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Abstract--Current network devices enable connectivity 
between end systems with support for routing with a 
defined set of protocol software bundled with the hardware.  
These devices do not support user customization or the 
introduction of new software applications.  Programmable 
network devices allow for the dynamic downloading of 
customized programs into network devices allowing for the 
introduction of new protocols and network services.  The 
Oplet Runtime Environment (ORE) is a programmable 
network architecture built on a Gigabit Ethernet L3 
Routing Switch to support downloadable services.  
Complementing the ORE, we introduce the JFWD API, a 
uniform, platform-independent portal through which 
application programmers control the forwarding engines of 
heterogeneous network nodes (e.g., switches and routers).   
Using the JFWD API, an ORE service has been 
implemented to classify and dynamically adjust packet 
handling on silicon-based network devices.  
 
Index terms-- Programmable Networks, Active Networks, 
ORE,  JFWD,  Differentiated Services 
 

1 INTRODUCTION 

 
Traditional network nodes (e.g. routers on the Internet) 
enable end-system connectivity and sharing of network 
resources by supporting a static and well-defined set of 
protocols.  The “virtual machine” defines the service 
provided by the network to its users at each router, and is 
simple and fixed. The trend in commercial-grade routers 
and switches has been to implement ever more 
functionality of this virtual machine in hardware; hardware 
implementations have, in turn, enabled ever faster 
instantiations of traditional network nodes.  However, the 
gain in raw performance due to hardware implementations 
is, almost by necessity, at a loss of customization options 
supported by the router on the data path.  As more of the 
router virtual machine is frozen in silicon, less are the 
opportunities to introduce new services inside the 
network. 

1.1 Flexible  Forwarding:  Active Networks 

In contrast, active networks (AN) expose a 
“programmable” user-network interface that allows 
network services to be introduced in active networks “on-
the-fly”. Active networks support per-flow customization 
of the service provided by the network; flow is  defined by 

the user-network interface.  The tenet of active networking 
is as follows: the utility of the service by the network to 
individual applications is maximized if applications 
themselves define the service provided by the network.  
To provide this  level of support, active network 
implementations incorporate a substantial software 
component on the data path [12].1 Thus, implementations 
of traditional and active networks must address the 
tradeoff between performance and flexibility. 
 
In this paper, we explore one point in the performance-
flexibility space: we describe an implementation of active 
network techniques on a commercial routing platform--a 
programmable network service platform implemented on 
the Nortel Networks Accelar Gigabit Routing-Switch.   

1.2 Active Networking applied to Commercial Grade 
Hardware    

This work describes a programmable network service 
platform implemented on the Nortel Networks Accelar 
Gigabit Routing-Switch.  The primary goal of our work is 
to build a working platform for implementing 
programmable services on a commercial-grade router.  In 
doing so, we have tried to (a) preserve the router hardware 
fast-path for data packets, and (b) leverage existing active 
networking research as much as possible. Obviously, (a) 
implies that certain computations that require data plane 
flexibility are impossible in our implementation.  A sub-
goal of our work is to identify sets of computations that 
become possible as additional functionality is placed into 
hardware. To support goal (b) we have implemented a 
layer over which existing active network implementations 
can be ported.  In active networking parlance, we have not 
introduced a new AN execution environment (EE), instead, 
we added a Java-based run-time environment (the Oplet 
Run-time Environment) for security and service 
management over which existing EEs can be run as 
network services; We ported the ANTS EE to run within 
the ORE.   
 
This paper details a policy-based packet classification 
technique that is downloaded to a programmable network 
device to dynamically adjust the DS-byte in the IP header 
                                                                 
1 In case of both traditional and active networks, it may be 
possible to provide fast and customizable forwarding by 
incorporating hardware that is both programmable over a 
relatively fine time-scale and can forward packets at line-
speeds (e.g. fast and programmable FPGAs). 
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of real-time flows on a silicon-based forwarding engine. 
The technique is implemented using the Oplet Runtime 
Environment (ORE), a network services platform which 
supports dynamically loaded Java services.  Crucial to the 
classification engine is the JFWD network API which 
provides control of the forwarding plane operations.    We 
demonstrate that we can support  Java-based services  
and implement packet copying to the control plane,  
packet processing by dynamically downloaded services, 
and packet forwarding policy adjustment on a  silicon-
based, Gigabit Layer 3 Routing Switch. 

1.3 Roadmap 

In Section 2 we provide a brief overview of the DARPA 
active network architecture, followed by a description of 
internal architecture of the Accelar router.  We discuss the 
issues that must be resolved before the DARPA AN 
architecture can be realized on a commercial platform such 
as the Accelar routing switch and describe our mapping of 
the DARPA AN architecture on the Accelar.  In Section 3 
we provide details of each component of our 
implementation and describe the interfaces supported by 
each layer.  In Section 4 we present a dynamic real-time 
packet classification application of the ORE/JFWD 
implementation.  In Section 5 we present related work and 
compare our implementation with existing work both in an 
architectural context and with respect to supported in-
network computations.  We present conclusions and in 
Section 6. 

2 IMPLEMENTATION OVERVIEW 

In this section, we present an overview of our 
implementation.  We give a synopsis of the DARPA 
active networking architecture, the internal architecture of 
the Accelar router, and then describe how we realize parts 
of the AN architecture on the Accelar. 
 
Figure 1 shows the node architecture for active networks 
developed by the DARPA active network research 
community [1].  
 

Node Resources

Node Operating System

Common Objects
(Routing Tables

Processors State Store. . .IO Interfaces

Execution Environments

ANTS CANEs IPv4. . .

Active  Network User Network Interfaces

Node Resources

Node Operating System

Common Objects
(Routing Tables

Processors State Store. . .IO Interfaces

Execution Environments

ANTS CANEs IPv4. . .

Active  Network User Network Interfaces

 

Figure 1: DARPA Active Network Architecture. 

  

2.1 DARPA Active Network Architecture 

The DARPA active network architecture must address the 
issue of the user-network interface supported by active 
networks, i.e. what is the nature of the “virtual machine” 
supported by each node in the network and what 
processing does each packet in the network undergo? 
 
The DARPA architecture supports multiple active network 
user interfaces called Execution Environments (EEs).  EEs 
can implement a wide range of user-network interfaces 
that exploit different points in the trade-off between 
performance and flexibility, e.g. IPv4 can be considered a 
high performance EE that does not provide much flexibility 
while the ANTS [12] is an EE that provides a Java virtual 
machine at each node and sacrifices some performance for 
enhanced flexibility.  By supporting multiple EEs, the 
architecture allows network user applications choose 
between performance and flexibility.  
 
The computation, communication, and storage resources 
at an active node are controlled by a Node Operating 
System (Node OS).  The node OS interface that exposes 
resources available at the active node and mediates 
access.  The node OS demultiplexes incoming packets to 
specific EE(s) and provides support for common objects 
such as routing tables likely to be useful across EEs.  
Using the node OS interface and abstractions, EEs 
implement specific user-network interfaces; network 
services are built using the interface exported by EEs. 

2.2 Nortel Accelar Router 

The Nortel Networks Accelar family of L3 Routing 
Switches employs a distributed ASIC-based (Application 
Specific Integrated Circuit) forwarding architecture with a 
5.6-256 Gbps per second backplanes. The switches scale 
to 384 10/100 ports or 96 Gigabit ports (or some 
combination of the above).   There are up to eight 
hardware-forwarding priority queues per port  and 
hardware is controlled by VxWorks real-time OS.  

Figure 2:  Achitecture of the Accelar Router 

 
Applications can monitor and control the ASIC hardware 
via a switch-specific API that provides access to hardware 
MIB instrumentation variables.  For example, the switch 
hardware provides functionality to set certain bits in an IP 
packet or put a packet in a priority queue based on a 
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matching a specific filter. This functionality is exposed by 
an interface to the hardware instrumentation MIB that 
controls the setting of hardware processing. 

2.3 A Programmable Accelar Router 

 
To transform the Accelar routing switch into a 
programmable network service platform, we implemented a 
run-time environment over which existing active network 
EEs could be executed.  In general, this would require the 
implementation of the active network NodeOS API over 
the Accelar embedded real-time OS.  However, the AN 
NodeOS API [2] was still evolving when we started our 
work and most EEs are implemented either within a 
JVM[12, 13] or over legacy OS interface. We chose not to 
port/implement the NodeOS API but to provide support 
for Java-based EEs by running an embedded JVM on the 
Accelar VxWorks OS and by creating a Java-compatible 
interface to the low-level hardware.   
 
Unlike in traditional operating systems, the service 
degradation due to a single (possibly malfunctioning or 
malicious) JVM task on VxWorks is constrained because 
the JVM runs as just another task in the real-time 
VxWorks O/S with a fixed and upper-bounded processor 
share and priority.   The Java-compatible interface that 
provides access to the low-level hardware of the Accelar 
is the Java Forwarding (JFWD) API  described in section 
2.5.  
 
Though not technically a necessity, we added separate 
layer between the JVM and the EE.  This layer --the Oplet 
Runtime Environment (ORE)-- provides security and 
management services that may eventually be subsumed 
by the AN NodeOS and was deemed required for the 
commercial viability of the programmable routers.  As 
mentioned before, the ORE enables a stricter intra-node 
trust infrastructure allowing for different per-node 
resource allocation policies without cooperation from EE 
writers.  Thus, the ORE provides mechanisms for node-
providers to impose per-EE resource limits without having 
to trust the EE.  A nice side-effect is that the ORE allows 
multiple EEs (or multiple copies of a single EE) to be 
instantiated within a single Accelar with different 
privileges. In the next section, we present details of the 
ORE and JFWD API. 
 

3 THE ORE AND THE JFWD API 

 
The ORE and the JFWD API are the two major software 
components added to the hardware router.  The ORE 
provides a secure run-time environment for EE execution 
while the JFWD API provides a mechanism for EEs  to 
access and control the switch hardware.  We start with a 
description of the ORE. 

3.1 The ORE:  Oplet Runtime Environment 

 

The ORE is a platform for secure downloading, 
installation, and safe execution of Java code (called 
services) within a JVM.   A service is an atomic piece of 
code that implements specific functionality.  A service 
may depend on other services in order to execute.  In 
order to securely download and impose policy, we define 
the notion of an “Oplet”. Oplets are self-contained 
downloadable units that encapsulate a non-empty set of 
services. Along with the service code, an Oplet specifies 
service attributes, authentication information, and 
resource requirements.  Note that Oplets can encapsulate 
a service that depends on some other service; in these 
cases, Oplets also contain dependency information.  In 
general, the ORE must resolve and download the 
transitive closure of Oplet dependencies before executing 
a single service. 
 
The ORE provides mechanisms to download Oplets, 
resolve dependencies, manage the Oplet lifecycle, and 
maintain a registry of active services. The ORE uses a 
public-key infrastructure to download “trusted” Oplets.  
In brief, the security infrastructure provides 
authentication, integrity, and non-repudiation guarantees 
on downloaded Oplets.  Due to space restrictions, we will 
not elaborate more on the secure downloading, execution, 
or resource management features of Oplets. 
 

3.2 Oplet Execution Safety 

 
The ORE must provide safe execution and impose 
resource limits.  As far as possible, the ORE uses the 
mechanisms provided by the Java language (type safety) 
and the standard JVM (bytecode verification, sandbox, 
security manager) to provide execution safety.  The ORE 
controls allocation of system resources by intercepting 
allocation calls from the service code to the JVM.  
 
To protect itself from denial of service attacks, deadlocks, 
and unstable states, the ORE implements mechanisms for 
thread safety and revocation. The ORE controls thread 
creation by requiring Oplets to request new threads from 
the ORE.  The ORE determines whether to grant the 
request based upon a node policy that takes into account 
current thread usage, and the credentials of the requesting 
Oplet.  Once a thread is allocated, however, the current 
implementation of the ORE has no mechanism in place to 
account for or limit the consumption of computing 
resources.  In its most general form, the ORE must address 
denial of service caused by a misbehaving service that 
consumes CPU resources.  To handle these issues, the 
ORE needs JVM support for CPU accounting [14]. 
 
Sharing threads between Oplets presents two main 
problems: (a) deadlock caused by a callee not returning 
and (b)  caller Oplet killing the shared thread while it is 
executing in a callee Oplet's critical section. The ORE 
protects itself from the first problem by never interacting 
directly with any Oplet that it loads.  Instead it creates a 
trusted proxy which the ORE uses to delegate its 
commands to the untrusted Oplet.  The proxy uses a 
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separate thread to call a method on the untrusted Oplet 
and sets a timeout for returning from the call; if the thread 
call does not return after a conservatively set timeout, a 
fail-stop situation is assumed and the thread is killed.  The 
second problem is handled by the ORE by revoking 
Oplet's ability to manipulate a thread's running status. 
 
The ORE uses object revocation to control access to its 
own resources. If the ORE determines that a specific 
service is no longer permitted to use a resource reference 
the reference can be revoked.  For example, a service may 
possess a “handle” to a data structure exported by 
another Oplet that no longer exists.  The ORE can detect 
these cases and revoke access to “stale” objects.  
However, for absolute protection, non-standard support is 
required from the JVM implementation. Significant 
modification would include the ability to perform 
accounting for both CPU and memory consumption and 
support for per-thread heap allocation and garbage 
collection [14].  
 
The ORE is currently under active development.  At 
present, it supports secure downloading of services, 
resolves service dependencies, and allows access to 
native router functionality through the JFWD API.   
However, the current  ORE version is still susceptible to 
several flavors of denial-of-service attacks.  These include 
spurious triggering of the Java garbage collector, memory 
fragmentation attacks,  and stalling finalization of 
objects[14].  Several memory related safety hazards 
confronting the ORE will be resolved as JVMs support 
multiple heaps, revocation and copy semantics of the 
JKernel [8]. 

3.3 JFWD:  The Java Forwarding API 

 
The Java Forwarding API specifies interfaces for Java 
applications to control a generic, platform-neutral 
forwarding plane. The JFWD API consists of a set of Java 
classes specifications and has been implemented on the 
Accelar.  Implementations of the JFWD classes is highly 
platform dependent (recall that on the Accelar, the JFWD 
API is a wrapper around the hardware MIB 
instrumentation interface) is not part of the JFWD API. 
 
JFWD is the first Java API package to explicitly address 
the needs of contemporary forwarding planes of network 
nodes which are increasingly implemented in silicon, must 
support multiple protocols, and must realize Quality-of-
Service (QoS) low-level functionality. To drive an ever-
growing number of options, more diversified control data 
will have to be fed into control planes. 
  
The JFWD implementation across multiple hardware 
platforms brings a) the abstraction of a platform-neutral 
forwarding engine, b) a framework within which new 
protocols and control data can be described, and c) a new 
breed of shrink-wrapped Java programs for controlling 
network nodes.   In the rest of this section, we highlight 
the main mechanisms that are provided by the JFWD API 
on the Accelar switch. 

  
The JFWD API can be used to instruct the forwarding 
engine to alter packet processing through the installation 
of hardware filters.  The hardware filters execute “actions” 
specified by a filter policy.  On the Accelar, the filter can 
be based on combinations of fields in the MAC, IP, and 
transport headers.  The policy can define where the 
matching packets are delivered and can also be used to 
alter the packet content.   Packet delivery options include 
discarding matching packets (or conversely, forwarding 
matching packets if the default behavior was to drop 
them) and diverting matching packets to the control plane.  
Diverting packets to the control plane allows applications, 
such as AN EEs to process packets.  Additionally, 
packets can be “copied” to the control plane or to a 
mirrored interface.  Packets may also be identified as being 
part of high priority flows; these packets can be placed in 
a static hardware high priority queue. 
 
The filter policy can also cause packet and header content 
to be selectively altered (e.g. the Type of Service bits on 
matching packets can be set).  The existing hardware is 
capable of re-computing IP header checksum information 
at line speeds when the IP header is changed. 

3.4 Network Services supported by the JFWD API 

 
In this section, we explore the set of possible and 
precluded computations on the ORE/JFWD API. 
Obviously, these computations define and constrain the 
set of network services that can be implemented on the 
ORE/JFWD platform.  Note that the ORE does not, a-
priori, exclude any computation; instead, it enforces node 
policy that may cause certain (e.g. processor-intensive) 
computations to not be started or terminated during 
execution.  Computations are, instead, constrained by the 
JFWD API since this API defines the capabilities exported 
by the hardware that can be used to build network 
services.  Thus, some computations, e.g. certain video 
transcoding techniques that must process every packet, 
cannot efficiently be implemented in our system 
regardless of node policy.  Not all precluded computations 
involve data transformation;  certain network based 
anycasting/routing schemes in which a program must be 
executed to find the outgoing switch port cannot be 
supported either. 
 
In general, all control-plane only computations, e.g. 
installing new routing tables or parsing a new ICMP 
message type, can rather easily be accommodated by the 
ORE/JFWD API.  An important ability provided the JFWD 
API is to selectively  route (or copy) packets to the 
control plane.  As we will see, this does significantly 
enlarge the set of services that can be implemented on the 
Accelar.  In the rest of this section, we identify a specific 
set of services that can be implemented using the current 
version of the JFWD API.   
 
The following network services can be implemented using 
the current implementation (obviously, this list is merely 
representative and not meant to be exhaustive): 
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- Filtering firewall - A simple application would be a 
firewall that allows or denies packets to traverse on 
specified interfaces depending on whether the 
packet's header matches a given bit mask. 

 
-Application-specific firewall - It is relatively 
straightforward to extend the filtering firewall 
implement certain application-specific firewalls.  For 
example, a FTP gateway that dynamically changes the 
firewall rules to allow ftp-data connections to a 
``trusted'' host can be implemented.  Security 
functions like stopping TCP segments with no (or all) 
bits set can also be dynamically programmed on the 
Accelar. 

   
Almost all modern routers allow for a filtering firewall 
and application-specific firewall functionality. It is 
imperative to note that these services can be added, 
modified, and deleted dynamically on to the Accelar 
ORE/JFWD platform.  The next three services are 
examples that, in general, are not yet available in most 
commercial routers.  (There are isolated instances of 
routers where some of these services may be built 
into the hardware). 

   
- Dynamic RTP flow identification - RTP over UDP 
flows are identified by an ephemeral UDP port 
number.  In general, some host chooses this port 
number and it is not well known.  We have 
implemented several mechanisms to identify RTP 
flows traversing the   Accelar. Using the JFWD API, 
control protocol (SIP/RTSP/H.323) messages can be 
intercepted  to identify  port numbers for RTP flows.     
   
- DiffServ: Classifier, Marker - The Accelar can be 
turned into a DiffServ[6] Classifier by suitably 
programming its hardware filters.  Further, the 
hardware (and in turn, the JFWD API) provides 
mechanisms to change, at line-speed, selected bits in 
the IP header. This ability can be used to implement 
parts of DiffServ ingress/egress marker capabilities on 
the Accelar.  A subtle benefit of this solution is that 
new firmware or hardware does not have to be 
shipped each time a new DiffServ scheme/PHB 
becomes popular.  Instead, using existing ORE 
service instantiation mechanisms, only the service-
specific logic has to be uploaded onto the router.  
This can be accomplished on-line, without 
interrupting existing flows or services. 
   
- PGM-like Reliable multicast - The packet filtering 
capabilities of the Accelar allows certain packets to 
be copied on for inspection by the service code.  This 
mechanism can be used to divert (negative) 
acknowledgements from multicast sessions to the 
control plane.  The service code can, much like the 
PGM reliable multicast scheme, send one copy of the 
NAK upstream and suppress duplicate NAKs.  Unlike 
PGM, modulo resource constrains, it is possible to 
implement reliable multicast services that keep a small 

packet cache and immediately re-transmit a lost 
segment.  Other services, such as multicast ancestor 
discovery, can also be efficiently implemented by 
providing the service code interfaces to the routing 
table. 

 

4 EXPERIMENTAL JFWD APPLICATION 

 
To support a new breed of router-based programs that do 
not delay packet forwarding, we use the JFWD API to 
instruct the forwarding engine to send packets to both the 
data plane output queue and also to the control plane.   
This feature, called CarbonCopy, does not divert packets 
to the control plane; it performs wire-speed forwarding 
while copying the packets to the control planes.  Packets 
captured into the control plane can then be processed and 
decisions about packet processing can be made.  By 
allowing ORE services to modify the packet handling in 
the ASIC forwarding engine, new types of applications are 
possible that do not require core router functionality to be 
altered.  
 
In [5], the authors present a control-on-demand 
architecture  in which  flow control is performed on a best 
effort basis.  An IPv4 flow is determined by five fields in 
the IPv4 header: the IP source and destination address, 
the source and destination port numbers, and the 
protocol.  Packets  belonging to a flow are copied to the 
control plane for processing while simultaneously 
forwarding the packet.  This is our approach as well.  It 
deviates from the store-execute-forward paradigm of 
Active Networks.    
 
We implemented an ORE service, called the DiffServ 
Classification service (DSC), to classify flows and modify 
packet headers based on the policy set for a particular 
protocol contained in the IP header.  A policy determines 
the action to be taken for a particular flow or class of 
flows.  A policy filter executes  the actions specified in the 
policy. 
 
Our implementation copies all real-time protocol 
connection signaling messages (e.g. SIP, RTSP, H.323) 
from the forwarding plane.  To accomplish this task, the 
service sets a filter for packets on the default SIP 
connection setup port.  This filter copies all packets on 
that port into the control plane.  The DSC receives these 
packets and processes the content to identify the ports  on 
which the RTP communication is to take place.   Since the 
SIP messages use a text format for communicating the port 
information, identifying the port information is straight 
forward. 
The DSC creates a policy filter for RTP flows identified by 
the signaling messages.  The policy filter created  for a 
particular flow   is based on the IP header fields in the 
packet that determine a flow.  We call this the flow 
signature.  In this case, the signature consists of the 
source and destination IP addresses and the source and 
destination port numbers.  Protocol could also be used as 
part of the signature (e.g. UDP).  The DSC sets a policy 
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filter for the packet signature that will put those flows into 
the higher priority queue within the edge router.  The 
Accelar 1100B has 2 priority queues so RTP packets were 
placed into the higher of the two queues.  The DSC also 
sets the DS-byte in the Ipv4 header  on the packets to 
ensure better processing treatment at downstream 
processors that implement Differentiated Services as 
determined by the per-hop behavior policy.  A policy filter 
is stored for each RTP flow identified by the signaling 
message processing.   

4.1 Discussion 

 
The novelty of the experiment described above is that it is 
done by a service that is downloaded and installed 
dynamically onto a commercial-grade router and that    
RTP flows are identified dynamically, not preconfigured.   
In this section, we discuss an immediate application of 
this functionality that we are using in our own research 
facilities. 
 
An immediate benefit of on-line identification of flows and 
dynamic adjustment of packet priority is to support cluster 
computing.  In cluster systems such as Condor[11], 
NOW[3], Stealth[10], and Linger-Longer[15] workstations 
are used to run jobs when the computer's primary user is 
not using their computers.  To make these systems usable, 
the software that runs guest jobs user's workstations goes 
to great lengths to ensure that the guest process does not 
interfere with the primary user.  However, until now there 
has been no clean way to isolate guest use of a 
workstation from network traffic generated by normal 
users. 
 
By using active networking at the local area network 
switch, we can dynamically identify the flows associated 
with guest jobs.  Although these jobs typically have a set 
of well-known ports, they also can use other network 
services.  To help identify these flows, the cluster 
scheduler software, can inform the switch when a 
particular node has started to run a guest process.  For 
some clusters such as Condor and NOW, a node in a 
cluster is either running guest processes or local process 
and switches between them on a time-scale measured in 
minutes.  For these types of systems, a simple filter to re-
prioritize all traffic from the host running a guest process 
can be installed by the cluster scheduler.  However, 
system such as Stealth and Linger-Longer allow fine-grain 
sharing of processors between guest and local processes.  
To accommodate these systems, the filter needs to be able 
to identify whether traffic associated from a node is due to 
a guest process or a local process.  To do this a more 
complete dynamic flow detection that that can now be 
implemented on the Accelar is required. 

5 RELATED WORK 

 
We are not aware of another integrated active networking 
platform implementation on a (commercial) hardware 
platform.  The active networking work on the Washington 
University Switch Kit employs locally connected 

machines as active processors 2. The Tempest [13] 
provides a customizable control plane for ATM networks.  
The basic ideas of high-performance active networking by 
decoupling the forwarding path from a programmable 
control plane was introduced, in a software 
implementation, in the Control-on-Demand (CoD) [9] 
platform co-developed at AT&T Labs.  In this section, we 
compare our approach to CoD, and discuss how existing 
active networking research fits within our framework. 
 
The Control-on-Demand platform was developed and 
implemented over IPv6 as an extension to the Linux kernel 
[9]3.  Data packets were kept in the kernel in per-flow 
queues while active control could be applied to the data 
packets by dynamically loaded “per-flow controllers” that 
executed in user space.  The per-flow controllers affected 
the data path using the CoD API.  A meta-controller 
loaded each per-flow controller using a signaling protocol.  
CoD was developed to be specifically mapped onto 
hardware platforms and its relationship to our work is 
clear.  Services on the Accelar map to per-flow controllers 
in CoD; the JFWD API on the Accelar maps to the CoD 
API; the ORE functionality on the Accelar is not 
completely replicated in CoD, though the meta-controller 
does provide a subset of the ORE functionality.  As CoD 
was implemented in software; it provides all of the JFWD 
functionality, and also provides the queue exposure and 
manipulation facilities on our hardware wish list. 
 
Active networking NodeOS's can potentially be 
implemented over VxWorks on the Acclear.  There is one 
fundamental problem: the AN NodeOS architecture allows 
for all packets on specific channels to be delivered to the 
EE for further processing.  This would negate the benefits 
of the hardware forwarding path available in the Accelar.  
However, the Accelar provides a perfect platform for 
implementing fast cut-through paths. The Bowman 
NodeOS[12] is a particularly good fit as it is specifically 
supports cut-through paths and is designed as a layer 
above a host OS that provides low-level hardware access.  
Thus, Bowman can directly be ported on to the Accelar 
using VxWorks as its host OS. 
For other Node OS efforts, the VxWorks platform already 
implements much of the required functionality such as 
memory management.  However, it is not obvious if some 
of the abstractions supported by these systems (e.g. the 
path abstraction in Scout) can directly be mapped on to 
the Accelar hardware features.   
 
Java-based EEs can directly be ported on to the ORE.  
Once a functional AN Node OS has been ported to run 
over VxWorks, other “native” EEs such as CANEs can be 
implemented on the Accelar. 
 

6 CONCLUSION 

 

                                                                 
2 See http://www.ccrc.wustl.edu/gigabitkits/kits.html 
3 Control on Demand was co-developed by S. 
Bhattacharjee 
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We presented a summary of the challenges in bringing 
Active Networking ideas to current high performance 
hardware-based routers and switches.  In addition, we 
showed that while it is not possible to support active 
packets for every packet at line speed on these systems 
(nor any system), it is possible to exploit existing hardware 
filtering mechanisms to allow a variety of scenarios that 
require active functionality on routers.  To demonstrate 
the feasibility of our approach,  we implemented a dynamic 
classification service on a commercial-grade Gigabit L3 
Routing Switch. The ORE  supports the creation of 
services in Java that are extensible, portable, and easily 
distributed over the network. It  provides a platform for 
safely running these services without disturbing the 
existing core functionality of the router.  Through the 
JFWD API, the packet capture, processing, and 
modification capabilities  are realized at the programmable 
node.  Because of the CarbonCopy and filter mapping 
features provided in the JFWD API, we were able to create 
an ORE service to perform dynamic DiffServ Classification 
and DS-byte adjustment in an effort to improve the 
performance of real-time network flows.  
 

7 REFERENCES 

 
1. "Architectural Framework for Active Networks 

Version 0.9," . August 31, 1999,.Active Networks 
Working Group. 

2. "NodeOS Interface Specification," . June 15, 
1999,.AN Node OS Working Group. 

3. R. H. Arpaci, A. C. Dusseau, A. M. Vahdat, L. T. 
Liu, T. E. Anderson, and D. A. Patterson, "The 
Interaction of Parallel and Sequential Workloads 
on a Network of Workstations," SIGMETRICS. 
May 1995, Ottawa, pp. 267-278. 

4. S. Bhattacharjee, Active Networks: 
Architectures, Composition, and 
Applications,Ph.D., Computer Science 
Department Georgia Institute of 
Technology,1999. 

5. R. Braden, L. Zhang, S. Berson, S. Herzog, and S. 
Jamin., Resource ReSerVation Protocol (RSVP), 
RFC 2205, , September 1997. 

6. D. Black, S. Blake, M. Carlson, E. Davies, Z. 
Wang, and W. Weiss, An Architecture for 
Differentiated Services, RFC2475, , Dec. 1998. 

7. S. Floyd and V. Jacobson, "Random Early 
Detection Gateways for Congestion Avoidance," 
IEEE/ACM Transactions on Networking, 1(4), 
1993, pp. 397-413. 

8. C. Hawblitzel, C. Chang, G. Czajkowski, D. Hu, 
and T. v. Eicken, "Implementing Multiple 
Protection Domains in Java," USENIX Technical 
Conference Proceedings. June 1998. 

9. G. Hja'lmtysson and S. Bhattacharjee, "Control 
on Demand:  An efficient approach to router 
programmability," . April 1999. 

10. P. Kruger and R. Chawla, "The Stealth 
Distributed Scheduler," ICDCS. 1991, pp. 336-
343. 

11. M. Litzkow, M. Livny, and M. Mutka, "Condor - 
A Hunter of Idle Workstations," International 
Conference on Distributed Computing Systems. 
June 1988, pp. 104-111. 

12. S. Merugu, S. Bhattacharjee, E. Zegura, and K. 
Calvert, "Bowman: A Node OS for Active 
Networks," to appear INFOCOM'2000. 

13. J. E. v. d. Merwe, S. Rooney, M. Leslie, and S. A. 
Crosby, "The Tempest - A Practical Framework 
for Network Programmability," IEEE Network , 
12(3), 1998. 

14. P.Bernadat, D. Lambright, and F. Travostino, 
"Towards a Resource-safe Java for Service-
Guarantees in Uncooperative  Environments," 
IEEE Symposium on Programming Languages 
for Real-time Industrial Applications (PLRTIA) . 
Dec. 98, Madrid, Spain. 

15. K. D. Ryu and J. K. Hollingsworth, "Linger 
Longer: Fine-Grain Cycle Stealing for Networks 
of Workstations," SC'98. Nov. 1998, Orlando, 
ACM Press. 

16. D. Wetherall and e. al., "ANTS: A Toolkit for 
Building and Dynamically Deploying Network 
Protocols," OPENARACH'98. 1998. 

17.  Y. Yemini and S. da Silva, “Towards 
Programmable Networks,”  in IFIP/IEEE  
International Workshop on Distributed Systems:  
Operations and Management, L’Aquila, Italy, 
October, 1996 

 
 
 
 
 
 

 


