
 1

Enabling Active Flow Manipulation in Sili con-based
Network Forwarding Engines1

Tal Lavian2, Phil Wang, Franco Travostino, Siva Subramanian3 and Ramesh Duraraj
{tlavian, pywang, travos, ssiva, radurai}@nortelnetworks.com

Advanced Technology, Nortel Networks Corp.

Doan Hoang4
dhoang@it.uts.edu.au

Department of Computer Systems, University of Technology, Sydney, Australia

Vijak Sethaput5
vijak@eecs.harvard.edu

Division of Engineering and Applied Sciences, Harvard University

David Culler
culler@eecs.berkeley.edu

Computer Science Division, University of California at Berkeley

1 This article is revised from an earlier version published in Journal of Communications and Networks, March 2001, under its
copyright and reprint permission granted.

2 Tal Lavian is a Ph.D. candidate at the Computer Science Division, University of California, Berkeley.
3 Siva Subramanian is a Ph.D. candidate in the Electrical and Computer Engineering Dept. at North Carolina State University.
4 Doan Hoang was a visiting research professor at Advanced Technology, Nortel Networks Corp in 2001.
5 Vijak Sethaput was an interim employee in Nortel Networks Corp. in 2001.

Abstract

A signifi cant challenge arising from today’s increasing
Internet traffic is the abilit y to flexibly incorporate
intelli gent control in high performance commercial
network devices. This paper tackles this challenge by
introducing the Active Flow Manipulation (AFM)
mechanism to enhance traffic control intelli gence of
network devices through programmabilit y. With AFM,
customer network services can exercise active network
control by identifying distinctive flows and applying
specified actions to alter network behavior in real-time.
These services are dynamically loaded through Openet by
the CPU-based control unit of a network node and are
closely coupled with its sili con-based forwarding engines,
without negatively impacting forwarding performance.
AFM is exposed as a key enabling technology of the

programmable networking platform Openet. The
effectiveness of our approach is demonstrated by four
active network services on commercial network nodes.

Keywords
Programmable networking, intelli gent network control,

Active Flow Manipulation, Openet, active networks, traffic
flow

I . INTRODUCTION

The Internet infrastructure has been tremendously
evolving to transport increasing network traffic
arising from fast introduction of various commercial
applications. The Internet is ubiquitous, however,

 2

fragmented in structure into large heterogeneous
network domains controlled by Internet Service
Providers (ISPs). The providers have to rely on a
complex collection of operational management
methodologies and techniques in order to operate
their networks. In this increasingly competitive
environment, it is important for service providers to
easily control their networks. It is also important for
them to allow customization of network services to
differentiate their offerings by rapidly introducing
intelli gent network services on demand such as QoS
(Quality of Service) to their clients. In brief, they are
in need of a comprehensive programmable
networking framework through which they manage
their networks intelli gently to satisfy the clients’
needs.

The fundamental element of the Internet
infrastructure is the network node, e.g., a router or
switch. Typically, the distinction of the data (or
forwarding) and control planes is drawn at each node
with the hardware realizing the forwarding operations
and the software realizing the control operations.
Nowadays, the trend in commercial grade routers and
switches is to accelerate performance critical
forwarding functionality using hardware technologies
such as ASIC (Application-Specific Integrated
Circuit) technology. As a result they provide littl e
programmabilit y and thus are limited in abilit y to
deliver intelli gent control. However, dynamically
enabling and deploying new intelli gent services on
network nodes implies that they must possess not
only high forwarding performance, but also high
degree of programmabilit y.

It is a challenging task to come up with an
enabling technology that allows network service
providers freedom to deploy intelli gent services on
current commercial network devices. One of the
requirements for such an enabling technology is that
it must have littl e or no adverse impact on the
processing performance in the data path. Another
important requirement of such technology is that it
should be distributed rather than centralized in the
network.

To tackle the challenging issues discussed above,
in this paper the emphasis is placed on the Active
Flow Manipulation (AFM) mechanism, which aims to
affect the data traffic in real networks. AFM is a key
enabling technology of the open programmable
networking architecture Openet. The AFM
proposition is that the characteristics of a basic data

flow can be identified and its behaviors can be altered
in real-time by customizing control-plane services.
Openet is a platform-neutral, service-based
internetworking infrastructure developed by Nortel
Networks Corp., aiming to deliver dynamic network
programmabilit y on heterogeneous network devices.
Commercial network devices such as the Nortel
Networks multi -gigabit routing switch Passport [4],
possess the abilit y to alter traffic flow behaviors in
the sili con-based forwarding plane. The control plane
in such a device, however, lacks user-
programmabilit y required to introduce intelli gent
services. Openet provides such programmabilit y to
enable users with control of the forwarding hardware.
This programmabilit y is in this paper manifested as
the abilit y to alter network behavior of flows in real-
time, i.e., AFM, in order to enhance the functionality
of network devices.

This paper introduces the concept of Active Flow
Manipulation for identifying and affecting traffic
flows of interest in sili con-based high-speed network
nodes. It also introduces the Openet open
programmable platform and its mechanisms that can
dynamically enable programmed services in the
control plane. Finally it demonstrates the use of AFM
mechanism with the Openet infrastructure through
several experimental applications.

The remainder of the paper is organized as
follows. Section 2 introduces the mechanism of
Active Flow Manipulation to enable actual network
control in real-time. Section 3 introduces the Openet
architecture, and its mechanisms for dynamic service
deployment. Section 4 presents four AFM
applications that are developed through the Openet
programmabilit y. Section 5 gives a brief review of
related work. Finally, the paper concludes with future
work.

II . ACTIVE FLOW MANIPULATION

In hardware, an Internet router or switch typically
consists of a control plane and a forwarding plane.
The forwarding plane has a set of networking
forwarding engines and is responsible for per-packet
activities such as classifying, queuing and
forwarding. The control plane is usually a CPU-based
system unit and responsible for control functions such
as routing, signaling, admission control and other
mechanisms altering the behavior or data of selective
traffic on the forwarding plane. Control functions can

 3

be realized in three ways: 1) executing wholly in the
control plane (e.g., connection management), 2)
inserting additional software in the data path, 3)
allowing control entities to act both in the control
plane and in the forwarding plane without adding
software in the data path. The first control incurs
significant forwarding performance penalty when
data processing is involved, the second suffers in
functionality because of the littl e abilit y to add
software in the data path. Thus, this paper focuses on
the third control, especially the simple type of
dynamic control that affects a vast amount of data
transporting through a network node in real-time.

Consider the situation where a massive amount of
data traffic has to be switched through a network
node, and it is desirable and essential to exercise
selective controls over selective traffic. To avoid a
switching performance penalty, the controls have to
be done in real-time. The Active Flow Manipulation
(AFM) mechanism is introduced to solve this by
having the control functions differentiate traffic
flows, not individual packets.

Current commercial-grade nodes are provided
with high-performance forwarding engines, for
example, a typical routing switch such as Passport [4]
can forward packets at a total throughput of 256
Gbps. With such a high rate, there is no simple way to
inspect packet by packet in the control plane and then
figure out appropriate actions. Fortunately, the
hardware in the forwarding plane can perform several
tasks extremely well . For example, it can differentiate
packets based on packet headers and selective
payload portions, and perform some simple actions
such as filtering, diverting, dropping and forwarding
selected packets.

The AFM mechanism involves two abstraction
levels in the control plane. One is the level at which a
node can aggregate its data into traffic flows, and the
other is the level at which it can perform actions on
the traffic flows. It is futile in the control plane to
think of packets individually; instead, it is more
appropriate and productive to think and act in terms
of primitive flows whose characteristics can be
identified and whose behaviors can be altered by
primitive actions in real-time. For example, one wants
to exercise some controls over “all TCP traffic to an
HTTP service at a web server” , “all RTP/UDP
datagram generated from several identifiable video
stations to a particular display machine”, or “all
traffic passing through a physical port of a router” . It

is at this level of abstraction that active control of
data on the forwarding plane can be performed
without violating its real-time constraints.

To formalize this framework, let the primitive flow
set be a set of atomic elements that can be matched
and identified by hardware in real-time, see Table 1.
The set is based on the general hardware capabilit y
(e.g., the Passport), but can be expanded with more
sophisticated next-generation hardware.

Table 1: The primitive flow set of identifiable elements

Destination Address (DA)
Source Address (SA)
Exact TCP protocol match (TCP)
Exact UDP protocol match (UDP)
Exact ICMP protocol match (ICMP)
Source Port number, for TCP and UDP (SP)
Destination Port number, for TCP and UDP (DP)
TCP connection request (TCPReq)
ICMP request (ICMPReq)
DS field of IP datagram (DS)
IP Frame fragment (FrameFrag)

The primitive flow is the first abstraction level of
AFM necessary to deal with the various attributes of
data traffic. Essential properties of a flow are
identifiable atomic elements and can be acted upon in
real-time. A simple TCP flow can be identified by 5-
tuple (TCP, SA, SP, DA, DP), for which all packets in
this flow have to match. If any of the 5 elements is
relaxed, the flow becomes a less restrictive flow. For
example, a flow of all TCP traffic destined to a
particular service on a particular machine is identified
by 3 elements, the protocol (TCP), the destination
address and the destination port (i.e., TCP, *, *, DA,
DP).

In the most general sense, a set of operators (and,
or, not and range) can be defined on this primitive set
of elements to obtain new composite elements. One is
interested in these composite elements that define
composite flows. The scope of flows that can be
generated from the base elements of the primitive
flow set is much more general than just simple TCP
flows. In principle, one can “operate” on elements of
the primitive flow set to construct a particular
composite flow of interest, for example, a “all
premium-grade traffic to a particular destination
machine” flow using the DS field and the Destination
Address elements of the packet header.

Ideally, a proper set of primitive flow elements and

 4

a proper set of operators form an algebra, in which
any operation on a flow results in another valid
composite flow. However, hardware is not completely
designed for this algebra. Realistically, some of the
operations on the primitive flow set, or some
composite flows, may not be practical and hence can
be eliminated. It should be noted that all elements of
the primitive flow set are associated with some
control actions that can be realized in real-time. It is
possible to enumerate all possible combinations of the
primitive flow set and to identify all realizable flows.
However, due to the space limitation of the paper,
only a subset of realizable flows is shown in Table 2.
The whole set of realizable flows presents a network
controller with a powerful set of targets to develop
applications.

Table 2: A subset of reali zable flows to one destination

Sources Destination Address (DA)
Any All packets to the destination
Source
Address (SA)

All packets from the SA machine
to the destination

Range of SAs All packets from many source
machines to the destination

TCP All TCP packets to the
destination

UDP All UDP datagrams to the
destination

ICMP All ICMP messages to the
destination

ICMP Request All ICMP request messages to
the destination

TCP ACK All TCP acknowledgement
packets to the destination

TCP RST All TCP packets with the RST bit
set to the destination

DP
(TCP/UDP)

All TCP packets or UDP
datagrams to a particular service
in the destination

SA-SP
(TCP/UDP)

All TCP packets or UDP
datagrams sourcing from a
particular client of a source
machine to the destination

IP Fragments All IP fragments to the
destination

DS Field All packets of a particular DSCP
value to the destination

VLAN All packets from a particular
VLAN number to the destination

Switch-Port All packets through a particular
interface port to the destination

The second abstraction level is the primitive
actions, which constitute a base set of actions that can
be associated with a real-time identifiable flow to
realize an active flow manipulation. One can also
operate on this base set to obtain composite actions. A
subset of actions of interest is shown in Table 3.
Combining the set of composite and realizable flows
with the set of composite actions generates a set of
desirable active flow manipulations. Examples are
“ increase the forwarding priority of all TCP traffic to
an HTTP service at a web server” and “drop all traffic
through a physical port of a router (to a broken link)” .

Table 3: The primitive action set of permissible actions

Action
Drop
Forward
Divert
Mirror
Stop on Match
Out-of-Profile behaviour
Change DSCP bits
Prevent TCP Connection Request
Change IEEE 802.1p bit

More importantly, on a commercial node like the

Passport routing switch, a composite flow is readily
realized by a list of hardware filters applied to a
particular port of this node. A composite action to be
performed also in hardware on the composite flow is
the combination of all the actions of individual filters
applied.

By definition, AFM requires the abilit y to change
the flow-action combinations in real-time. A
programmable network platform is all that is needed
for AFM to operate. Openet is such a platform that
can dynamically inject smart control services and
house them in the control plane. It allows the control
mechanisms to couple intimately with the hardware to
perform actions in real-time. Such a service generally
requires simple computation in the control plane to
set various policies supported by the switch. Typical
services belonging to this category include filtering
firewall , dynamic flow identification, classifying and
marking, remarking flows, altering priority of a flow,
intercepting special control messages for further
processing. However, it should be again emphasized
that our focus is on the type of control that preserves
the forwarding plane by avoiding introduction of
software on the data path.

 5

III . OPENET AND SERVICE DEPLOYMENT

Openet originated from the open programmable
architecture for Java-enabled network devices [1] has
been evolving with later work [2,5,6]. It is platform-
neutral, and works closely with commercial nodes
such as the Passport routing switch [4] and Alteon
web switch [24] to provide the flexible networking
programmabil ity.

A. Openet

Figure 1 depicts the Openet architecture in a
distributed network that comprises routers and
switches, end hosts, repository servers and control
consoles. The routers and switches download service
codes and policies from the repository servers and run
network services locally, as demanded by end
applications and control consoles. Repository servers
run downloading services (e.g., HTTP or FTP) and
store network-related resources such as service codes,
network configurations and policies. Control consoles
perform manually or programmatically the
management tasks such as service initiations on
routers and switches and storage maintenances on the
repository servers.

Openet provides network service providers as well
as end users the programmable networking abilit y
through four major components: the runtime
environment (ORE), hierarchical network services
(Oplets), the Oplet development kit (ODK) for
service creation, and the management part (Openet
managers and agents).

Repository
Server

ORE

Control Console
• service initiation and policies
• network configuration
• resource administration
• repository maintenance

End Apps

Switch

Router

ORE
Router

Switch

Download
oplets,

policies,
configs

Control
&

Configuration

End Apps
• use of service
• apply on the fly

Control
Data path
Download
User request

ORE

ORE

Figure 1: The Openet architecture (in one network)

The Oplet Runtime Environment (ORE) is the
service core of the Openet infrastructure and is
distributed on network nodes. It is an open object-
oriented networking environment for customer

service creation and deployment. At runtime, it is
dynamically installed on network nodes and supports
injecting customized software of network services to
the nodes through secure downloading, installation,
and safe execution of Java-based service code inside
a JVM.

The Openet management part, consisting of the
Openet managers running on control consoles and the
Openet agents on routers, switches and repository
servers, conducts service management, resource
administration, repository maintenance, and network
configuration.

B. Passport Routing Switch

The Passport6 achieves a significantly higher level
of performance by employing two separated working
planes control and forwarding, as depicted in Figure
2. The forwarding plane has multiple ASIC-based
forwarding engines that can forward packets at the
wire speed and reach a total throughput of 256 Gbps
(gigabits per seconds) without consuming any CPU
resource.

Switching Fabric

Forwarding Plane
(Wire Speed Forwarding)

Forwarding
Processor

Forwarding

Rules

Statistics
&Monitors

Forwarding
Processor

Forwarding

Rules

Forwarding

Rules

Statistics
&Monitors

Forwarding
Processor

Forwarding

Rules

Statistics
&Monitors

Forwarding
Processor

Forwarding

Rules

Forwarding

Rules

Statistics
&Monitors

Forwarding
Processor

Forwarding

Rules

Statistics
&Monitors

Forwarding
Processor

Forwarding

Rules

Forwarding

Rules

Statistics
&Monitors

. . .

Control Plane

Traffic Packets

CPU
JVM

PHYMEM

JNI/Native Code

ORE JFWD

Filtered packets New rulesMonitor status

User Services

Standard Services Function Services

Figure 2: Passpor t with Openet (a node’s view)

The control plane, however, is based on a CPU
blade and contains the embedded Java VM. It
executes ORE and that in turn enables execution of
diversified Oplet services. Thus, Openet introduces
programmabilit y into the otherwise rigid routing

6 Passport 1100B, 8600 and other models are available in
commercial market without Openet included. Openet is open
source and free available for research purpose.

 6

switch Passport and makes it capable of supporting
AFM and other mechanisms that customized network
services provide.

C. Service Deployment

Network services are composed of normal Java
objects, and encapsulated as Oplets. The Oplet is a
self-contained downloadable unit that embodies a
non-empty set of services in order to secure service
downloading and management. Along with the
service code, an Oplet relates service attributes,
authentication, and resource requirements.
Furthermore, it publishes the service and its public
APIs to application services.

On a network node like the Passport, ORE and
network services are initiated at the control plane, but
can operate with either or both of the two planes:
control and forwarding (or data). Control-plane
services change network configurations (e.g., routes)
and affect the data forwarding behaviors by altering
the hardware instrumentation, while data-plane
services cut through the data path and seize and
process particular packets prior to forwarding.

To ease service creation and gain platform
independency, Openet employs a service hierarchy
that places network services into four categories:
System, Standard, Function and User. First, “System
services” are low-level network services that have
direct access to the hardware features, e.g., JFWD
that provides neutral Java APIs used by AFM and
other mechanism services to alter the hardware
routing and forwarding behaviors. They require
particular hardware knowledge and are implemented
using native programming interfaces or the hardware
instrumentation. Thus, in fact, they by their neutral
APIs determine how much of the programmabilit y
Openet brings to hardware. Second, “Standard
Services” provide the ORE fundamental features for
customer service creation and deployment, e.g.,
“OpletService” is a base class of service creation.
They make up the ODK that is used at service
development. Third, “Function Services” provide
common functionality or utilit y used to rapidly create
user-level services, and are usually intermediate
services coming with the ORE release or contributed
by the third party. Finally, “User Services” are the
customers’ application services for particular
purposes.

The final step of service deployment in real
networks is to inject network services, which requires

downloading and activating the service code within
the ORE on commercial network nodes. There are at
least three ways to do dynamic service injection,
using the ORE shell service, the ORE startup service
or a user service initiation service. During runtime
one can instruct ORE to download and then activate
these services, which are thus deployed on network
nodes and run locally.

IV. AFM-ENABLED APPLICATIONS

With Openet, AFM-enabled applications are
actually those network services developed using the
AFM mechanisms for particular application purposes.
In this section, four AFM services in both control
plane and forwarding plane are described and their
experimental results are measured with the Passport
routing switch and other network systems.

A. Active Flow Priority Change in Real-time

The active flow priority change is a control-plane
network service that applies AFM to alter the packet
forwarding priorities of particular flows in real-time.
It is a simple and effective application showing how a
customized service controls the hardware behaviors.
The experiment network depicted in Figure 3a is
established with the Passport 1100B routing switch,
and three hosts that are Linux-based PC systems.

The experiment procedure is as follows (see
Figure 3b). At the beginning, the first TCP flow at a
constant rate of 100Mbps is set up from Source 1 to
the Destination through the Passport. The link
bandwidth between the Passport and the Destination
is 100Mbps at maximum. At time 1.3 seconds, the
second TCP flow at the same rate from Source 2 is set
up through the same link to the Destination. When
they become stable, each claims nearly half of the
link bandwidth (47Mbps). Then, the ORE on the
Passport is instructed to activate the “active priority”
service, which employs AFM to detect particular
flows and increases the packet priority of the second
flow at time 3.8 seconds. As expected, the receiving
rate of the second flow (now with a high priority)
increases and stabili zes at the desired bandwidth
(70Mpbs) and the low-priority first one at a lower rate
(24Mbps).

 7

(a) Network layout

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8 9 10
S econds

Mbps Low P rio rity

High P riorit y

S tart

2nd F low

Change

P riori ty

E nd

2nd F low

(b) Flow throughputs at the Destination

Figure 3: Two TCP flows competing for the link
bandwidth with active pr ior ity change

The bandwidth jumping of the second flow at time
3.8 seconds shows that the Passport forwarding plane
carries out the AFM identification and action of
packet flows at the wire-speed, without obvious
performance reduction. The reason is that because the
control service does not require packet processing in
the data plane. The forwarding engine of the network
node processes and forwards packets while the CPU
executes the Java control code implementing the
AFM-based service.

Even though the experiment and its result are not
groundbreaking, this application service indicates an
immediate benefit of active detection of flows and
dynamic adjustment of packet priorities on
commercial-grade nodes. It can be used widely in
traffic control such as end-to-end video and audio
traffic, and QoS mechanisms such as Intserv and
Diffserv.

B. Active IP accounting

In traditional IP accounting, network nodes (e.g.,
routers, switches and firewall gateways) collect data
regarding the network traffic that flows through them,
and then upload the data periodically into centralized

accounting servers. The servers synthesize the
unwashed accounting data off-line, and make the
outcome available to accounting applications such as
billi ng and load auditing. As the Internet becomes
ubiquitous, traditional IP accounting is facing a
number of new challenges such as "pay for what you
use" custom pricing schema, accounting data volumes
linearly growing with the bandwidth, and real-time
QoS monitoring.

The Active IP Accounting Co-processor
Environment (AIACE) [3] revises traditional IP
accounting at the very foundation, and is a control-
plane service infrastructure. Based on the AFM
mechanism, the AIACE infrastructure argues that the
number of accounting tasks performed at both
network nodes and accounting servers must be fluid
and not necessarily known a priori. That is, network
nodes cease being accounting-illit erate to the
contrary, effectively pre-process flows’ accounting
data at an extent that the recipient accounting servers
can control.

In this model, accounting plug-ins are the
elemental processing units, and stacked into the
AIACE co-processor and perform specific accounting
tasks at the network nodes on behalf of accounting
servers. Thus, the new accounting-savvy network
nodes can eagerly do a number of active tasks such as
aggregating the accounting data of flows meeting pre-
set affinity criteria, reflecting settlements among
providers, enabling real-time accounting data mining,
and signaling accounting servers to meet accounting
applications’ needs.

The merits of AIACE are shown in the following
sample scenario for high-confidence flow monitoring.
An application periodically sweeps a network
topology and reports flow vitals to the operator (e.g.,
the cumulative traffic figures concerning flows with
the most remunerative SLAs). The high-confidence
attribute implies that such an application is
dependable in reporting traffic figures in real-time, in
spite of overloads (e.g., CPU, or accounting data
overloads) possibly induced by partial failures in the
network. In other words, this type of traffic
monitoring application must be especially well
behaved when things in the network start to go
wrong.

In this scenario, it is crucial to manage the finite
monitoring capacity and to make the most effective
accounting data mining out of it. A whole sweep of
the network topology represents a cycle; cycles are

 8

typically configured to complete in a few seconds. At
the end of each cycle, the breakdown of the
monitoring capacity is revisited to adapt to conditions
occurred in the previous sweep, or to accommodate
an operator’s explicit request to zoom-in on “hot”
sectors of the sweep. In principle, at each cycle the
monitoring application communicates to AIACE
network nodes with the below steps.

1) How much accounting data the application wants to
handle from a given network node;

2) How the network node should weight its accounting
data for flows, decide what to mine out, and package it
within the aforementioned limi t;

3) Which accuracy is expected from the network node
while performing this accounting data mining.

The opportunities in Step 2 become evident in the

examples showed in Figure 4. In example a), a
network-node organizes about a milli on PDU traces
into 30,000 IP flows. It classifies the resulting flows
based on the bytes transferred on each flow. It then
ranks flows (from 1 to 8). The higher the rank
number, the higher the chance that the flow will not
be transferred to the accounting server in case of data
overload.

Figure 4: Results of a flow monitor ing scenar io

In example b), the network under analysis is QoS-

enabled and three QoS classes—gold, silver, and
bronze—are defined. The node now structures the
same accounting data into QoS-flavored flows (same
X and Y axes as in a). After applying a QoS-specific
weighting algorithm to the flows. The node ranks
flows with different results than a). The weighting
algorithm can be arbitrarily complex and take into
account other considerations besides bytes transferred
(e.g., hosts, number of packets, duration).

By specifying a weighting algorithm for
accounting data in the various QoS classes, the
application passes tidbits of its business model to the
network node—i.e., it says what the most significant
accounting data are and how much this matters. This
node thus weights the accounting data that best reflect
this business model. Should the accounting data
exceed the size pre-set by the application (i.e.,
overload), this node will t hrottle itself by pruning the
least significant accounting data from its reports.

AIACE’s accounting plug-ins realize Steps 1
through 3 by operating at both network nodes and
accounting server. Some plug-ins that define the
weighting algorithms are loaded and executed only at
network nodes. Other plug-ins that implement the
accounting wire protocol and its capabilit y to drive
the nodes’ accounting data output are reciprocated at
network nodes and accounting servers.

C. Dynamic bypassing flows for automated
supervision

Regatta is another control-plane service that
employs the Openet infrastructure and AFM for
automated supervision [23]. Regatta stops, in a
dynamic fashion, flows through routers when a node
operation fails and leaves them to the Regatta
(routing) supervision procedure. The Regatta
supervision procedure handles the bypass with
minimal service interruption to the user. Consider the
example network (Figure 5a) of 6 nodes constituting
two disjoint network paths between the end systems.
Node f, for instance a beta-level prototype, is known
not to work reliably. It has a failure semantics that can
be described as "the link layer is always up, but the IP
layer sometimes suddenly fails to route PDUs".

The network operator can thus aim Regatta at
node f, with two goals that a) node f should be
bypassed as soon as Regatta detects that it has a
failure, without any user interruption; and b) Regatta
notifies the operator who then starts post-mortem

 9

analysis of node f before it gets rebooted. Here we
present a quantitative measure of a), and contrast it
with the self-healing properties that have been already
built i nto the network in terms of standard routing
protocols.

(a) Experimental setup

(b) Varying degree of disruption at the end-user during the
failure to node “ f”

Figure 5: Dynamic flow bypass using Regatta

Traffic flows between the two end users go
through nodes a, f, and e which is the shortest path.
After the network operator installed Regatta at node f,
Regatta begins to unfold itself outside of node f. In
particular, it installs itself in the two adjacent nodes: a
and e. Node f does not play any active role of control
except in this bootstrap operation. It becomes the
subject of the attentions by other reliable neighboring
nodes. The Regatta-activated nodes a and e exchange
periodic heartbeats between them to supervise the
well being of suspected node f. The type and rate of
the heartbeats are defined by the operator.

 Upon a defined number of heartbeat missed, the
Regatta diagnosis module in node a determines that

there is a failure of suspected node f. At that time, the
repair module on node a gets control and, “clamps”
the flow path(s) that goes through node f. Through
AFM and other Openet routing service, this repair
module establishes a new route that reaches the end
receiver via node b in place of node f. Then, node a
reactivates those flows destined to node e through this
route. On node e, this “clamping” procedure similarly
gets reciprocated upon the heartbeat missed, without
any support for synchronicity between nodes a and e.

Table 4 shows a comparison of reactivity times
applying such a network bypass in our experiment, of
which all these nodes are Linux PCs installed with the
Linux Openet/ORE system. The first two rows “static
route” and “ routed” are two flow re-activities without
Regatta while others are with Regatta. The last entry
“Regatta M/HB” means a heartbeat interval of HB
seconds and a tolerance of M consecutive heartbeat
missed before calli ng for a failure.

Table 4: Compar ison of reactivity times

Figure 5b plots the throughputs at the end receiver

with varying levels of disruption. With the bypass
being applied in real-time upon detection of a failure,
there is minimal effect to end-user traffic. The
network operator can balance the trade-off between
the reactivity time and the heartbeat overhead using
different parameters (i.e., M and HB).

D. Active Networks Service in Real Networks

It is obviously of interest that Openet enables
commercial network devices such as the Passport
rather than host-based systems such as Linux routers
to host Active Networks services or execution
environments (EEs) and thus to embody the Active
Networks approach in real networks. Of Active
Networks EEs, MIT ANTS [10] is a typical
mechanism for dynamically composing and installi ng
new transport protocols in networks, and actually it is
a data-plane service that processes active packets or
capsules directly. Through Openet, the ORE ANTS

Flow Path Reactivity Time (s)
Static route Infinite
Routed 152
Regatta 10/1 10
Regatta 10/5 47
Regatta 5/5 24
Regatta M/HB ≈M*HB

 10

service [6] is developed wrapping the MIT ANTS. It
also uses AFM to collect specified capsules for CPU
processing in the control plane.

The ORE ANTS is completely injected to two
Passport routing switches: 1100B and 8600 [5]. Of
the Passport routing switch family, 1100B is an
economic product that is equipped with a PowerPC
403@67MHz CPU and 8600 is a superior one that is
equipped with a much stronger PowerPC
740@266MHz CPU.

This service is tested with the ANTS applications
such as the ANTS Ping (APing) and compared with
regular Linux Ping. Within the corporate intranet, we
construct an experimental active net that includes 3
active nodes and 3 non-active ones, shown in Figure
6. The Passport 1100B or 8600 routing switch, and 3
PII/400MHz PC boxes are located in an experiment
network (net 10), which is routed to the intranet
where working machines such as Sun workstations
are.

Figure 6: The experimental active net running ANTS
EEs

Table 5 lists the packet average delays and
throughput rates of the APing and Ping tests, both of
which send at given intervals 83-byte capsules or 64-
byte packets from the Source to the Destination
through the Passport. The first two Aping tests with
Passport 1100B have capsules lost and do not have
their average delays and throughput rates. The
maximal throughput of the APing tests is found to be
32.3 cps (capsule per second) for Passport 1100B and
90.9 cps for Passport 8600. However the two Ping
tests have the same throughput of 10,000 pps (packet
per second) and the same average delay of 0.1ms as
well . This comparison reveals that capsule-by-capsule
CPU processing in the ANTS service cannot match
the performance level of regular Ping packet

processing which is actually accelerated by hardware.
To understand what contributes the capsule delay,

capsule-processing time consumed at each node is
measured by comparing the time of receiving and re-
transmitting one capsule. Figure 7 depicts the delay
distributions in the two extreme Aping tests that have
minimal average delays: 31ms for Passport 1100B
and 11ms for Passport 8600.

Table 5: Delays and Throughputs of Ping and Aping
Tests (time in milli seconds)

Packet Processing & Delay

0

13

0

8

2x8

2 2x0.52

0

5

10

15

20

Source Destination Passport Java I/O
(4)

Time
(ms)

Aping(1100B)
Aping(8600)

Figure 7: Delay distr ibutions (Transmitt ing a capsule
involves one time processing at Source and Destination,
two times processing at Passpor t and four times Java

I /O on all three nodes)

It is found that the round-trip network
communication of a capsule takes 13ms for Passport
1100B and 8ms for Passport 8600. At the link speed,
it takes very littl e time (less than 0.1 ms) for

Ping
Interval First packet Average Throughput (pps)

0 1.2 0.1 10000
1000 0.8 0.1 10000

APing (1100B)
Interval First capsule Average Throughput (cps)

0 3209 - (capsules lost)
10 551 - (capsules lost)
100 139 32 31.5
1000 131 31 32.3

APing (8600)
Interval First capsule Average Throughput (cps)

0 47 391 2.55
10 12 11 90.9
100 12 11 90.9
1000 13 11 90.9

 11

transferring a capsule among three nodes. Hence, a
large portion of the round trip time must have been
taken up by 4 pairs of Java network I/O operations
(reading and writing a capsule) on the three nodes (1
on the Source, 1 on the Destination and 2 on the
Passport). This is not really expected! However,
additional network tests based on a Linux PC and a
Sun workstation confirm that the Java overhead for a
pair of simple UDP socket I/O operations (i.e., a
DatagramSocket server writes a 32-byte message and
a DatagramSocket client reads it) needs 2~3 ms while
the same socket operations using C/C++ takes nearly
0 ms.

The lesson to be learned here is that JVM
implementation, particularly in Java network I/O
operations, is the real bottleneck of active networking
performance besides the capsule processing abilit y on
network nodes. Of course, adding faster CPUs to the
control plane of commercial hardware is highly
preferable in order to reach the high processing
performance that the forwarding plane does already.
However, it might be a reasonable consideration to
re-engineer ANTS and other active network services
with improved AFM mechanisms so that they can
make better use of both forwarding engines and CPU
on commercial network nodes.

V. RELATED WORK

A significant amount of research has been
involved with enabling intelli gent network control
through programmable networking, ranging from
networking paradigms, re-programmable hardware to
application environments.

Industrial organizations such as P1520/PIN
(Programming Interfaces for Networks) [16], CPIX
(Common Programming Interface) [17] and Parlay
[18] are working on standardization of programmable
networking interfaces among hardware, network
services and user applications. These standard
interfaces are open, generic and have been released in
their early drafts. With these standards, Openet can
effectively define the boundaries of network services,
and normalize service development and deployment.

The Active Networks (AN) approach [8] is a
major effort in industry as well as academia to
incorporate programmabilit y into the network
infrastructure. Through installi ng multiple active user
interfaces or typical Execution Environments (EEs)
on active nodes, users can flexibly compose new

protocols and deploy their services for specific
purposes. These EEs are referred to virtual machines,
and usually come with active node OS (NodeOS).
They are available for active applications to process
their packets or capsules and to control the
processing. Significant research projects include:
MIT ANTS (Active Node Transfer System [10]),
University of Pennsylvania Switchware [9],
Columbia University Netscript, USC/ISI Abone
(Active Backbone) [13], Active Network
Encapsulation Protocol ANEP [12] and BBN Smart
Packet project [14]. To date, these developments have
been mainly realized in software-based hosts (e.g.,
Linux-based systems) that offer the required
programmabilit y but lack the performance required in
real networks. An exception is the Washington
University ANN (Active Network Node) [15]
implementation that introduces an FPGA-based CPU
module that accommodates the active code and is
added to a gigabit ATM switch backplane.

Other contributions such as Darwin [21] and
Phoenix [22] have investigated mechanisms for
delivering programmabilit y to end-users. Darwin
develops a set of customizable resource management
mechanisms that allow service providers and
applications to tailor resource management optimally
for the service quality they require. Phoenix, similar
in part to Openet, is a framework for programmable
networks that allows easy control and deployment of
services toward use of re-programmable network
processors. Rather, our Openet approach makes use
of enabling mechanisms such as AFM to demonstrate
the benefits of programmabilit y in real networks.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, the Active Flow Manipulation
mechanism, through Openet, allows network service
providers to introduce, on demand, intelli gent
controls that adapt network node behaviors
dynamically in real networks. The dynamic priority
change application demonstrates this concept in real-
time, with the Passport sili con-based forwarding
engines.

Openet enables network service providers to
quickly respond to customer requirements by
introducing the sort of AFM-enabled services in the
form of Oplets. Service providers can build on
smaller Oplets to develop more complex network
functions. Two innovative applications in active

 12

network management (i.e., AIACE IP accounting and
Regatta auto supervision) have demonstrated this
abilit y. Furthermore, Openet is an open platform that
can create new opportunities for service providers in
deploying third-party network services on
commercial routing switches. The deployment of
innovative services on network nodes leads to the
differentiation of network service providers.

It is observed that the AFM-based control-plane
network services enhance functionality of commercial
hardware like the Passport, without impeding
performance of the forwarding plane. However, as
seen in the ORE ANTS application, or data-plane
services, rely largely on the performance of the
control CPU. We are exploring a new hardware
architecture [25] in which network services can reside
in a new plane, the computing plane. Attached to the
commercial network devices such as Alteon [24], this
computing plane is being implemented with high
performance computing technology such as FPGA,
and it will allow active manipulation of an increased
number as well as increased granularity of content
flows. In addition, the computing plane will also
improve the performance of data-plane network
services that perform their own packet processing, as
highly demanded in active networks and content
networking.

VII . REFERENCES

[1] T. Lavian, R. Jaeger, J. Holli ngsworth, “Open
Programmable Architecture for Java-enable Network
Devices” , Stanford Hot Interconnects, August 1999.

[2] The Openet Lab, “The Oplet Runtime Environment” ,
http://www.openetlab.org/ore.htm, March 2000

[3] F. Travostino, “Active IP Accounting Infrastructure,” IEEE
OpenArch 2000, Tel Aviv, March 2000.

[4] Nortel Networks Corp., “Networking Concepts for the
Passport 8000 Series Switch” , April 2000

[5] T. Lavian and P. Wang, “Active Networking On A
Programmable Networking Platform”, IEEE OpenArch’01,
Anchorage, Alaska, April 2001

[6] P. Wang, R. Jaeger, R. Duncan, T. Lavian and F. Travostino,
“Enabling Active Networks services on a Gigabit Routing
Switch” , The 2nd Workshop on Active Middleware Services
in conjunction with the 9th IEEE International Symposium
on High Performance Distribued Computing (HPDC-9),
Pittsburgh, Pennsylvania, August 2000

[7] P. Wang, Y. Yemini, D. Florissi and J. Zinky, “A
Distributed Resource Controller for QoS Applications” ,
NOMS 2000-IEEE/IFIP Network Operations and
Management Symposium, Honolulu, Hawaii, April 2000

[8] David L. Tennenhouse, et al, “A Survey of Active Network
Research” , IEEE Communications Magazine, Vol. 35, No.
1, January 1997

[9] D. Scott Alexander, et al , “The SwitchWare Active Network
Architecture”, IEEE Network Special Issue on Active and
Controllable Networks, vol. 12 no. 3, July 1998

[10] David J. Wetherall, John Guttag, and David L. Tennenhouse,
“ANTS: A Toolkit for Building and Dynamically Deploying
Network Protocols” , IEEE OPENARCH'98, San Francisco,
CA, April 1998.

[11] Y. Yemini and S. da Silva. “Towards Programmable
Networks” , IFIP/IEEE Intl. Workshop on Distributed
Systems: Operations and Management, L'Aquila, Italy,
October 1996.

[12] D. Scott Alexander, Bob Braden, Carl A. Gunter, Alden W.
Jackson, Angelos D. Keromytis, Gary J. Minden and David
Wetherall, “ANEP: Active Network Encapsulation
Protocol” , Active Networks Group, Request for Comments,
http://www.cis.upenn.edu/~switchware/ANEP/docs/ANEP.t
xt

[13] Active Network Backbone (ABone),
http://www.isi.edu/abone/

[14] B. Schwartz, A. Jackson, T. Strayer, W. Zhou, R. Rockwell
and C. Partridge, “Smart Packets for Active Networks” ,
IEEE OpenArch 99, New York, March 1999

[15] D. Decasper, et al, “A Scalable High Performance Active
Networks Node”, IEEE Network Magazine. Vol 37, Jan/Feb
1999

[16] Biswas, J. et al, “The IEEE P1520 standards initiative for
programmable network interfaces” , IEEE Communication
Magzine, Vol 36, Oct. 1998

[17] The CPIX (Common Programming Interface) forum,
http://www.cpixforum.org/

[18] The Parlay Group, http://www.parlay.org/
[19] Intel Internet Exchange Arcitecture (IXA),

http://developer.intel.com/design/ixa/white_paper.htm
[20] Solidum, http://www.solidum.com
[21] P. Chandra et al, “Darwin: Resource Management for Value-

Added Customizable Network Service”, Proc. 6th IEEE
ICNP, Austin, Oct. 1998

[22] David Putzolu, Sanjay Bakshi, Satyendra Yadav and Raj
Yavatkar, The Phoenix Framework: A Practical Architecture
for Programmable Networks, IEEE Communications
Magazine, Vol 38, No 1, March 2000

[23] V. Sethaput, A. Onart and F. Travostino, “Regatta: A
Framework for Automated Supervision of Network Clouds” ,
IEEE OpenArch’01, Anchorage, Alaska, April 2001

[24] Nortel Networks Corp., Alteon 180 Series Web Switch
White Paper - “Scaling Next Generation Web Infrastructure
with Content-Intelli gent Switching” , April 2000

[25] S. Subramanian, R. Durairaj, J. Rasimas, F. Travostino, P.
Wang, T. Lavian and D. Hoang, Practical Active
Networking Services with Content-aware Gateways, to be
published, Jan 2002

