Enabling Active Flow Manipulation in Sili con-based
Network Forwarding Engines'

Tal Lavian®, Phil Wang, Franco Travostino, Siva Subramanian® and Ramesh Duraraj
{tlavian, pywang, travos, ssva, radurai} @nortel networks.com
Advanced Technology, Nortel Networks Corp.

Doan Hoang®
dhoang@it.uts.edu.au
Department of Computer Systems, University of Technology, Sydney, Australia

Vijak Sethaput®
vijak@eecs.harvard.edu
Division of Engineaing and Applied Sciences, Harvard University

David Culler
culler @ee.berkeley.edu
Computer Science Division, University of California & Berkeley

Abstract

A significant challenge arising from today's increasing
Internet traffic is the ability to flexibly incorporate
intelligent corntrol in high performance @mnercial
network devices. This paper tackes this chalenge by
introduwing the Active Flow Manipulation (AFM)
mecdharism to enharce traffic oontrol intelligence of
network devices through pogrammability. Wth AFM,
customer network services can execise active network
corntrol by identifying dstinctive flows and appying
spedfied actions to dter network behavior in real-time.
These services are dynamically loaded through Openet by
the CPU-based control unit of a retwork node and ae
closely couped with its sli con-based forwarding engines,
withou negativdy impacting forwarding performance
AFM is exposed as a key aalling techndogy of the

programmable networking datform Cpenet. The
effediveness of our approach is demonstrated by four
active network services on comnercial network nodes.
Keywords
Programmable networking, intelli gent network control,
Active Flow Manipulation, Openet, active networks, traffic
flow

. INTRODUCTION

The Internet infrastructure has been tremendously
evolving to transport increasing network traffic
arising from fast introduction of various commercial
applicaions. The Internet is ubiquitous, however,

! This article is revised from an ealier version published in Journal of Communications and Networks, March 2001, under its

copyright and reprint permisson granted.

Tal LavianisaPh.D. candidate & the Computer Science Division, University of California, Berkeley.
8 Siva Subramanian is a Ph.D. candidate in the Eledricad and Computer Engineaing Dept. at North Carolina State University.
4 Doan Hoang was a visiting research professor at Advanced Techrology, Nortel Networks Corp in 2001
5 Vijak Sethaput was an interim employeein Nortel Networks Corp. in 2001

fragmented in structure into large heterogeneous
network domains controlled by Internet Service
Providers (ISPs). The providers have to rely on a
complex colledion of operational management
methodologies and tedhniques in order to gperate
their networks. In this increasingly competitive
environment, it is important for service providers to
easily control their networks. It is also important for
them to allow customizaion of network services to
differentiate their offerings by rapidly introducing
intelli gent network services on demand such as QoS
(Quality of Service) to their clients. In brief, they are
in nread of a @mprehensive programmable
networking framework through which they manage
their networks intelligently to satisfy the dients
needs.

The fundamental element of the Internet
infrastructure is the network node, e.g., a router or
switch. Typicdly, the distinction of the data (or
forwarding) and control planes is drawn at ead node
with the hardware redi zing the forwarding operations
and the software redizing the ntrol operations.
Nowadays, the trend in commercial grade routers and
switches is to accderate performance aiticd
forwarding functionality using hardware technologies
such as ASIC (Applicaion-Spedfic Integrated
Circuit) technology. As a result they provide little
programmability and thus are limited in ability to
deliver intelligent control. However, dynamicdly
enabling and deploying new intelligent services on
network nodes implies that they must possess not
only high forwarding performance but also high
degreeof programmabilit y.

It is a dalenging task to come up with an
enabling tedhnology that alows network service
providers freedom to deploy intelligent services on
current commercial network devices. One of the
requirements for such an enabling technology is that
it must have little or no adverse impad on the
processng performance in the data path. Another
important requirement of such technology is that it
should be distributed rather than centralized in the
network.

To tadkle the challenging issues discussed above,
in this paper the emphasis is placal on the Active
Flow Manipulation (AFM) mechanism, which aims to
affed the data traffic in red networks. AFM is a key
enabling technology of the open programmable
networking architedure Openet. The AFM
proposition is that the dharaderistics of a basic data

flow can beidentified and its behaviors can be dtered
in real-time by customizing control-plane services.
Openet is a platform-neutral, service-based
internetworking infrastructure developed by Nortel
Networks Corp., aiming to deliver dynamic network
programmability on heterogeneous network devices.
Commercial network devices such as the Nortel
Networks multi-gigabit routing switch Pasgort [4],
possess the aility to alter traffic flow behaviors in
the sili con-based forwarding plane. The @ntrol plane
in such a device however, ladks user-
programmability required to introduce intelli gent
services. Openet provides guch programmability to
enable users with control of the forwarding hardware.
This programmability is in this paper manifested as
the ability to alter network behavior of flows in red-
time, i.e.,, AFM, in order to enhance the functionality
of network devices.

This paper introduces the mncept of Active Flow
Manipulation for identifying and affeding traffic
flows of interest in sili con-based high-spead network
nodes. It also introduces the Openet open
programmable platform and its medhanisms that can
dynamicdly enable programmed services in the
control plane. Finaly it demonstrates the use of AFM
mechanism with the Openet infrastructure through
several experimental applicaions.

The remainder of the paper is organized as
follows. Sedion 2 introduces the medhanism of
Active Flow Manipulation to enable adual network
control in red-time. Sedion 3 introduces the Openet
architedure, and its medhanisms for dynamic service
deployment. Sedion 4 pesents four AFM
applications that are developed through the Openet
programmability. Sedion 5 gives a brief review of
related work. Finally, the paper concludes with future
work.

II. ACTIVE FLOW MANIPULATION

In hardware, an Internet router or switch typicdly
consists of a wntrol plane and a forwarding plane.
The forwarding plane has a set of networking
forwarding engines and is responsible for per-padet
adivities wch as classfying, queuing and
forwarding. The antrol planeis usually a CPU-based
system unit and responsible for control functions sich
as routing, signaling, admisgon control and other
mechanisms altering the behavior or data of seledive
traffic on the forwarding plane. Control functions can

be redized in threeways: 1) exeauting wholly in the
control plane (e.g., connedion management), 2)
inserting additional software in the data path, 3)
alowing control entities to ad both in the cntrol
plane ad in the forwarding plane without adding
software in the data path. The first control incurs
significant forwarding performance penalty when
data processng is involved, the semnd suffers in
functionality because of the little aility to add
software in the data path. Thus, this paper focuses on
the third control, espedaly the simple type of
dynamic oontrol that affeds a vast amount of data
transporting through a network node in red-time.

Consider the situation where amassve amount of
data traffic has to be switched through a network
node, and it is desirable and essential to exercise
seledive @ntrols over seledive traffic. To avoid a
switching performance penalty, the ntrols have to
be done in red-time. The Active Flow Manipulation
(AFM) medhanism is introduced to solve this by
having the ntrol functions differentiate traffic
flows, not individual padets.

Current commercial-grade nodes are provided
with high-performance forwarding engines, for
example, atypicd routing switch such as Pasgort [4]
can forward padkets at a total throughpu of 256
Gbps. With such a high rate, there is no simple way to
insped padket by padket in the control plane and then
figure out appropriate adions. Fortunately, the
hardware in the forwarding plane can perform several
tasks extremely well. For example, it can dfferentiate
packets based on padket headers and seledive
payload portions, and perform some simple adions
such as filtering, diverting, dropping and forwarding
seleded padkets.

The AFM mecanism involves two abstradion
levelsin the control plane. Oneisthe level at which a
node can aggregate its data into traffic flows, and the
other is the level at which it can perform adions on
the traffic flows. It is futile in the cntrol plane to
think of padkets individualy; instead, it is more
appropriate and productive to think and ad in terms
of primitive flows whose daraderistics can be
identified and whose behaviors can be dtered by
primitive adions in red-time. For example, one wants
to exercise some ontrols over “all TCP traffic to an
HTTP service 4 a web server”, “all RTP/UDP
datagram generated from several identifiable video
stations to a particular display machine”, or “all
traffic passng through a physicd port of arouter”. It

is at this level of abstradion that adive ntrol of
data on the forwarding plane can be performed
without violating its red-time constraints.

To formalize this framework, let the primitive flow
set be aset of atomic dements that can be matched
and identified by hardware in red-time, see Table 1.
The set is based on the genera hardware cgability
(e.g., the Pasgort), but can be expanded with more
sophisticated next-generation hardware.

Table 1: The primitive flow set of identifiable dements

Destination Address(DA)

Source Address(SA)

Exad TCP protocol match (TCP)

Exad UDP protocol match (UDP)

Exad ICMP protocol match (ICMP)

Source Port number, for TCP and UDP (SP)
Destination Port number, for TCP and UDP (DP)
TCP conredion request (TCPReq)

ICMP request (ICMPReq)

DSfield o | P datagram (DS)

IP Frame fragment (FrameFrag)

The primitive flow is the first abstradion level of
AFM necessary to ded with the various attributes of
data traffic. Esential properties of a flow are
identifiable a@omic dements and can be aded uponin
red-time. A smple TCP flow can be identified by 5-
tuple (TCP, SA, SP, DA, DP), for which al padketsin
this flow have to match. If any of the 5 elements is
relaxed, the flow beames a lessrestrictive flow. For
example, a flow of al TCP traffic destined to a
particular service on a particular machine isidentified
by 3 elements, the protocol (TCP), the destination
address and the destination port (i.e.,, TCP, *, *, DA,
DP).

In the most general sense, a set of operators (and,
or, not and range) can be defined on this primitive set
of elements to dotain new composite dements. Oneis
interested in these composite dements that define
composite flows. The scope of flows that can be
generated from the base dements of the primitive
flow set is much more genera than just simple TCP
flows. In principle, one ca “operate” on elements of
the primitive flow set to construct a particular
composite flow of interest, for example, a “dl
premium-grade traffic to a particular destination
madine” flow using the DS field and the Destination
Addresselements of the padket header.

Idedly, a proper set of primitive flow elements and

a proper set of operators form an algebra, in which
any operation on a flow results in another valid
composite flow. However, hardware is not completely
designed for this algebra. Redisticdly, some of the
operations on the primitive flow set, or some
composite flows, may not be pradicd and hence ca
be diminated. It should be noted that all elements of
the primitive flow set are asciated with some
control adions that can be redized in red-time. It is
possble to enumerate dl possble cmbinations of the
primitive flow set and to identify al redizable flows.
However, due to the space limitation of the paper,
only a subset of redizable flows is gown in Table 2.
The whole set of redizable flows presents a network
controller with a powerful set of targets to develop
applicdions.

Table 2: A subset of realizable flowsto one destination

Sources Destination Address(DA)
Any All padkets to the destination
Source All padkets from the SA machine
Address(SA) | tothe destination
Range of SAs | All pacets from many source
madines to the destination

TCP All TCP packetsto the
destination

UDP All UDP datagrams to the
destination

ICMP All ICMP messagesto the
destination

ICMP Request | All ICMP request messagesto
the destination

TCPACK All TCP adknowledgement
padkets to the destination

TCPRST All TCP padkets with the RST bit

set to the destination
DP All TCP padkets or UDP

(TCP/UDP) datagramsto a particular service
in the destination

SA-SP All TCP padkets or UDP

(TCP/UDP) datagrams ourcing from a
particular client of asource
machine to the destination

IP Fragments | All IPfragmentsto the
destination

DS Held All padkets of aparticular DSCP
value to the destination

VLAN All padkets from a particular
VLAN number to the destination

Switch-Port All padkets through a particular

interfaceport to the destination

The second abstradion level is the primitive
actions, which constitute abase set of adions that can
be aswciated with a red-time identifiable flow to
redize an adive flow manipulation. One can also
operate on this base set to dbtain composite adions. A
subset of adions of interest is down in Table 3.
Combining the set of composite and redizable flows
with the set of composite adions generates a set of
desirable adive flow manipulations. Examples are
“increase the forwarding priority of al TCP traffic to
an HTTP service @ aweb server” and “drop all traffic
through aphysicd port of arouter (to a broken link)”.

Table 3: The primitive action set of permissble actions
Action

Drop

Forward

Divert

Mirror

Stop onMatch

Out-of-Profil e behaviour

Change DSCP bits

Prevent TCP Conredion Request
Change IEEE802.1p it

More importantly, on a commercia node like the
Passport routing switch, a cmmposite flow is readily
redized by a list of hardware filters applied to a
particular port of this node. A composite adion to be
performed also in hardware on the composite flow is
the combination of all the adions of individua filters
applied.

By definition, AFM requires the aility to change
the flow-adion combinations in red-time. A
programmable network platform is al that is needed
for AFM to operate. Openet is such a platform that
can dynamicdly injed smart control services and
house them in the @ntrol plane. It alows the control
mechanisms to couple intimately with the hardware to
perform adions in red-time. Such a service generaly
requires sSmple @mputation in the wntrol plane to
set various policies supported by the switch. Typicd
services belonging to this caegary include filtering
firewall, dynamic flow identification, classfying and
marking, remarking flows, altering priority of a flow,
intercepting speda control messages for further
processng. However, it should be again emphasized
that our focus is on the type of control that preserves
the forwarding plane by avoiding introduction of
software on the data path.

[l . OPENET AND SERVICE DEPLOYMENT

Openet originated from the open programmable
architedure for Java-enabled network devices [1] has
been evolving with later work [2,5,6]. It is platform-
neutral, and works closely with commercial nodes
such as the Pasgort routing switch [4] and Alteon
web switch [24] to provide the flexible networking
programmabil ity.

A. Openet

Figure 1 depicts the Openet architedure in a
distributed network that comprises routers and
switches, end hosts, repository servers and control
consoles. The routers and switches download service
codes and policies from the repository servers and run
network services locdly, as demanded by end
applicdions and control consoles. Repository servers
run downloading services (e.g., HTTP or FTP) and
store network-related resources such as srvice @des,
network configurations and poli cies. Control consoles
perform manuadly or progammaticdly the
management tasks such as rvice initiations on
routers and switches and storage maintenances on the
repository servers.

Openet provides network service providers as well
as end wsers the programmable networking ability
through four major components. the runtime
environment (ORE), hierarchicd network services
(Oplets), the Oplet development kit (ODK) for
service agedion, and the management part (Openet
managers and agents).

Cortrol Console
« serviceinitiationand policies
« network configuration

* resource @ministration
* repository maintenance

—— Cortrol

N <+—p» Daapath
\ | ---- Download
\ | 4 - User request

‘m

Server ¢

;
|
/ L
B3 | g
I 1z polici
<

pdicies
TS Ny A S N
N End Apps
* use of service
Router Switch « apply onthefly

Figure 1: The Openet architecure (in one network)

The Oplet Runtime Environment (ORE) is the
service @re of the Openet infrastructure and is
distributed on network nodes. It is an open objed-
oriented networking environment for customer

service agedion and deployment. At runtime, it is
dynamicdly installed on network nodes and supports
injeding customized software of network services to
the nodes through seaure downloading, installation,
and safe exeaution of Java-based service @de inside
aJvVM.

The Openet management part, consisting o the
Openet managers running on control consoles and the
Openet agents on routers, switches and repository
servers, conduwcts srvice management, resource
administration, repository maintenance, and retwork
configuration.

B. Pasgort Routing Switch

The Pasgort® achieves a significantly higher level
of performance by employing two separated working
planes control and forwarding, as depicted in Figure
2. The forwarding plane has multiple ASIC-based
forwarding engines that can forward padets at the
wire speed and read atotal throughpu of 256 Gbps
(gigabits per semnds) without consuming any CPU
resource

User Services
Function Services
JFWD

Standard Services

Control Plane

* Filtered packes * Moritor status v New rules

Processor Processor Processor
Statistics Statistics Statistics
&Monitors &Monitors

Forwarding Plane
(Wire Speed Forwarding)

1

&Monitors

Traffic Packets

Figure 2: Pasgort with Openet (a node’s view)

The wntrol plane, however, is based on a CPU
blade ad contains the embedded Java VM. It
exeautes ORE and that in turn enables exeaution of
diversified Oplet services. Thus, Openet introduces
programmability into the otherwise rigid routing

6 Pasgort 110, 8600 and other models are available in
commercial market without Openet included. Openet is open
source and free aail able for research purpose.

&)

switch Pasgort and makes it cgpable of supporting
AFM and other mechanisms that customized network
services provide.

C. Service Deployment

Network services are composed of normal Java
objeds, and encapsulated as Oplets. The Oplet is a
self-contained downloadable unit that embodies a
non-empty set of services in order to seaure service
downloading and management. Along with the
service ®de, an Oplet relates srvice dtributes,
authentication, and resource requirements.
Furthermore, it pulishes the service and its pulic
APIsto application services.

On a network node like the Pasgport, ORE and
network services are initiated at the antrol plane, but
can operate with either or both of the two planes:
control and forwarding (or data). Control-plane
services change network configurations (e.g., routes)
and affed the data forwarding behaviors by altering
the hardware instrumentation, while data-plane
services cut through the data path and seize and
processparticular padkets prior to forwarding.

To ease service aedion and gain platform
independency, Openet employs a service hierarchy
that places network services into four caegories:
System, Standad, Function and User. First, “System
services’ are low-level network services that have
dired access to the hardware fedures, e.g., JFWD
that provides neutral Java APIs used by AFM and
other medhanism services to dter the hardware
routing and forwarding behaviors. They require
particular hardware knowledge and are implemented
using native programming interfaces or the hardware
instrumentation. Thus, in fad, they by their neutra
APIs determine how much of the programmability
Openet brings to hardware. Seoond, “Standard
Services’ provide the ORE fundamenta feaures for
customer service aedion and deployment, e.g.,
“OpletService” is a base dass of service gedion.
They make up the ODK that is used at service
development. Third, “Function Services’ provide
common functionality or utility used to rapidly crede
user-level services, and are usudly intermediate
services coming with the ORE release or contributed
by the third party. Finaly, “User Services’ are the
customers' application services for particular
purposes.

The fina step of service deployment in red
networks is to injed network services, which requires

downloading and adivating the service amde within
the ORE on commercial network nodes. There ae &
least three ways to do dynamic service injedion,
using the ORE shell service the ORE startup service
or a user service initiation service During runtime
one can instruct ORE to download and then adivate
these services, which are thus deployed on network
nodes and runlocdly.

IV. AFM-ENABLED APPLICATIONS

With Openet, AFM-enabled applicaions are
adualy those network services developed using the
AFM mechanisms for particular applicaion purposes.
In this sdion, four AFM services in both control
plane and forwarding plane ae described and their
experimental results are measured with the Pasgort
routing switch and other network systems.

A. Active Flow Priority Change in Real-time

The adive flow priority change is a control-plane
network service that applies AFM to alter the padet
forwarding priorities of particular flows in red-time.
It isasimple and effedive gplication showing how a
customized service mntrols the hardware behaviors.
The eperiment network depicted in Figure 3a is
established with the Pasgort 1100B routing switch,
and threehosts that are Linux-based PC systems.

The eperiment procedure is as follows (see
Figure 3b). At the beginning, the first TCP flow at a
constant rate of 100Mbps is st up from Source 1 to
the Destination through the Pasgort. The link
bandwidth between the Pasgort and the Destination
is 100Mbps at maximum. At time 1.3 seconds, the
seaond TCP flow at the same rate from Source 2 is st
up through the same link to the Destination. When
they bewmme stable, ead claims nealy haf of the
link bandwidth (47Mbps). Then, the ORE on the
Passport is instructed to adivate the “adive priority”
service which employs AFM to deted particular
flows and increases the padket priority of the second
flow at time 3.8 seconds. As expeded, the receving
rate of the second flow (now with a high priority)
incresses and stabilizes at the desired bandwidth
(70Mpbs) and the low-priority first one & alower rate
(24Mbps).

Sowrce]l —p Passport
iep send) 11008
B 100 Mbps Rm.m.ng 4’1 Destination
Switch 1
100Mhps | L 1p_reev()
2.1cp_recv()
Source 2 | ——p
tep_send() |10 Mbps
(a) Network layout
100 Start Change‘ End
2nd Flow Priority 2nd Flow
80
so LI il

40

|

I

||
TV —— Low Priority

‘ ' I AT Y
| WA

20 1+

‘ —_High Priority

Seconds

(b) Flow throughputs at the Destination

Figure 3: Two TCP flows competing for thelink
bandwidth with active priority change

The bandwidth jumping df the second flow at time
3.8 seaonds shows that the Pasgort forwarding plane
caries out the AFM identificaion and adion of
packet flows a the wire-speed, without obvious
performance reduction. The reason is that because the
control service does not require padket processng in
the data plane. The forwarding engine of the network
node processes and forwards padkets while the CPU
exeautes the Java antrol code implementing the
AFM-based service

Even though the experiment and its result are not
groundhre&king, this applicaion service indicaes an
immediate benefit of adive detedion of flows and
dynamic ajustment of padket priorities on
commercial-grade nodes. It can be used widely in
traffic control such as end-to-end video and audio
traffic, and QoS mechanisms such as Intserv and
Diffserv.

B. ActivelP accourting

In traditional IP acmunting, network nodes (e.g.,
routers, switches and firewall gateways) colled data
regarding the network traffic that flows through them,
and then udoad the data periodicdly into centralized

acounting servers. The servers gnthesize the
unwashed acwounting data off-line, and make the
outcome avail able to acounting applicaions sich as
billing and load auditing. As the Internet becomes
ubiquitous, traditional IP acomunting is fadng a
number of new challenges such as "pay for what you
use" custom pricing schema, acmunting data volumes
linealy growing with the bandwidth, and red-time
QoS monitoring.

The Active IP Accounting Co-processor
Environment (AIACE) [3] revises traditional IP
acounting at the very foundation, and is a antrol-
plane service infrastructure. Based on the AFM
mechanism, the AIACE infrastructure agues that the
number of acwunting tasks performed at both
network nodes and acmurnting servers must be fluid
and ot necessarily known a priori. That is, network
nodes ceae being acounting-illiterate to the
contrary, effedively pre-process flows acwunting
data & an extent that the redpient acounting servers
can control.

In this model, acwmunting plug-ins are the
elemental processng units, and stacked into the
AIACE co-procesor and perform spedfic acounting
tasks at the network nodes on behaf of acwmunting
servers. Thus, the new acwmunting-savvy network
nodes can eagerly do a number of adive tasks such as
aggregating the acounting data of flows meding pre-
set affinity criteria, refleding settlements among
providers, enabling red-time acounting data mining,
and signaling acounting servers to med acwounting
applicaions’ needs.

The merits of AIACE are shown in the foll owing
sample scenario for high-confidence flow monitoring.
An applicaion periodicdly swees a network
topology and reports flow vitals to the operator (e.g.,
the amulative traffic figures concerning flows with
the most remunerative SLAS). The high-confidence
atribute implies that such an applicaion is
dependable in reporting traffic figures in red-time, in
spite of overloads (e.g., CPU, or acmunting data
overloads) possbly induced by partial failures in the
network. In other words, this type of traffic
monitoring applicaion must be epedaly well
behaved when things in the network start to go
wrong.

In this <enario, it is crucia to manage the finite
monitoring cgpadty and to make the most effedive
acounting data mining out of it. A whole swee of
the network topology represents a o/cle; cycles are

typicdly configured to complete in a few seands. At
the end of ead cycle, the brekdown of the
monitoring capadty is revisited to adapt to conditions
occurred in the previous sveep, or to acmmmodate
an operator’'s explicit request to zoom-in on “hot”
sedors of the sweep. In principle, at ead cycle the
monitoring applicaion communicaes to AIACE
network nodes with the below steps.

1) How much acourting datathe gplicaionwantsto
hand e from a given network nock;

2) How the network node shoud weight its acounting
datafor flows, dedde what to mine out, and package it
within the dorementioned limit;

3) Which acaragy is expeded from the network node
whil e performing this acurting data mining.

The opportunities in Step 2 become evident in the
examples dowed in Figure 4. In example 3, a
network-node organizes about a million PDU traces
into 30,000 IP flows. It clasdfies the resulting flows
based on the bytes transferred on ead flow. It then
ranks flows (from 1 to 8). The higher the rank
number, the higher the thance that the flow will not
be transferred to the acounting server in case of data
overload.

Hamber of
flovars 1o
100000

1000

S

1 1 B4 222
_= _= — — — — w
g = L T 8 L = Bscard
= = = = E = in 0 secs.
e B g = = g B
5 " 3
a) Flow ranks by bytes transferred on each flow
Fhamber of
flows (log)
L LN] 7 j 1
1 |
1000
[T + [J_5 °
1000 v Hcola Fiaws
3 Bz tiver Flows

Bercnze Flows

Bivtes carried

in S0 secs.

gAT0 - 1000
A 1-1T0
gANL- T

g3 001 - 01

AW T - 44 001

AW IT- T
AW 0T =

b} Flow ranles with a Qo3 -spectfic weighting algorithm

Figure 4: Resultsof aflow monitoring scenario

In example b), the network under analysis is QoS-

enabled and three QoS clases—gadd, silver, and
bronze—are defined. The node now structures the
same acounting data into QoS-flavored flows (same
X and Y axes asin a). After applying a QoS-spedfic
weighting algorithm to the flows. The node ranks
flows with dfferent results than @). The weighting
algorithm can be abitrarily complex and take into
acount other considerations besides bytes transferred
(e.g., hosts, number of padkets, duration).

By spedfying a weighting algorithm for
acounting data in the various QoS classs, the
applicaion passes tidbits of its businessmodel to the
network node—i.e., it says what the most significant
acounting data ae and how much this matters. This
node thus weights the acounting data that best refled
this business model. Should the acounting data
exceal the size pre-set by the aplicaion (i.e,
overload), this node will throttle itself by pruning the
least significant acounting data from its reports.

AIACE's acwounting plug-ins redize Steps 1
through 3 by operating at both network nodes and
acounting server. Some plug-ins that define the
weighting algorithms are loaded and exeauted only at
network nodes. Other plug-ins that implement the
acounting wire protocol and its cgpability to drive
the nodes’ acwunting data output are redprocaed at
network nodes and acounting servers.

C. Dynamic bypassng flows for automated
supervision

Regatta is another control-plane service that
employs the Openet infrastructure and AFM for
automated supervision [23]. Regatta stops, in a
dynamic fashion, flows through routers when a node
operation fails and leaves them to the Regatta
(routing) supervision procedure. The Regatta
supervision procedure handles the bypass with
minimal service interruption to the user. Consider the
example network (Figure 5a) of 6 nodes constituting
two digoint network paths between the end systems.
Node f, for instance abeta-level prototype, is known
not to work reliably. It has a fail ure semantics that can
be described as "the link layer is always up, but the IP
layer sometimes suddenly fail s to route PDUS".

The network operator can thus aim Regatta &
node f, with two gaals that a@ node f should be
bypassd as on as Regatta deteds that it has a
failure, without any user interruption; and b) Regatta
notifies the operator who then starts post-mortem

analysis of node f before it gets reboated. Here we
present a quantitative measure of &), and contrast it
with the self-heding properties that have been arealy
built into the network in terms of standard routing
protocols.

Administrator
Center

(a) Experimental setup

Receiver UDP Thoughtput

o

o

Mt BUB A L DAL At

AR s L YRR T
1 i

IS

Throughtput (Mbps)

TP L NRR2LILGISNEBSBIBORRBT IS EBE

Time (s)

| Regatta 10/1 —®—Regatta 10/5 Regattab/5 ——routed ‘

(b) Varying degreeof disruption at the end-user during the
failureto node*f”

Figure 5. Dynamic flow bypassusing Regatta

Traffic flows between the two end uwsers go
through nodes a, f, and e which is the shortest path.
After the network operator installed Regatta & node f,
Regatta begins to unfold itself outside of node f. In
particular, it install s itself in the two adjacent nodes: a
and e. Node f does not play any adive role of control
except in this bootstrap operation. It becomes the
subjed of the atentions by other reliable neighboring
nodes. The Regatta-adivated nodes a and e exchange
periodic heatbeas between them to supervise the
well being o suspeaed node f. The type and rate of
the heatbeds are defined by the operator.

Upon a defined number of heatbea missd, the
Regatta diagnosis module in node a determines that

there is afailure of suspeded node f. At that time, the
repair module on node a gets control and, “clamps’
the flow path(s) that goes through node f. Through
AFM and other Openet routing service, this repair
module establishes a new route that reades the end
recaver via node b in placeof node f. Then, node a
readivates those flows destined to node e through this
route. On node e, this “clamping” procedure similarly
gets redprocated upon the heatbea missed, without
any support for synchronicity between nodes a and e.

Table 4 shows a comparison of readivity times
applying such a network bypassin our experiment, of
which all these nodes are Linux PCs install ed with the
Linux Openet/ORE system. The first two rows “static
route” and “routed” are two flow re-adiviti es without
Regatta whil e others are with Regatta. The last entry
“Regatta M/HB” means a heatbed interval of HB
semnds and a tolerance of M conseautive heatbea
missed before cdli ng for afail ure.

Table 4: Comparison of reactivity times

Flow Path Readivity Time (9)
Static route Infinite
Routed 152
Regatta 10/1 10
Regatta 10/5 47
Regatta 5/5 24
Regatta M/HB =M*HB

Figure 5b dots the throughpus at the end recaver
with varying levels of disruption. With the bypass
being applied in red-time upon detedion of afailure,
there is minimal effed to enduser traffic. The
network operator can balance the trade-off between
the readivity time and the heatbea overhead using
different parameters (i.e., M and HB).

D. Active Networks Servicein Real Networks

It is obviously of interest that Openet enables
commercial network devices such as the Pasgort
rather than host-based systems such as Linux routers
to host Active Networks services or exeaution
environments (EEs) and thus to embody the Active
Networks approach in red networks. Of Active
Networks EEs, MIT ANTS [10] is a typicd
medanism for dynamicaly composing and installi ng
new transport protocols in networks, and adually it is
a data-plane service that processes adive padkets or
cgpsules diredly. Through Openet, the ORE ANTS

service [6] is developed wrapping the MIT ANTS. It
also uses AFM to colleda spedfied cgpsules for CPU
processng in the control plane.

The ORE ANTS is completely injeded to two
Pasgport routing switches: 1100B and 8600[5]. Of
the Pasgort routing switch family, 1100B is an
eoconomic product that is equipped with a PowerPC
403@67MHz CPU and 8600is a superior one that is
equipped with a much stronger PowerPC
740@266VIHz CPU.

This srviceis tested with the ANTS applications
such as the ANTS Ping (APing) and compared with
regular Linux Ping. Within the corporate intranet, we
construct an experimental adive net that includes 3
adive nodes and 3 ron-adive ones, shown in Figure
6. The Pasgport 1100B or 8600routing switch, and 3
PlI/A00MHz PC boxes are locaed in an experiment
network (net 10), which is routed to the intranet
where working madines such as Sun workstations
are.

ORE ANTS
(Passport 1100B or 8600 Routing Switch)
134.177.116.104

D 10.120.101.102 .
134.177.116.108 a

Source Host
(Sun Workstation 2)

Destination Host Download
10.120.101.51
Linux PC
(Ping use only)

(Sun Workstation 1) oplets
Figure 6: The experimental active net running ANTS
EEs

MIT ANTS MIT ANTS

10.120.101.50
Linux PC

(Ping use only)
10.120.101.201

HTTP server
(Linux PC)

Table 5 lists the padket average delays and
throughpu rates of the APing and Ping tests, both of
which send at given intervals 83-byte cgsules or 64-
byte padkets from the Source to the Destination
through the Pasgport. The first two Aping tests with
Pasgort 1100B have casules lost and do not have
their average delays and throughpu rates. The
maximal throughpu of the APing tests is foundto be
32.3 cps (cgpsule per second) for Pasgort 1100B and
90.9 cps for Pasgort 860Q However the two Ping
tests have the same throughpu of 10,000 pys (padket
per second) and the same average delay of 0.1ms as
well. This comparison reveds that capsule-by-cepsule
CPU processng in the ANTS service canot match
the performance level of regular Ping padket

processng which is adually acceerated by hardware.

To understand what contributes the casule delay,
cgpsule-processng time wnsumed at ead node is
measured by comparing the time of recaving and re-
transmitting one cgsule. Figure 7 depicts the delay
distributions in the two extreme Aping tests that have
minimal average delays: 31ms for Pasgport 11008
and 11ms for Pasgport 860Q

Table5: Delaysand Throughputsof Ping and Aping
Tests (timein milli seconds)

Ping
Interval | First padet | AverageThroughpu (pps)
0 1.2 0.1 10000
1000 0.8 0.1 10000
APing (110@B)
Interval | First cgpsule|Average| Throughpu (cps)
0 3209 - (cepsules lost)
10 551 - (cepsules lost)
100 139 32 31.5
1000 131 31 32.3
APing (8600
Interval | First cgpsule| Average| Throughpu (cps)
0 47 391 2.55
10 12 11 90.9
100 12 11 90.9
1000 13 11 90.9
Packet Processing & Delay
Time B Aping(1100B)
1(ms) o B Aping(8600)

Java /O
(4)

Source Destination Passport

Figure 7: Delay distributions (Transmitting acapsule
involves one time processng at Source and Destination,
two times processng a Pasgport and four times Java
[/0 on all three nodes)

It is found that the roundtrip network
communication of a cgsule takes 13ms for Pasgort
1100B and 8ns for Pasgport 860Q At the link speed,
it takes very little time (less than 01 ms) for

10

transferring a casule anong three nodes. Hence a
large portion of the round trip time must have been
taken up lty 4 pairs of Java network 1/O operations
(reading and writing a casule) on the threenodes (1
on the Source 1 on the Destination and 2 on the
Pasgoort). This is not redly expeded! However,
additional network tests based on a Linux PC and a
Sun workstation confirm that the Java overhead for a
pair of simple UDP socket I/O operations (i.e., a
DatagramSocket server writes a 32-byte message and
a DatagramSocket client reads it) needs 2~3 ms while
the same socket operations using C/C++ takes nealy
0 ms.

The leson to be leaned here is that JVM
implementation, particularly in Java network 1/O
operations, is the red bottlened of adive networking
performance besides the cgpsule processng ability on
network nodes. Of course, adding faster CPUs to the
control plane of commercia hardware is highly
preferable in order to read the high processng
performance that the forwarding plane does arealy.
However, it might be areasonable ansideration to
re-enginea ANTS and other adive network services
with improved AFM mecanisms 9 that they can
make better use of both forwarding engines and CPU
on commercial network nodes.

V. RELATED WORK

A significent amount of reseach has been
involved with enabling intelligent network control
through programmable networking, ranging from
networking paradigms, re-programmable hardware to
appli cétion environments.

Industrial organizations such as P1520PIN
(Programming Interfaces for Networks) [16], CPIX
(Common Programming Interface [17] and Parlay
[18] are working on standardization of programmable
networking interfaces among hardware, network
services and wer applicdions. These standard
interfaces are open, generic and have been released in
their ealy drafts. With these standards, Openet can
effedively define the boundaries of network services,
and rormali ze service development and deployment.

The Active Networks (AN) approach [8] is a
major effort in industry as well as acalemia to
incorporate programmability into the network
infrastructure. Through installing multiple adive user
interfaces or typicd Exeaution Environments (EES)
on adive nodes, users can flexibly compose new

protocols and deploy their services for spedfic
purposes. These EEs are referred to virtual madines,
and wualy come with adive node OS (NodeOS).
They are avallable for adive gplicdions to process
their packets or cgosules and to control the
processng. Significant reseach projeds include:
MIT ANTS (Active Node Transfer System [10Q)),
University of Pennsylvania Switchware [9],
Columbia University Netscript, USC/ISI Abone
(Active Badkbone) [13], Active Network
Encgpsulation Protocol ANEP [12] and BBN Smart
Padet projed [14]. To date, these developments have
been mainly redized in software-based hosts (e.g.,
Linux-based systems) that offer the required
programmability but ladk the performance required in
red networks. An exception is the Washington
University ANN (Active Network Node) [15]
implementation that introduces an FPGA-based CPU
module that acommodates the adive code ad is
added to agigabit ATM switch badkplane.

Other contributions such as Darwin [21] and
Phoenix [22] have investigated medianisms for
delivering programmability to end-users. Darwin
develops a set of customizable resource management
mechanisms that alow service providers and
applicaions to tailor resource management optimally
for the service quality they require. Phoenix, similar
in part to Openet, is a framework for programmable
networks that allows easy control and deployment of
services toward use of re-programmable network
procesors. Rather, our Openet approach makes use
of enabling medanisms such as AFM to demonstrate
the benefits of programmability in red networks.

V1. CONCLUSIONSAND FUTURE WORK

In this paper, the Active Flow Manipulation
medchanism, through Openet, alows network service
providers to introduce on demand, intelligent
controls that adapt network node behaviors
dynamicdly in red networks. The dynamic priority
change gplicaion demonstrates this concept in red-
time, with the Pasgort silicon-based forwarding
engines.

Openet enables network service providers to
quickly respond to customer requirements by
introducing the sort of AFM-enabled services in the
form of Oplets. Service providers can buld on
smaller Oplets to develop more @wmplex network
functions. Two innovative gplicaions in adive

11

network management (i.e., AIACE IP acounting and
Regatta auto supervision) have demonstrated this
ability. Furthermore, Openet is an open platform that
can crede new opportunities for service providers in
deploying third-party network services on
commercial routing switches. The deployment of
innovative services on network nodes leads to the
differentiation of network service providers.

It is observed that the AFM-based control-plane
network services enhance functionality of commercial
hardware like the Pasgort, without impeding
performance of the forwarding plane. However, as
sean in the ORE ANTS applicaion, or data-plane
services, rely largely on the performance of the
control CPU. We ae eploring a new hardware
architedure [25] in which network services can reside
in a new plane, the mmputing plane. Attached to the
commercia network devices sich as Alteon [24], this
computing plane is being implemented with high
performance @mputing tedhnology such as FPGA,
and it will alow adive manipulation of an increased
number as well as increased granularity of content
flows. In addition, the computing plane will aso
improve the performance of data-plane network
services that perform their own padket processng, as
highly demanded in adive networks and content
networking.

VIl . REFERENCES

[1] T. Lavian, R. Jaeger, J Hollingsworth, “Open
Programmable Architedure for Javaenable Network
Devices’, Stanford Hot Interconneds, August 1999

[2] The Openet Lab, “The Oplet Runtime Environment”,
http://www.openetlab.org/ore.htm, March 2000

[3] F. Travostino, “Active IP Accounting Infrastructure,” |IEEE
OpenArch 200Q Tel Aviv, March 200Q

[4] Nortel Networks Corp., “Networking Concepts for the
Pasgort 8000Series Switch”, April 2000

[5] T. Lavian and P. Wang, “Active Networking On A
Programmable Networking Platform”, IEEE OpenArch’'01,
Anchorage, Alaska, April 2001

[6] P.Wang, R. Jagger, R. Duncan, T. Lavian and F. Travostino,
“Enabling Active Networks srvices on a Gigabit Routing
Switch”, The 2nd Workshop on Active Middleware Services
in conjunction with the 9th IEEE International Symposium
on High Performance Distribued Computing (HPDC-9),
Pittsburgh, Pennsylvania, August 2000

[71 P. Wang, Y. Yemini, D. Foriss and J Zinky, “A
Digtributed Resource Controller for QoS Applicaions’,
NOMS 200GIEEHIFIP Network Operations and
Management Symposium, Honolulu, Hawaii, April 2000

[8] David L. Tennenhouse, et a, “A Survey of Active Network
Reseach”, IEEE Communicaions Magazne, Vol. 35, No.
1, January 1997

[9] D. Scott Alexander, et d , “The SwitchWare Active Network
Architedure”, IEEE Network Spedal Isaue on Active and
Controllable Networks, vol. 12 no. 3, July 1998

[10] David J. Wetherall, John Guttag, and David L. Tennenhouse,
“ANTS: A Toalkit for Building and Dynamicaly Deploying
Network Protocols’, IEEE OPENARCH'98, San Francisco,
CA, April 1998

[17] Y. Yemini and S. da Silva “Towards Programmable

Networks’, IFIP/IEEE Intl. Workshop on Distributed
Systems: Operations and Management, L'Aquila, Italy,
October 1996

[12] D. Scott Alexander, Bob Braden, Carl A. Gunter, Alden W.
Jadkson, Angelos D. Keromytis, Gary J. Minden and David
Wetherall, “ANEP: Active Network Encgosulation
Protocol”, Active Networks Group, Request for Comments,
http://Avww.cis.upenn.edu/~switchware/ ANEP/docs/ ANEP.t
xt

[13] Active Network
http://www.isi.edu/abone/

[14] B. Schwartz, A. Jadkson, T. Strayer, W. Zhou, R. Rockwell
and C. Partridge, “Smart Padets for Active Networks’,
|IEEE OpenArch 99, New York, March 1999

[15] D. Decasper, et a, “A Scdable High Performance Active
Networks Node”, IEEE Network Magazne. Vol 37, Jan/Feb
1999

[16] Biswas, J. et a, “The IEEE P1520 standards initiative for
programmable network interfaces’, IEEE Communication
Magzine, Vol 36, Oct. 1998

Badkbone (ABone),

[17] The CPIX (Common Programming Interfacg forum,
http://mww.cpixforum.org/

[18] The Parlay Group, http://www.parlay.org/

[19] Intel Internet Exchange Arcitedure (IXA),

http://developer.intel.com/design/ixa/white_paper.htm

[20] Solidum, http://www.solidum.com

[21] P. Chandra & al, “Darwin: Resource Management for Value-
Added Customizeble Network Service”, Proc. 6th IEEE
ICNP, Austin, Oct. 1998

[22] David Putzolu, Sanjay Bakshi, Satyendra Yadav and Rg
Yavatkar, The Phoenix Framework: A Pradicd Architedure
for Programmeble Networks, |IEEE Communicaions
Magazne, Vol 38, No 1, March 2000

[23] V. Sethaput, A. Onart and F. Travostino, “Regattas A
Framework for Automated Supervision of Network Clouds’,
|IEEE OpenArch'01, Anchorage, Alaska, April 2001

[24] Nortel Networks Corp., Alteon 180 Series Web Switch
White Paper - “Scding Next Generation Web Infrastructure
with Content-Intelli gent Switching”, April 2000

[25] S. Subramanian, R. Durairg, J. Rasmas, F. Travostino, P.
Wang, T. Lavian and D. Hoang, Pradicd Active
Networking Services with Content-aware Gateways, to be
published, Jan 2002

12

