Optical Networking & DWDM

Tal Lavian tlavian@eecs.berkeley.edu

Fine Light at the end of the Tunnel

Agenda_

- Technology and market drivers
- Abundant bandwidth
- Underline the Internet is optical networking
- What is WDM?
- Where are the bottlenecks?
- Architecture and protection
- Summary
- Backup slides
 - Underline technologies
 - Protection Rings

Fast Links, Slow Routers

Source: Prof. Nike McKeown, Stanford

Fast Links, Slow Routers

Source: Nike McKeown, Stanford

Evolving Role of Optical Layer

Breakthrough...Bandwidth

Wavelengths will become the communications circuits of the future...

Source: Nortel marketing

Optical Networks & DWDM

Agenda_

- Technology and market drivers
- Abundant bandwidth
- Underline the Internet is optical
- What is WDM?
- Where are the bottlenecks?
- Architecture and protection
- Summary
- Backup slides
 - Underline technologies
 - Protection Rings

Abundant Bandwidth

Why does this change the playground?

- Optical core bandwidth is growing in an order of magnitude every 2 years, 4 orders of magnitude in 9 years
 - 1992 100Mbs (100FX, OC-3)
 - 2001 1.6 Tbs (160 DWDM of OC-192)
 - OC-768 (40Gbs) on single ! is commercial (80Gbs in lab)
- 2-3 orders of magnitude bandwidth growth in many dimensions
 - Core Optical bandwidth (155mb/s ! 1Tb/s)
 - Core Metro DWDM optical aggregation (2.4Gb/s ! N*10Gb/s)
 - Metro Access for businesses (T1 ! OC3, 100FX, 1-Gb/s)
 - Access Cable, DSL, 3G (28kb/s! 10mb/s, 1.5mb/s, 384kb/s)
 - LAN (10mbp/s ! 10Gbp/s)

Why Does This Matter?

- How do these photonic breakthroughs affect us?
- This is a radical change to the current internet architecture
- WAN starts to be no longer the bottleneck
 - How congestion control/avoidance affected?
 - Why DiffServ if you can get all the bandwidth that you need?
 - Why do we need QoS?
 - Why do we need cache? (if we can have big pipes)
 - Where to put the data? (centralized, distributed)
 - What changes in network architecture needed?
 - What changes in system architecture needed?
 - Distributed computing, central computing, cluster computing
 - Any changes to the current routing?

Bandwidth is Becoming Commodity

- Price per bit went down by 99% in the last 5 years on the optical side
 - This is one of the problems of the current telecom market
- Optical Metro cheap high bandwidth access
 - \$1000 a month for 100FX (in major cities)
 - This is less than the cost of T1 several years ago
- Optical Long-Haul and Metro access change of the price point
 - Reasonable price drive more users (non residential)

Agenda_

- Technology and market drivers
- Abundant bandwidth
- Underline the Internet is optical
- What is WDM?
- Where are the bottlenecks?
- Architecture and protection
- Summary
- Backup slides
 - Underline technologies
 - Protection Rings

Our Concept of the Internet

Wavelength Division Multiplexing (WDM) acts as "optical funnel" using different colors of light (wavelengths) for each signal

Source: Prof. Raj Jain Ohio U

Wavelength Division Multiplexing

Source: ??

Agenda_

- Technology and market drivers
- Abundant bandwidth
- Underline the Internet is optical
- What is WDM?
- Bottlenecks Architecture and protection
- Summary
- Backup slides
 - Underline technologies
 - Protection Rings

The Access

Characteristics of Metro Network Centers

Source: Nortel's Education

Unidirectional path switched rings

Protection example

Idle Ring

Protected Ring

B

If we had the bandwidth...

What if we all had 100Mb/s at home?

- Killer apps, other apps, services
- Peer-to-peer video swapping
- Is it TV, HDTV, something else?
- What if we had larger pipes at businesses?
 - IGbs home office, 10GE/DWDM large organizations
- How would the network architecture look, if we solve the last mile problem?

Summary_

- DWDM phenomenal growth
- Abundant bandwidth
- Underline optical technologies
- The access is still bottleneck
- Reliability and protection

"Blindsided by Technology"

- When a base technology leaps ahead in a dramatic fashion relative to other technologies, it always reshapes what is possible
- It drives the basic fabric of how distributed systems will be built

Source – Nortel's marketing

References

- Cisco optical site
- www.nortelnetworks.com
- www.lucent.com
- IBM optical research
- IETF
- OIF
- Stanford Prof. Nick McKeown
- Ohio U Prof. Raj Jain

Backup Slides

DWDM underline technologies

- Wavelength a new dimension growth
- Optical multiplexing
- Regenerators and Amplifiers
- WDM system benefits
- Filters
- Ad Drop Multiplexes

Multiplexing Options

TDM

Electrical multiplexing

50Mb/s to 10Gb/s data services

Electrical bandwidth

- management
 - flexible trib to aggregate time slot allocation

flexible aggr. to aggr. time slot allocation

flexible trib to trib connection

WDM (or DWDM)

Optical Multiplexing Up to 160 wavelengths today 2.5G, 10G, & 40G per !

Optical bandwidth management Wavelength add & drop

Total Capacity = TDM x WDM

Regens and Optical Amps

Regenerator

WDM System Benefits

- Lower equipment cost
- Lower operating cost
- Increased f ber capacity
- Shorter turn-up time

Fiber-Bragg Gratings

Add Drop Multiplexer

Common Protection Rings

- UPSR (Unidirectional Path Switched Ring)
- BLSR (Bidirectional Line Switched Ring)
- BLSR/4 (4-Fiber, Bidirectional Line Switched Ring)

UPSR – Unidirectional Path Switched Ring

UPSR – Unidirectional Path Switched Ring

NE2 replies back to NE1

BLSR – Bidirectional Line Switched Ring

NE1 send data to NE2 & NE2 replies to NE1

Optical Networks & DWDM

Example of a new Bottleneck

Recent DWDM Records

- 32I x 5 Gbps to 9300 km (1998)
- 64I x 5 Gbps to 7200 km (Lucent'97)
- 1001 x 10 Gbps to 400 km (Lucent'97)
- 16I x 10 Gbps to 6000 km (1998)
- 132I x 20 Gbps to 120 km (NEC'96)
- 70I x 20 Gbps to 600 km (NTT'97)
- 1281 x 40 Gbps to 300 km (Alcatel'00)
- 1022 wavelengths on one fiber (Lucent'99) Ref: Optical Fiber Conference 1996-2000 (Raj Jain)