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Abstract 

A signifi cant challenge arising from today’s increasing 
Internet traffic is the abilit y to flexibly incorporate 
intelli gent control in high performance commercial 
network devices. This paper tackles this challenge by 
introducing the Active Flow Manipulation (AFM) 
mechanism to enhance traffic control intelli gence of 
network devices through programmabilit y. With AFM, 
customer network services can exercise active network 
control by identifying distinctive flows and applying 
specified actions to alter network behavior in real-time. 
These services are dynamically loaded through Openet by 
the CPU-based control unit of a network node and are 
closely coupled with its sili con-based forwarding engines, 
without negatively impacting forwarding performance. 
AFM is exposed as a key enabling technology of the 

programmable networking platform Openet. The 
effectiveness of our approach is demonstrated by four 
active network services on commercial network nodes. 

Keywords 
Programmable networking, intelli gent network control, 

Active Flow Manipulation, Openet, active networks, traffic 
flow 

I . INTRODUCTION 

The Internet infrastructure has been tremendously 
evolving to transport increasing network traffic 
arising from fast introduction of various commercial 
applications. The Internet is ubiquitous, however, 
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fragmented in structure into large heterogeneous 
network domains controlled by Internet Service 
Providers (ISPs). The providers have to rely on a 
complex collection of operational management 
methodologies and techniques in order to operate 
their networks. In this increasingly competitive 
environment, it is important for service providers to 
easily control their networks. It is also important for 
them to allow customization of network services to 
differentiate their offerings by rapidly introducing 
intelli gent network services on demand such as QoS 
(Quality of Service) to their clients. In brief, they are 
in need of a comprehensive programmable 
networking framework through which they manage 
their networks intelli gently to satisfy the clients’ 
needs. 

The fundamental element of the Internet 
infrastructure is the network node, e.g., a router or 
switch. Typically, the distinction of the data (or 
forwarding) and control planes is drawn at each node 
with the hardware realizing the forwarding operations 
and the software realizing the control operations. 
Nowadays, the trend in commercial grade routers and 
switches is to accelerate performance critical 
forwarding functionality using hardware technologies 
such as ASIC (Application-Specific Integrated 
Circuit) technology. As a result they provide littl e 
programmabilit y and thus are limited in abilit y to 
deliver intelli gent control. However, dynamically 
enabling and deploying new intelli gent services on 
network nodes implies that they must possess not 
only high forwarding performance, but also high 
degree of programmabilit y.  

It is a challenging task to come up with an 
enabling technology that allows network service 
providers freedom to deploy intelli gent services on 
current commercial network devices. One of the 
requirements for such an enabling technology is that 
it must have littl e or no adverse impact on the 
processing performance in the data path. Another 
important requirement of such technology is that it 
should be distributed rather than centralized in the 
network.  

To tackle the challenging issues discussed above, 
in this paper the emphasis is placed on the Active 
Flow Manipulation (AFM) mechanism, which aims to 
affect the data traffic in real networks. AFM is a key 
enabling technology of the open programmable 
networking architecture Openet. The AFM 
proposition is that the characteristics of a basic data 

flow can be identified and its behaviors can be altered 
in real-time by customizing control-plane services. 
Openet is a platform-neutral, service-based 
internetworking infrastructure developed by Nortel 
Networks Corp., aiming to deliver dynamic network 
programmabilit y on heterogeneous network devices. 
Commercial network devices such as the Nortel 
Networks multi -gigabit routing switch Passport [4], 
possess the abilit y to alter traffic flow behaviors in 
the sili con-based forwarding plane. The control plane 
in such a device, however, lacks user-
programmabilit y required to introduce intelli gent 
services. Openet provides such programmabilit y to 
enable users with control of the forwarding hardware. 
This programmabilit y is in this paper manifested as 
the abilit y to alter network behavior of flows in real-
time, i.e., AFM, in order to enhance the functionality 
of network devices. 

This paper introduces the concept of Active Flow 
Manipulation for identifying and affecting traffic 
flows of interest in sili con-based high-speed network 
nodes. It also introduces the Openet open 
programmable platform and its mechanisms that can 
dynamically enable programmed services in the 
control plane. Finally it demonstrates the use of AFM 
mechanism with the Openet infrastructure through 
several experimental applications.  

The remainder of the paper is organized as 
follows. Section 2 introduces the mechanism of 
Active Flow Manipulation to enable actual network 
control in real-time. Section 3 introduces the Openet 
architecture, and its mechanisms for dynamic service 
deployment. Section 4 presents four AFM 
applications that are developed through the Openet 
programmabilit y. Section 5 gives a brief review of 
related work. Finally, the paper concludes with future 
work. 

II . ACTIVE FLOW MANIPULATION 

In hardware, an Internet router or switch typically 
consists of a control plane and a forwarding plane. 
The forwarding plane has a set of networking 
forwarding engines and is responsible for per-packet 
activities such as classifying, queuing and 
forwarding. The control plane is usually a CPU-based 
system unit and responsible for control functions such 
as routing, signaling, admission control and other 
mechanisms altering the behavior or data of selective 
traffic on the forwarding plane. Control functions can 
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be realized in three ways: 1) executing wholly in the 
control plane (e.g., connection management), 2) 
inserting additional software in the data path, 3) 
allowing control entities to act both in the control 
plane and in the forwarding plane without adding 
software in the data path. The first control incurs 
significant forwarding performance penalty when 
data processing is involved, the second suffers in 
functionality because of the littl e abilit y to add 
software in the data path. Thus, this paper focuses on 
the third control, especially the simple type of 
dynamic control that affects a vast amount of data 
transporting through a network node in real-time.  

Consider the situation where a massive amount of 
data traffic has to be switched through a network 
node, and it is desirable and essential to exercise 
selective controls over selective traffic. To avoid a 
switching performance penalty, the controls have to 
be done in real-time. The Active Flow Manipulation 
(AFM) mechanism is introduced to solve this by 
having the control functions differentiate traffic 
flows, not individual packets.  

Current commercial-grade nodes are provided 
with high-performance forwarding engines, for 
example, a typical routing switch such as Passport [4] 
can forward packets at a total throughput of 256 
Gbps. With such a high rate, there is no simple way to 
inspect packet by packet in the control plane and then 
figure out appropriate actions. Fortunately, the 
hardware in the forwarding plane can perform several 
tasks extremely well . For example, it can differentiate 
packets based on packet headers and selective 
payload portions, and perform some simple actions 
such as filtering, diverting, dropping and forwarding 
selected packets. 

The AFM mechanism involves two abstraction 
levels in the control plane. One is the level at which a 
node can aggregate its data into traffic flows, and the 
other is the level at which it can perform actions on 
the traffic flows. It is futile in the control plane to 
think of packets individually; instead, it is more 
appropriate and productive to think and act in terms 
of primitive flows whose characteristics can be 
identified and whose behaviors can be altered by 
primitive actions in real-time. For example, one wants 
to exercise some controls over “all TCP traffic to an 
HTTP service at a web server” , “all RTP/UDP 
datagram generated from several identifiable video 
stations to a particular display machine”, or “all 
traffic passing through a physical port of a router” . It 

is at this level of abstraction that active control of 
data on the forwarding plane can be performed 
without violating its real-time constraints. 

To formalize this framework, let the primitive flow 
set be a set of atomic elements that can be matched 
and identified by hardware in real-time, see Table 1. 
The set is based on the general hardware capabilit y 
(e.g., the Passport), but can be expanded with more 
sophisticated next-generation hardware. 

Table 1: The primitive flow set of identifiable elements 

Destination Address (DA) 
Source Address (SA) 
Exact TCP protocol match (TCP) 
Exact UDP protocol match (UDP) 
Exact ICMP protocol match (ICMP) 
Source Port number, for TCP and UDP (SP) 
Destination Port number, for TCP and UDP (DP) 
TCP connection request (TCPReq) 
ICMP request (ICMPReq) 
DS field of IP datagram (DS) 
IP Frame fragment (FrameFrag) 

 

The primitive flow is the first abstraction level of 
AFM necessary to deal with the various attributes of 
data traffic. Essential properties of a flow are 
identifiable atomic elements and can be acted upon in 
real-time. A simple TCP flow can be identified by 5-
tuple (TCP, SA, SP, DA, DP), for which all packets in 
this flow have to match. If any of the 5 elements is 
relaxed, the flow becomes a less restrictive flow. For 
example, a flow of all TCP traffic destined to a 
particular service on a particular machine is identified 
by 3 elements, the protocol (TCP), the destination 
address and the destination port (i.e., TCP, *, *, DA, 
DP). 

In the most general sense, a set of operators (and, 
or, not and range) can be defined on this primitive set 
of elements to obtain new composite elements. One is 
interested in these composite elements that define 
composite flows. The scope of flows that can be 
generated from the base elements of the primitive 
flow set is much more general than just simple TCP 
flows. In principle, one can “operate” on elements of 
the primitive flow set to construct a particular 
composite flow of interest, for example, a “all 
premium-grade traffic to a particular destination 
machine” flow using the DS field and the Destination 
Address elements of the packet header. 

Ideally, a proper set of primitive flow elements and 
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a proper set of operators form an algebra, in which 
any operation on a flow results in another valid 
composite flow. However, hardware is not completely 
designed for this algebra. Realistically, some of the 
operations on the primitive flow set, or some 
composite flows, may not be practical and hence can 
be eliminated. It should be noted that all elements of 
the primitive flow set are associated with some 
control actions that can be realized in real-time. It is 
possible to enumerate all possible combinations of the 
primitive flow set and to identify all realizable flows. 
However, due to the space limitation of the paper, 
only a subset of realizable flows is shown in Table 2. 
The whole set of realizable flows presents a network 
controller with a powerful set of targets to develop 
applications. 

Table 2: A subset of reali zable flows to one destination 

Sources Destination Address (DA) 
Any All packets to the destination  
Source 
Address (SA) 

All packets from the SA machine 
to the destination  

Range of SAs All packets from many source 
machines to the destination  

TCP All TCP packets to the 
destination  

UDP All UDP datagrams to the 
destination  

ICMP All ICMP messages to the 
destination 

ICMP Request All ICMP request messages to 
the destination 

TCP ACK All TCP acknowledgement 
packets to the destination 

TCP RST All TCP packets with the RST bit 
set to the destination 

DP 
(TCP/UDP) 

All TCP packets or UDP 
datagrams to a particular service 
in the destination 

SA-SP 
(TCP/UDP) 

All TCP packets or UDP 
datagrams sourcing from a 
particular client of a source 
machine to the destination 

IP Fragments All IP fragments to the 
destination 

DS Field All packets of a particular DSCP 
value to the destination 

VLAN All packets from a particular 
VLAN number to the destination 

Switch-Port All packets through a particular 
interface port to the destination 

 

The second abstraction level is the primitive 
actions, which constitute a base set of actions that can 
be associated with a real-time identifiable flow to 
realize an active flow manipulation. One can also 
operate on this base set to obtain composite actions. A 
subset of actions of interest is shown in Table 3. 
Combining the set of composite and realizable flows 
with the set of composite actions generates a set of 
desirable active flow manipulations. Examples are 
“ increase the forwarding priority of all TCP traffic to 
an HTTP service at a web server” and “drop all traffic 
through a physical port of a router (to a broken link)” .  

Table 3: The primitive action set of permissible actions 

Action 
Drop  
Forward  
Divert  
Mirror  
Stop on Match  
Out-of-Profile behaviour 
Change DSCP bits 
Prevent TCP Connection Request 
Change IEEE 802.1p bit 

 
More importantly, on a commercial node like the 

Passport routing switch, a composite flow is readily 
realized by a list of hardware filters applied to a 
particular port of this node. A composite action to be 
performed also in hardware on the composite flow is 
the combination of all the actions of individual filters 
applied. 

By definition, AFM requires the abilit y to change 
the flow-action combinations in real-time. A 
programmable network platform is all that is needed 
for AFM to operate. Openet is such a platform that 
can dynamically inject smart control services and 
house them in the control plane. It allows the control 
mechanisms to couple intimately with the hardware to 
perform actions in real-time. Such a service generally 
requires simple computation in the control plane to 
set various policies supported by the switch. Typical 
services belonging to this category include filtering 
firewall , dynamic flow identification, classifying and 
marking, remarking flows, altering priority of a flow, 
intercepting special control messages for further 
processing. However, it should be again emphasized 
that our focus is on the type of control that preserves 
the forwarding plane by avoiding introduction of 
software on the data path.  
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III . OPENET AND SERVICE DEPLOYMENT 

Openet originated from the open programmable 
architecture for Java-enabled network devices [1] has 
been evolving with later work [2,5,6]. It is platform-
neutral, and works closely with commercial nodes 
such as the Passport routing switch [4] and Alteon 
web switch [24] to provide the flexible networking 
programmabil ity. 

A. Openet  

Figure 1 depicts the Openet architecture in a 
distributed network that comprises routers and 
switches, end hosts, repository servers and control 
consoles. The routers and switches download service 
codes and policies from the repository servers and run 
network services locally, as demanded by end 
applications and control consoles. Repository servers 
run downloading services (e.g., HTTP or FTP) and 
store network-related resources such as service codes, 
network configurations and policies. Control consoles 
perform manually or programmatically the 
management tasks such as service initiations on 
routers and switches and storage maintenances on the 
repository servers. 

Openet provides network service providers as well 
as end users the programmable networking abilit y 
through four major components: the runtime 
environment (ORE), hierarchical network services 
(Oplets), the Oplet development kit (ODK) for 
service creation, and the management part (Openet 
managers and agents).  

Repository
Server

ORE

Control Console
• service initiation and policies
• network configuration
• resource administration
• repository maintenance

End Apps

Switch

Router

ORE
Router

Switch

Download
oplets,

policies,
configs

Control
&

Configuration

End Apps
• use of service
• apply on the fly

Control
Data path
Download
User request

ORE

ORE

Figure 1: The Openet architecture (in one network) 

The Oplet Runtime Environment (ORE) is the 
service core of the Openet infrastructure and is 
distributed on network nodes. It is an open object-
oriented networking environment for customer 

service creation and deployment. At runtime, it is 
dynamically installed on network nodes and supports 
injecting customized software of network services to 
the nodes through secure downloading, installation, 
and safe execution of Java-based service code inside 
a JVM.  

The Openet management part, consisting of the 
Openet managers running on control consoles and the 
Openet agents on routers, switches and repository 
servers, conducts service management, resource 
administration, repository maintenance, and network 
configuration.  

B. Passport Routing Switch 

The Passport6 achieves a significantly higher level 
of performance by employing two separated working 
planes control and forwarding, as depicted in Figure 
2. The forwarding plane has multiple ASIC-based 
forwarding engines that can forward packets at the 
wire speed and reach a total throughput of 256 Gbps 
(gigabits per seconds) without consuming any CPU 
resource.  
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Figure 2: Passpor t with Openet (a node’s view) 

The control plane, however, is based on a CPU 
blade and contains the embedded Java VM. It 
executes ORE and that in turn enables execution of 
diversified Oplet services. Thus, Openet introduces 
programmabilit y into the otherwise rigid routing 

                                                               

6 Passport 1100B, 8600 and other models are available in 
commercial market without Openet included. Openet is open 
source and free available for research purpose. 
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switch Passport and makes it capable of supporting 
AFM and other mechanisms that customized network 
services provide. 

C. Service Deployment   

Network services are composed of normal Java 
objects, and encapsulated as Oplets.  The Oplet is a 
self-contained downloadable unit that embodies a 
non-empty set of services in order to secure service 
downloading and management. Along with the 
service code, an Oplet relates service attributes, 
authentication, and resource requirements. 
Furthermore, it publishes the service and its public 
APIs to application services. 

On a network node like the Passport, ORE and 
network services are initiated at the control plane, but 
can operate with either or both of the two planes: 
control and forwarding (or data). Control-plane 
services change network configurations (e.g., routes) 
and affect the data forwarding behaviors by altering 
the hardware instrumentation, while data-plane 
services cut through the data path and seize and 
process particular packets prior to forwarding. 

To ease service creation and gain platform 
independency, Openet employs a service hierarchy 
that places network services into four categories: 
System, Standard, Function and User. First, “System 
services” are low-level network services that have 
direct access to the hardware features, e.g., JFWD 
that provides neutral Java APIs used by AFM and 
other mechanism services to alter the hardware 
routing and forwarding behaviors. They require 
particular hardware knowledge and are implemented 
using native programming interfaces or the hardware 
instrumentation. Thus, in fact, they by their neutral 
APIs determine how much of the programmabilit y 
Openet brings to hardware. Second, “Standard 
Services” provide the ORE fundamental features for 
customer service creation and deployment, e.g., 
“OpletService” is a base class of service creation. 
They make up the ODK that is used at service 
development.  Third, “Function Services” provide 
common functionality or utilit y used to rapidly create 
user-level services, and are usually intermediate 
services coming with the ORE release or contributed 
by the third party. Finally, “User Services” are the 
customers’ application services for particular 
purposes.  

The final step of service deployment in real 
networks is to inject network services, which requires 

downloading and activating the service code within 
the ORE on commercial network nodes. There are at 
least three ways to do dynamic service injection, 
using the ORE shell service, the ORE startup service 
or a user service initiation service. During runtime 
one can instruct ORE to download and then activate 
these services, which are thus deployed on network 
nodes and run locally. 

IV. AFM-ENABLED APPLICATIONS 

With Openet, AFM-enabled applications are 
actually those network services developed using the 
AFM mechanisms for particular application purposes. 
In this section, four AFM services in both control 
plane and forwarding plane are described and their 
experimental results are measured with the Passport 
routing switch and other network systems. 

A. Active Flow Priority Change in Real-time 

The active flow priority change is a control-plane 
network service that applies AFM to alter the packet 
forwarding priorities of particular flows in real-time. 
It is a simple and effective application showing how a 
customized service controls the hardware behaviors. 
The experiment network depicted in Figure 3a is 
established with the Passport 1100B routing switch, 
and three hosts that are Linux-based PC systems. 

The experiment procedure is as follows (see 
Figure 3b). At the beginning, the first TCP flow at a 
constant rate of 100Mbps is set up from Source 1 to 
the Destination through the Passport. The link 
bandwidth between the Passport and the Destination 
is 100Mbps at maximum. At time 1.3 seconds, the 
second TCP flow at the same rate from Source 2 is set 
up through the same link to the Destination. When 
they become stable, each claims nearly half of the 
link bandwidth (47Mbps). Then, the ORE on the 
Passport is instructed to activate the “active priority” 
service, which employs AFM to detect particular 
flows and increases the packet priority of the second 
flow at time 3.8 seconds. As expected, the receiving 
rate of the second flow (now with a high priority) 
increases and stabili zes at the desired bandwidth 
(70Mpbs) and the low-priority first one at a lower rate 
(24Mbps).  
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(a) Network layout 
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(b) Flow throughputs at the Destination 

Figure 3: Two TCP flows competing for the link 
bandwidth with active pr ior ity change 

The bandwidth jumping of the second flow at time 
3.8 seconds shows that the Passport forwarding plane 
carries out the AFM identification and action of 
packet flows at the wire-speed, without obvious 
performance reduction. The reason is that because the 
control service does not require packet processing in 
the data plane. The forwarding engine of the network 
node processes and forwards packets while the CPU 
executes the Java control code implementing the 
AFM-based service. 

Even though the experiment and its result are not 
groundbreaking, this application service indicates an 
immediate benefit of active detection of flows and 
dynamic adjustment of packet priorities on 
commercial-grade nodes. It can be used widely in 
traffic control such as end-to-end video and audio 
traffic, and QoS mechanisms such as Intserv and 
Diffserv. 

B. Active IP accounting 

In traditional IP accounting, network nodes (e.g., 
routers, switches and firewall gateways) collect data 
regarding the network traffic that flows through them, 
and then upload the data periodically into centralized 

accounting servers. The servers synthesize the 
unwashed accounting data off-line, and make the 
outcome available to accounting applications such as 
billi ng and load auditing. As the Internet becomes 
ubiquitous, traditional IP accounting is facing a 
number of new challenges such as "pay for what you 
use" custom pricing schema, accounting data volumes 
linearly growing with the bandwidth, and real-time 
QoS monitoring. 

The Active IP Accounting Co-processor 
Environment (AIACE) [3] revises traditional IP 
accounting at the very foundation, and is a control-
plane service infrastructure. Based on the AFM 
mechanism, the AIACE infrastructure argues that the 
number of accounting tasks performed at both 
network nodes and accounting servers must be fluid 
and not necessarily known a priori. That is, network 
nodes cease being accounting-illit erate to the 
contrary, effectively pre-process flows’ accounting 
data at an extent that the recipient accounting servers 
can control.  

In this model, accounting plug-ins are the 
elemental processing units, and stacked into the 
AIACE co-processor and perform specific accounting 
tasks at the network nodes on behalf of accounting 
servers. Thus, the new accounting-savvy network 
nodes can eagerly do a number of active tasks such as 
aggregating the accounting data of flows meeting pre-
set affinity criteria, reflecting settlements among 
providers, enabling real-time accounting data mining, 
and signaling accounting servers to meet accounting 
applications’ needs.  

The merits of AIACE are shown in the following 
sample scenario for high-confidence flow monitoring. 
An application periodically sweeps a network 
topology and reports flow vitals to the operator (e.g., 
the cumulative traffic figures concerning flows with 
the most remunerative SLAs). The high-confidence 
attribute implies that such an application is 
dependable in reporting traffic figures in real-time, in 
spite of overloads (e.g., CPU, or accounting data 
overloads) possibly induced by partial failures in the 
network. In other words, this type of traffic 
monitoring application must be especially well 
behaved when things in the network start to go 
wrong.  

In this scenario, it is crucial to manage the finite 
monitoring capacity and to make the most effective 
accounting data mining out of it. A whole sweep of 
the network topology represents a cycle; cycles are 
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typically configured to complete in a few seconds. At 
the end of each cycle, the breakdown of the 
monitoring capacity is revisited to adapt to conditions 
occurred in the previous sweep, or to accommodate 
an operator’s explicit request to zoom-in on “hot” 
sectors of the sweep. In principle, at each cycle the 
monitoring application communicates to AIACE 
network nodes with the below steps. 

1) How much accounting data the application wants to 
handle from a given network node; 

2) How the network node should weight its accounting 
data for flows, decide what to mine out, and package it 
within the aforementioned limi t;  

3) Which accuracy is expected from the network node 
while performing this accounting data mining. 

 
The opportunities in Step 2 become evident in the 

examples showed in Figure 4. In example a), a 
network-node organizes about a milli on PDU traces 
into 30,000 IP flows. It classifies the resulting flows 
based on the bytes transferred on each flow. It then 
ranks flows (from 1 to 8). The higher the rank 
number, the higher the chance that the flow will not 
be transferred to the accounting server in case of data 
overload. 

 

Figure 4:  Results of a flow monitor ing scenar io 

In example b), the network under analysis is QoS-

enabled and three QoS classes—gold, silver, and 
bronze—are defined. The node now structures the 
same accounting data into QoS-flavored flows (same 
X and Y axes as in a). After applying a QoS-specific 
weighting algorithm to the flows. The node ranks 
flows with different results than a). The weighting 
algorithm can be arbitrarily complex and take into 
account other considerations besides bytes transferred 
(e.g., hosts, number of packets, duration). 

By specifying a weighting algorithm for 
accounting data in the various QoS classes, the 
application passes tidbits of its business model to the 
network node—i.e., it says what the most significant 
accounting data are and how much this matters. This 
node thus weights the accounting data that best reflect 
this business model. Should the accounting data 
exceed the size pre-set by the application (i.e., 
overload), this node will t hrottle itself by pruning the 
least significant accounting data from its reports.  

AIACE’s accounting plug-ins realize Steps 1 
through 3 by operating at both network nodes and 
accounting server. Some plug-ins that define the 
weighting algorithms are loaded and executed only at 
network nodes. Other plug-ins that implement the 
accounting wire protocol and its capabilit y to drive 
the nodes’ accounting data output are reciprocated at 
network nodes and accounting servers. 

C. Dynamic bypassing flows for automated 
supervision 

Regatta is another control-plane service that 
employs the Openet infrastructure and AFM for 
automated supervision [23]. Regatta stops, in a 
dynamic fashion, flows through routers when a node 
operation fails and leaves them to the Regatta 
(routing) supervision procedure. The Regatta 
supervision procedure handles the bypass with 
minimal service interruption to the user. Consider the 
example network (Figure 5a) of 6 nodes constituting 
two disjoint network paths between the end systems. 
Node f, for instance a beta-level prototype, is known 
not to work reliably. It has a failure semantics that can 
be described as "the link layer is always up, but the IP 
layer sometimes suddenly fails to route PDUs".  

The network operator can thus aim Regatta at 
node f, with two goals that a) node f should be 
bypassed as soon as Regatta detects that it has a 
failure, without any user interruption; and b) Regatta 
notifies the operator who then starts post-mortem 
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analysis of node f before it gets rebooted. Here we 
present a quantitative measure of a), and contrast it 
with the self-healing properties that have been already 
built i nto the network in terms of standard routing 
protocols.  

    

(a) Experimental setup             

 

(b) Varying degree of disruption at the end-user during the 
failure to node “ f”  

Figure 5: Dynamic flow bypass using Regatta 

Traffic flows between the two end users go 
through nodes a, f, and e which is the shortest path. 
After the network operator installed Regatta at node f, 
Regatta begins to unfold itself outside of node f. In 
particular, it installs itself in the two adjacent nodes: a 
and e. Node f does not play any active role of control 
except in this bootstrap operation. It becomes the 
subject of the attentions by other reliable neighboring 
nodes. The Regatta-activated nodes a and e exchange 
periodic heartbeats between them to supervise the 
well being of suspected node f. The type and rate of 
the heartbeats are defined by the operator. 

 Upon a defined number of heartbeat missed, the 
Regatta diagnosis module in node a determines that 

there is a failure of suspected node f. At that time, the 
repair module on node a gets control and,  “clamps” 
the flow path(s) that goes through node f. Through 
AFM and other Openet routing service, this repair 
module establishes a new route that reaches the end 
receiver via node b in place of node f. Then, node a 
reactivates those flows destined to node e through this 
route. On node e, this “clamping” procedure similarly 
gets reciprocated upon the heartbeat missed, without 
any support for synchronicity between nodes a and e.  

Table 4 shows a comparison of reactivity times 
applying such a network bypass in our experiment, of 
which all these nodes are Linux PCs installed with the 
Linux Openet/ORE system. The first two rows “static 
route” and “ routed” are two flow re-activities without 
Regatta while others are with Regatta. The last entry 
“Regatta M/HB” means a heartbeat interval of HB 
seconds and a tolerance of M consecutive heartbeat 
missed before calli ng for a failure.   

Table 4: Compar ison of reactivity times 

 

 
 
 
 
 
 

 
Figure 5b plots the throughputs at the end receiver 

with varying levels of disruption. With the bypass 
being applied in real-time upon detection of a failure, 
there is minimal effect to end-user traffic. The 
network operator can balance the trade-off between 
the reactivity time and the heartbeat overhead using 
different parameters (i.e., M and HB). 

D. Active Networks Service in Real Networks 

It is obviously of interest that Openet enables 
commercial network devices such as the Passport 
rather than host-based systems such as Linux routers 
to host Active Networks services or execution 
environments (EEs) and thus to embody the Active 
Networks approach in real networks. Of Active 
Networks EEs, MIT ANTS [10] is a typical 
mechanism for dynamically composing and installi ng 
new transport protocols in networks, and actually it is 
a data-plane service that processes active packets or 
capsules directly. Through Openet, the ORE ANTS 

Flow Path Reactivity Time (s) 
Static route Infinite 
Routed 152 
Regatta 10/1 10 
Regatta 10/5 47 
Regatta 5/5 24 
Regatta M/HB ≈M*HB 
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service [6] is developed wrapping the MIT ANTS. It 
also uses AFM to collect specified capsules for CPU 
processing in the control plane.  

The ORE ANTS is completely injected to two 
Passport routing switches: 1100B and 8600 [5]. Of 
the Passport routing switch family, 1100B is an 
economic product that is equipped with a PowerPC 
403@67MHz CPU and 8600 is a superior one that is 
equipped with a much stronger PowerPC 
740@266MHz CPU. 

This service is tested with the ANTS applications 
such as the ANTS Ping (APing) and compared with 
regular Linux Ping. Within the corporate intranet, we 
construct an experimental active net that includes 3 
active nodes and 3 non-active ones, shown in Figure 
6. The Passport 1100B or 8600 routing switch, and 3 
PII/400MHz PC boxes are located in an experiment 
network (net 10), which is routed to the intranet 
where working machines such as Sun workstations 
are.  

 

Figure 6: The experimental active net running ANTS 
EEs  

Table 5 lists the packet average delays and 
throughput rates of the APing and Ping tests, both of 
which send at given intervals 83-byte capsules or 64-
byte packets from the Source to the Destination 
through the Passport. The first two Aping tests with 
Passport 1100B have capsules lost and do not have 
their average delays and throughput rates. The 
maximal throughput of the APing tests is found to be 
32.3 cps (capsule per second) for Passport 1100B and 
90.9 cps for Passport 8600. However the two Ping 
tests have the same throughput of 10,000 pps (packet 
per second) and the same average delay of 0.1ms as 
well . This comparison reveals that capsule-by-capsule 
CPU processing in the ANTS service cannot match 
the performance level of regular Ping packet 

processing which is actually accelerated by hardware. 
To understand what contributes the capsule delay, 

capsule-processing time consumed at each node is 
measured by comparing the time of receiving and re-
transmitting one capsule. Figure 7 depicts the delay 
distributions in the two extreme Aping tests that have 
minimal average delays: 31ms for Passport 1100B 
and 11ms for Passport 8600. 

Table 5:  Delays and Throughputs of Ping and Aping 
Tests (time in milli seconds) 

 

Packet Processing & Delay

0

13

0

8

2x8

2 2x0.52

0

5

10

15

20

Source Destination Passport Java I/O
(4)

Time 
(ms)

Aping(1100B)
Aping(8600)

  

Figure 7:  Delay distr ibutions (Transmitt ing a capsule 
involves one time processing at Source and Destination, 
two times processing at Passpor t and four times Java 

I /O on all three nodes) 

It is found that the round-trip network 
communication of a capsule takes 13ms for Passport 
1100B and 8ms for Passport 8600. At the link speed, 
it takes very littl e time (less than 0.1 ms) for 

Ping 
Interval First packet Average Throughput (pps) 

0 1.2 0.1 10000 
1000 0.8 0.1 10000 

APing (1100B) 
Interval First capsule Average Throughput (cps) 

0 3209 - (capsules lost) 
10 551 - (capsules lost) 
100 139 32 31.5 
1000 131 31 32.3 

APing (8600) 
Interval First capsule Average Throughput (cps) 

0 47 391 2.55 
10 12 11 90.9 
100 12 11 90.9 
1000 13 11 90.9 
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transferring a capsule among three nodes. Hence, a 
large portion of the round trip time must have been 
taken up by 4 pairs of Java network I/O operations 
(reading and writing a capsule) on the three nodes (1 
on the Source, 1 on the Destination and 2 on the 
Passport). This is not really expected! However, 
additional network tests based on a Linux PC and a 
Sun workstation confirm that the Java overhead for a 
pair of simple UDP socket I/O operations (i.e., a 
DatagramSocket server writes a 32-byte message and 
a DatagramSocket client reads it) needs 2~3 ms while 
the same socket operations using C/C++ takes nearly 
0 ms.  

The lesson to be learned here is that JVM 
implementation, particularly in Java network I/O 
operations, is the real bottleneck of active networking 
performance besides the capsule processing abilit y on 
network nodes. Of course, adding faster CPUs to the 
control plane of commercial hardware is highly 
preferable in order to reach the high processing 
performance that the forwarding plane does already. 
However, it might be a reasonable consideration to 
re-engineer ANTS and other active network services 
with improved AFM mechanisms so that they can 
make better use of both forwarding engines and CPU 
on commercial network nodes.  

V. RELATED WORK 

A significant amount of research has been 
involved with enabling intelli gent network control 
through programmable networking, ranging from 
networking paradigms, re-programmable hardware to 
application environments. 

Industrial organizations such as P1520/PIN 
(Programming Interfaces for Networks) [16], CPIX 
(Common Programming Interface) [17] and Parlay 
[18] are working on standardization of programmable 
networking interfaces among hardware, network 
services and user applications. These standard 
interfaces are open, generic and have been released in 
their early drafts. With these standards, Openet can 
effectively define the boundaries of network services, 
and normalize service development and deployment. 

The Active Networks (AN) approach [8] is a 
major effort in industry as well as academia to 
incorporate programmabilit y into the network 
infrastructure. Through installi ng multiple active user 
interfaces or typical Execution Environments (EEs) 
on active nodes, users can flexibly compose new 

protocols and deploy their services for specific 
purposes. These EEs are referred to virtual machines, 
and usually come with active node OS (NodeOS). 
They are available for active applications to process 
their packets or capsules and to control the 
processing. Significant research projects include: 
MIT ANTS (Active Node Transfer System [10]), 
University of Pennsylvania Switchware [9], 
Columbia University Netscript, USC/ISI Abone 
(Active Backbone) [13], Active Network 
Encapsulation Protocol ANEP [12] and BBN Smart 
Packet project [14]. To date, these developments have 
been mainly realized in software-based hosts (e.g., 
Linux-based systems) that offer the required 
programmabilit y but lack the performance required in 
real networks. An exception is the Washington 
University ANN (Active Network Node) [15] 
implementation that introduces an FPGA-based CPU 
module that accommodates the active code and is 
added to a gigabit ATM switch backplane.  

Other contributions such as Darwin [21] and 
Phoenix [22] have investigated mechanisms for 
delivering programmabilit y to end-users. Darwin 
develops a set of customizable resource management 
mechanisms that allow service providers and 
applications to tailor resource management optimally 
for the service quality they require. Phoenix, similar 
in part to Openet, is a framework for programmable 
networks that allows easy control and deployment of 
services toward use of re-programmable network 
processors. Rather, our Openet approach makes use 
of enabling mechanisms such as AFM to demonstrate 
the benefits of programmabilit y in real networks. 

VI. CONCLUSIONS AND FUTURE WORK 

In this paper, the Active Flow Manipulation 
mechanism, through Openet, allows network service 
providers to introduce, on demand, intelli gent 
controls that adapt network node behaviors 
dynamically in real networks. The dynamic priority 
change application demonstrates this concept in real-
time, with the Passport sili con-based forwarding 
engines. 

Openet enables network service providers to 
quickly respond to customer requirements by 
introducing the sort of AFM-enabled services in the 
form of Oplets. Service providers can build on 
smaller Oplets to develop more complex network 
functions. Two innovative applications in active 
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network management (i.e., AIACE IP accounting and 
Regatta auto supervision) have demonstrated this 
abilit y. Furthermore, Openet is an open platform that 
can create new opportunities for service providers in 
deploying third-party network services on 
commercial routing switches. The deployment of 
innovative services on network nodes leads to the 
differentiation of network service providers.  

It is observed that the AFM-based control-plane 
network services enhance functionality of commercial 
hardware like the Passport, without impeding 
performance of the forwarding plane. However, as 
seen in the ORE ANTS application, or data-plane 
services, rely largely on the performance of the 
control CPU. We are exploring a new hardware 
architecture [25] in which network services can reside 
in a new plane, the computing plane. Attached to the 
commercial network devices such as Alteon [24], this 
computing plane is being implemented with high 
performance computing technology such as FPGA, 
and it will allow active manipulation of an increased 
number as well as increased granularity of content 
flows. In addition, the computing plane will also 
improve the performance of data-plane network 
services that perform their own packet processing, as 
highly demanded in active networks and content 
networking.  
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