizing a set of tokens corresponding 50

to a set of network parameters describing the device
and parsing the tokens according to a hierarchical
relationship between the set of network parameters; and

generating an object-oriented method call for the one or
more network parameters stored locally that describe fea­
tures of the new network device, and converting the object­
oriented method call into the SNMP PDU.

25. The method of claim 24, wherein the SNMP PDU
includes one or more SNMP operations selected from the
group of get, set and test.

means for producing an object-oriented interface, for use
by an object-oriented application to access the subset of * * * * *

