
 1

Dynamic Classification in Silicon-Based Forwarding
Engine Environments

R. Jaeger1,2, R. Duncan2, F. . Travostino2, T. Lavian2, J. Hollingsworth1

1University of Maryland, College Park, MD 20742
2Nortel Networks, 4401 Great America Parkway, Santa Clara, CA 9505
{rfj,hollings}@cs.umd.edu {rduncan, travos, tlavian}@nortelnetworks.com

Abstract--Current network devices enable connectivity
between end systems with support for routing with a
defined set of protocol software bundled with the hardware.
These devices do not support user customization or the
introduction of new software applications. Programmable
network devices allow for the dynamic downloading of
customized programs into network devices allowing for the
introduction of new protocols and network services. The
Oplet Runtime Environment (ORE) is a programmable
network architecture built on a Gigabit Ethernet L3
Routing Switch to support downloadable services.
Complementing the ORE, we introduce the JFWD API, a
uniform, platform-independent portal through which
application programmers control the forwarding engines of
heterogeneous network nodes (e.g., switches and routers).
Using the JFWD API, an ORE service has been
implemented to classify and dynamically adjust packet
handling on silicon-based network devices.

Index terms-- Programmable Networks, Active Networks,
ORE, JFWD, Differentiated Services

1 INTRODUCTION

Traditional network nodes (e.g. routers on the Internet)
enable end-system connectivity and sharing of network
resources by supporting a static and well-defined set of
protocols. The “virtual machine” defines the service
provided by the network to its users at each router, and is
simple and fixed. The trend in commercial-grade routers
and switches has been to implement ever more
functionality of this virtual machine in hardware; hardware
implementations have, in turn, enabled ever faster
instantiations of traditional network nodes. However, the
gain in raw performance due to hardware implementations
is, almost by necessity, at a loss of customization options
supported by the router on the data path. As more of the
router virtual machine is frozen in silicon, less are the
opportunities to introduce new services inside the
network.

1.1 Flexible Forwarding: Active Networks

In contrast, active networks (AN) expose a
“programmable” user-network interface that allows
network services to be introduced in active networks “on-
the-fly”. Active networks support per-flow customization
of the service provided by the network; flow is defined by

the user-network interface. The tenet of active networking
is as follows: the utility of the service by the network to
individual applications is maximized if applications
themselves define the service provided by the network.
To provide this level of support, active network
implementations incorporate a substantial software
component on the data path [12].1 Thus, implementations
of traditional and active networks must address the
tradeoff between performance and flexibility.

In this paper, we explore one point in the performance-
flexibility space: we describe an implementation of active
network techniques on a commercial routing platform--a
programmable network service platform implemented on
the Nortel Networks Accelar Gigabit Routing-Switch.

1.2 Active Networking applied to Commercial Grade
Hardware

This work describes a programmable network service
platform implemented on the Nortel Networks Accelar
Gigabit Routing-Switch. The primary goal of our work is
to build a working platform for implementing
programmable services on a commercial-grade router. In
doing so, we have tried to (a) preserve the router hardware
fast-path for data packets, and (b) leverage existing active
networking research as much as possible. Obviously, (a)
implies that certain computations that require data plane
flexibility are impossible in our implementation. A sub-
goal of our work is to identify sets of computations that
become possible as additional functionality is placed into
hardware. To support goal (b) we have implemented a
layer over which existing active network implementations
can be ported. In active networking parlance, we have not
introduced a new AN execution environment (EE), instead,
we added a Java-based run-time environment (the Oplet
Run-time Environment) for security and service
management over which existing EEs can be run as
network services; We ported the ANTS EE to run within
the ORE.

This paper details a policy-based packet classification
technique that is downloaded to a programmable network
device to dynamically adjust the DS-byte in the IP header

1 In case of both traditional and active networks, it may be
possible to provide fast and customizable forwarding by
incorporating hardware that is both programmable over a
relatively fine time-scale and can forward packets at line-
speeds (e.g. fast and programmable FPGAs).

 2

CPU

Wire Speed

Forwarding
Processor

Forwarding

Rules

Statistics
&Monitors

Forwarding
Processor

Forwarding

Rules

Statistics
&Monitors

Forwarding
Processor

Forwarding

Rules

Statistics
&Monitors

Control
 Plane

. . .

of real-time flows on a silicon-based forwarding engine.
The technique is implemented using the Oplet Runtime
Environment (ORE), a network services platform which
supports dynamically loaded Java services. Crucial to the
classification engine is the JFWD network API which
provides control of the forwarding plane operations. We
demonstrate that we can support Java-based services
and implement packet copying to the control plane,
packet processing by dynamically downloaded services,
and packet forwarding policy adjustment on a silicon-
based, Gigabit Layer 3 Routing Switch.

1.3 Roadmap

In Section 2 we provide a brief overview of the DARPA
active network architecture, followed by a description of
internal architecture of the Accelar router. We discuss the
issues that must be resolved before the DARPA AN
architecture can be realized on a commercial platform such
as the Accelar routing switch and describe our mapping of
the DARPA AN architecture on the Accelar. In Section 3
we provide details of each component of our
implementation and describe the interfaces supported by
each layer. In Section 4 we present a dynamic real-time
packet classification application of the ORE/JFWD
implementation. In Section 5 we present related work and
compare our implementation with existing work both in an
architectural context and with respect to supported in-
network computations. We present conclusions and in
Section 6.

2 IMPLEMENTATION OVERVIEW

In this section, we present an overview of our
implementation. We give a synopsis of the DARPA
active networking architecture, the internal architecture of
the Accelar router, and then describe how we realize parts
of the AN architecture on the Accelar.

Figure 1 shows the node architecture for active networks
developed by the DARPA active network research
community [1].

Node Resources

Node Operating System

Common Objects
(Routing Tables

Processors State Store. . .IO Interfaces

Execution Environments

ANTS CANEs IPv4. . .

Active Network User Network Interfaces

Node Resources

Node Operating System

Common Objects
(Routing Tables

Processors State Store. . .IO Interfaces

Execution Environments

ANTS CANEs IPv4. . .

Active Network User Network Interfaces

Figure 1: DARPA Active Network Architecture.

2.1 DARPA Active Network Architecture

The DARPA active network architecture must address the
issue of the user-network interface supported by active
networks, i.e. what is the nature of the “virtual machine”
supported by each node in the network and what
processing does each packet in the network undergo?

The DARPA architecture supports multiple active network
user interfaces called Execution Environments (EEs). EEs
can implement a wide range of user-network interfaces
that exploit different points in the trade-off between
performance and flexibility, e.g. IPv4 can be considered a
high performance EE that does not provide much flexibility
while the ANTS [12] is an EE that provides a Java virtual
machine at each node and sacrifices some performance for
enhanced flexibility. By supporting multiple EEs, the
architecture allows network user applications choose
between performance and flexibility.

The computation, communication, and storage resources
at an active node are controlled by a Node Operating
System (Node OS). The node OS interface that exposes
resources available at the active node and mediates
access. The node OS demultiplexes incoming packets to
specific EE(s) and provides support for common objects
such as routing tables likely to be useful across EEs.
Using the node OS interface and abstractions, EEs
implement specific user-network interfaces; network
services are built using the interface exported by EEs.

2.2 Nortel Accelar Router

The Nortel Networks Accelar family of L3 Routing
Switches employs a distributed ASIC-based (Application
Specific Integrated Circuit) forwarding architecture with a
5.6-256 Gbps per second backplanes. The switches scale
to 384 10/100 ports or 96 Gigabit ports (or some
combination of the above). There are up to eight
hardware-forwarding priority queues per port and
hardware is controlled by VxWorks real-time OS.

Figure 2: Achitecture of the Accelar Router

Applications can monitor and control the ASIC hardware
via a switch-specific API that provides access to hardware
MIB instrumentation variables. For example, the switch
hardware provides functionality to set certain bits in an IP
packet or put a packet in a priority queue based on a

 3

matching a specific filter. This functionality is exposed by
an interface to the hardware instrumentation MIB that
controls the setting of hardware processing.

2.3 A Programmable Accelar Router

To transform the Accelar routing switch into a
programmable network service platform, we implemented a
run-time environment over which existing active network
EEs could be executed. In general, this would require the
implementation of the active network NodeOS API over
the Accelar embedded real-time OS. However, the AN
NodeOS API [2] was still evolving when we started our
work and most EEs are implemented either within a
JVM[12, 13] or over legacy OS interface. We chose not to
port/implement the NodeOS API but to provide support
for Java-based EEs by running an embedded JVM on the
Accelar VxWorks OS and by creating a Java-compatible
interface to the low-level hardware.

Unlike in traditional operating systems, the service
degradation due to a single (possibly malfunctioning or
malicious) JVM task on VxWorks is constrained because
the JVM runs as just another task in the real-time
VxWorks O/S with a fixed and upper-bounded processor
share and priority. The Java-compatible interface that
provides access to the low-level hardware of the Accelar
is the Java Forwarding (JFWD) API described in section
2.5.

Though not technically a necessity, we added separate
layer between the JVM and the EE. This layer --the Oplet
Runtime Environment (ORE)-- provides security and
management services that may eventually be subsumed
by the AN NodeOS and was deemed required for the
commercial viability of the programmable routers. As
mentioned before, the ORE enables a stricter intra-node
trust infrastructure allowing for different per-node
resource allocation policies without cooperation from EE
writers. Thus, the ORE provides mechanisms for node-
providers to impose per-EE resource limits without having
to trust the EE. A nice side-effect is that the ORE allows
multiple EEs (or multiple copies of a single EE) to be
instantiated within a single Accelar with different
privileges. In the next section, we present details of the
ORE and JFWD API.

3 THE ORE AND THE JFWD API

The ORE and the JFWD API are the two major software
components added to the hardware router. The ORE
provides a secure run-time environment for EE execution
while the JFWD API provides a mechanism for EEs to
access and control the switch hardware. We start with a
description of the ORE.

3.1 The ORE: Oplet Runtime Environment

The ORE is a platform for secure downloading,
installation, and safe execution of Java code (called
services) within a JVM. A service is an atomic piece of
code that implements specific functionality. A service
may depend on other services in order to execute. In
order to securely download and impose policy, we define
the notion of an “Oplet”. Oplets are self-contained
downloadable units that encapsulate a non-empty set of
services. Along with the service code, an Oplet specifies
service attributes, authentication information, and
resource requirements. Note that Oplets can encapsulate
a service that depends on some other service; in these
cases, Oplets also contain dependency information. In
general, the ORE must resolve and download the
transitive closure of Oplet dependencies before executing
a single service.

The ORE provides mechanisms to download Oplets,
resolve dependencies, manage the Oplet lifecycle, and
maintain a registry of active services. The ORE uses a
public-key infrastructure to download “trusted” Oplets.
In brief, the security infrastructure provides
authentication, integrity, and non-repudiation guarantees
on downloaded Oplets. Due to space restrictions, we will
not elaborate more on the secure downloading, execution,
or resource management features of Oplets.

3.2 Oplet Execution Safety

The ORE must provide safe execution and impose
resource limits. As far as possible, the ORE uses the
mechanisms provided by the Java language (type safety)
and the standard JVM (bytecode verification, sandbox,
security manager) to provide execution safety. The ORE
controls allocation of system resources by intercepting
allocation calls from the service code to the JVM.

To protect itself from denial of service attacks, deadlocks,
and unstable states, the ORE implements mechanisms for
thread safety and revocation. The ORE controls thread
creation by requiring Oplets to request new threads from
the ORE. The ORE determines whether to grant the
request based upon a node policy that takes into account
current thread usage, and the credentials of the requesting
Oplet. Once a thread is allocated, however, the current
implementation of the ORE has no mechanism in place to
account for or limit the consumption of computing
resources. In its most general form, the ORE must address
denial of service caused by a misbehaving service that
consumes CPU resources. To handle these issues, the
ORE needs JVM support for CPU accounting [14].

Sharing threads between Oplets presents two main
problems: (a) deadlock caused by a callee not returning
and (b) caller Oplet killing the shared thread while it is
executing in a callee Oplet's critical section. The ORE
protects itself from the first problem by never interacting
directly with any Oplet that it loads. Instead it creates a
trusted proxy which the ORE uses to delegate its
commands to the untrusted Oplet. The proxy uses a

 4

separate thread to call a method on the untrusted Oplet
and sets a timeout for returning from the call; if the thread
call does not return after a conservatively set timeout, a
fail-stop situation is assumed and the thread is killed. The
second problem is handled by the ORE by revoking
Oplet's ability to manipulate a thread's running status.

The ORE uses object revocation to control access to its
own resources. If the ORE determines that a specific
service is no longer permitted to use a resource reference
the reference can be revoked. For example, a service may
possess a “handle” to a data structure exported by
another Oplet that no longer exists. The ORE can detect
these cases and revoke access to “stale” objects.
However, for absolute protection, non-standard support is
required from the JVM implementation. Significant
modification would include the ability to perform
accounting for both CPU and memory consumption and
support for per-thread heap allocation and garbage
collection [14].

The ORE is currently under active development. At
present, it supports secure downloading of services,
resolves service dependencies, and allows access to
native router functionality through the JFWD API.
However, the current ORE version is still susceptible to
several flavors of denial-of-service attacks. These include
spurious triggering of the Java garbage collector, memory
fragmentation attacks, and stalling finalization of
objects[14]. Several memory related safety hazards
confronting the ORE will be resolved as JVMs support
multiple heaps, revocation and copy semantics of the
JKernel [8].

3.3 JFWD: The Java Forwarding API

The Java Forwarding API specifies interfaces for Java
applications to control a generic, platform-neutral
forwarding plane. The JFWD API consists of a set of Java
classes specifications and has been implemented on the
Accelar. Implementations of the JFWD classes is highly
platform dependent (recall that on the Accelar, the JFWD
API is a wrapper around the hardware MIB
instrumentation interface) is not part of the JFWD API.

JFWD is the first Java API package to explicitly address
the needs of contemporary forwarding planes of network
nodes which are increasingly implemented in silicon, must
support multiple protocols, and must realize Quality-of-
Service (QoS) low-level functionality. To drive an ever-
growing number of options, more diversified control data
will have to be fed into control planes.

The JFWD implementation across multiple hardware
platforms brings a) the abstraction of a platform-neutral
forwarding engine, b) a framework within which new
protocols and control data can be described, and c) a new
breed of shrink-wrapped Java programs for controlling
network nodes. In the rest of this section, we highlight
the main mechanisms that are provided by the JFWD API
on the Accelar switch.

The JFWD API can be used to instruct the forwarding
engine to alter packet processing through the installation
of hardware filters. The hardware filters execute “actions”
specified by a filter policy. On the Accelar, the filter can
be based on combinations of fields in the MAC, IP, and
transport headers. The policy can define where the
matching packets are delivered and can also be used to
alter the packet content. Packet delivery options include
discarding matching packets (or conversely, forwarding
matching packets if the default behavior was to drop
them) and diverting matching packets to the control plane.
Diverting packets to the control plane allows applications,
such as AN EEs to process packets. Additionally,
packets can be “copied” to the control plane or to a
mirrored interface. Packets may also be identified as being
part of high priority flows; these packets can be placed in
a static hardware high priority queue.

The filter policy can also cause packet and header content
to be selectively altered (e.g. the Type of Service bits on
matching packets can be set). The existing hardware is
capable of re-computing IP header checksum information
at line speeds when the IP header is changed.

3.4 Network Services supported by the JFWD API

In this section, we explore the set of possible and
precluded computations on the ORE/JFWD API.
Obviously, these computations define and constrain the
set of network services that can be implemented on the
ORE/JFWD platform. Note that the ORE does not, a-
priori, exclude any computation; instead, it enforces node
policy that may cause certain (e.g. processor-intensive)
computations to not be started or terminated during
execution. Computations are, instead, constrained by the
JFWD API since this API defines the capabilities exported
by the hardware that can be used to build network
services. Thus, some computations, e.g. certain video
transcoding techniques that must process every packet,
cannot efficiently be implemented in our system
regardless of node policy. Not all precluded computations
involve data transformation; certain network based
anycasting/routing schemes in which a program must be
executed to find the outgoing switch port cannot be
supported either.

In general, all control-plane only computations, e.g.
installing new routing tables or parsing a new ICMP
message type, can rather easily be accommodated by the
ORE/JFWD API. An important ability provided the JFWD
API is to selectively route (or copy) packets to the
control plane. As we will see, this does significantly
enlarge the set of services that can be implemented on the
Accelar. In the rest of this section, we identify a specific
set of services that can be implemented using the current
version of the JFWD API.

The following network services can be implemented using
the current implementation (obviously, this list is merely
representative and not meant to be exhaustive):

 5

- Filtering firewall - A simple application would be a
firewall that allows or denies packets to traverse on
specified interfaces depending on whether the
packet's header matches a given bit mask.

-Application-specific firewall - It is relatively
straightforward to extend the filtering firewall
implement certain application-specific firewalls. For
example, a FTP gateway that dynamically changes the
firewall rules to allow ftp-data connections to a
``trusted'' host can be implemented. Security
functions like stopping TCP segments with no (or all)
bits set can also be dynamically programmed on the
Accelar.

Almost all modern routers allow for a filtering firewall
and application-specific firewall functionality. It is
imperative to note that these services can be added,
modified, and deleted dynamically on to the Accelar
ORE/JFWD platform. The next three services are
examples that, in general, are not yet available in most
commercial routers. (There are isolated instances of
routers where some of these services may be built
into the hardware).

- Dynamic RTP flow identification - RTP over UDP
flows are identified by an ephemeral UDP port
number. In general, some host chooses this port
number and it is not well known. We have
implemented several mechanisms to identify RTP
flows traversing the Accelar. Using the JFWD API,
control protocol (SIP/RTSP/H.323) messages can be
intercepted to identify port numbers for RTP flows.

- DiffServ: Classifier, Marker - The Accelar can be
turned into a DiffServ[6] Classifier by suitably
programming its hardware filters. Further, the
hardware (and in turn, the JFWD API) provides
mechanisms to change, at line-speed, selected bits in
the IP header. This ability can be used to implement
parts of DiffServ ingress/egress marker capabilities on
the Accelar. A subtle benefit of this solution is that
new firmware or hardware does not have to be
shipped each time a new DiffServ scheme/PHB
becomes popular. Instead, using existing ORE
service instantiation mechanisms, only the service-
specific logic has to be uploaded onto the router.
This can be accomplished on-line, without
interrupting existing flows or services.

- PGM-like Reliable multicast - The packet filtering
capabilities of the Accelar allows certain packets to
be copied on for inspection by the service code. This
mechanism can be used to divert (negative)
acknowledgements from multicast sessions to the
control plane. The service code can, much like the
PGM reliable multicast scheme, send one copy of the
NAK upstream and suppress duplicate NAKs. Unlike
PGM, modulo resource constrains, it is possible to
implement reliable multicast services that keep a small

packet cache and immediately re-transmit a lost
segment. Other services, such as multicast ancestor
discovery, can also be efficiently implemented by
providing the service code interfaces to the routing
table.

4 EXPERIMENTAL JFWD APPLICATION

To support a new breed of router-based programs that do
not delay packet forwarding, we use the JFWD API to
instruct the forwarding engine to send packets to both the
data plane output queue and also to the control plane.
This feature, called CarbonCopy, does not divert packets
to the control plane; it performs wire-speed forwarding
while copying the packets to the control planes. Packets
captured into the control plane can then be processed and
decisions about packet processing can be made. By
allowing ORE services to modify the packet handling in
the ASIC forwarding engine, new types of applications are
possible that do not require core router functionality to be
altered.

In [5], the authors present a control-on-demand
architecture in which flow control is performed on a best
effort basis. An IPv4 flow is determined by five fields in
the IPv4 header: the IP source and destination address,
the source and destination port numbers, and the
protocol. Packets belonging to a flow are copied to the
control plane for processing while simultaneously
forwarding the packet. This is our approach as well. It
deviates from the store-execute-forward paradigm of
Active Networks.

We implemented an ORE service, called the DiffServ
Classification service (DSC), to classify flows and modify
packet headers based on the policy set for a particular
protocol contained in the IP header. A policy determines
the action to be taken for a particular flow or class of
flows. A policy filter executes the actions specified in the
policy.

Our implementation copies all real-time protocol
connection signaling messages (e.g. SIP, RTSP, H.323)
from the forwarding plane. To accomplish this task, the
service sets a filter for packets on the default SIP
connection setup port. This filter copies all packets on
that port into the control plane. The DSC receives these
packets and processes the content to identify the ports on
which the RTP communication is to take place. Since the
SIP messages use a text format for communicating the port
information, identifying the port information is straight
forward.
The DSC creates a policy filter for RTP flows identified by
the signaling messages. The policy filter created for a
particular flow is based on the IP header fields in the
packet that determine a flow. We call this the flow
signature. In this case, the signature consists of the
source and destination IP addresses and the source and
destination port numbers. Protocol could also be used as
part of the signature (e.g. UDP). The DSC sets a policy

 6

filter for the packet signature that will put those flows into
the higher priority queue within the edge router. The
Accelar 1100B has 2 priority queues so RTP packets were
placed into the higher of the two queues. The DSC also
sets the DS-byte in the Ipv4 header on the packets to
ensure better processing treatment at downstream
processors that implement Differentiated Services as
determined by the per-hop behavior policy. A policy filter
is stored for each RTP flow identified by the signaling
message processing.

4.1 Discussion

The novelty of the experiment described above is that it is
done by a service that is downloaded and installed
dynamically onto a commercial-grade router and that
RTP flows are identified dynamically, not preconfigured.
In this section, we discuss an immediate application of
this functionality that we are using in our own research
facilities.

An immediate benefit of on-line identification of flows and
dynamic adjustment of packet priority is to support cluster
computing. In cluster systems such as Condor[11],
NOW[3], Stealth[10], and Linger-Longer[15] workstations
are used to run jobs when the computer's primary user is
not using their computers. To make these systems usable,
the software that runs guest jobs user's workstations goes
to great lengths to ensure that the guest process does not
interfere with the primary user. However, until now there
has been no clean way to isolate guest use of a
workstation from network traffic generated by normal
users.

By using active networking at the local area network
switch, we can dynamically identify the flows associated
with guest jobs. Although these jobs typically have a set
of well-known ports, they also can use other network
services. To help identify these flows, the cluster
scheduler software, can inform the switch when a
particular node has started to run a guest process. For
some clusters such as Condor and NOW, a node in a
cluster is either running guest processes or local process
and switches between them on a time-scale measured in
minutes. For these types of systems, a simple filter to re-
prioritize all traffic from the host running a guest process
can be installed by the cluster scheduler. However,
system such as Stealth and Linger-Longer allow fine-grain
sharing of processors between guest and local processes.
To accommodate these systems, the filter needs to be able
to identify whether traffic associated from a node is due to
a guest process or a local process. To do this a more
complete dynamic flow detection that that can now be
implemented on the Accelar is required.

5 RELATED WORK

We are not aware of another integrated active networking
platform implementation on a (commercial) hardware
platform. The active networking work on the Washington
University Switch Kit employs locally connected

machines as active processors 2. The Tempest [13]
provides a customizable control plane for ATM networks.
The basic ideas of high-performance active networking by
decoupling the forwarding path from a programmable
control plane was introduced, in a software
implementation, in the Control-on-Demand (CoD) [9]
platform co-developed at AT&T Labs. In this section, we
compare our approach to CoD, and discuss how existing
active networking research fits within our framework.

The Control-on-Demand platform was developed and
implemented over IPv6 as an extension to the Linux kernel
[9]3. Data packets were kept in the kernel in per-flow
queues while active control could be applied to the data
packets by dynamically loaded “per-flow controllers” that
executed in user space. The per-flow controllers affected
the data path using the CoD API. A meta-controller
loaded each per-flow controller using a signaling protocol.
CoD was developed to be specifically mapped onto
hardware platforms and its relationship to our work is
clear. Services on the Accelar map to per-flow controllers
in CoD; the JFWD API on the Accelar maps to the CoD
API; the ORE functionality on the Accelar is not
completely replicated in CoD, though the meta-controller
does provide a subset of the ORE functionality. As CoD
was implemented in software; it provides all of the JFWD
functionality, and also provides the queue exposure and
manipulation facilities on our hardware wish list.

Active networking NodeOS's can potentially be
implemented over VxWorks on the Acclear. There is one
fundamental problem: the AN NodeOS architecture allows
for all packets on specific channels to be delivered to the
EE for further processing. This would negate the benefits
of the hardware forwarding path available in the Accelar.
However, the Accelar provides a perfect platform for
implementing fast cut-through paths. The Bowman
NodeOS[12] is a particularly good fit as it is specifically
supports cut-through paths and is designed as a layer
above a host OS that provides low-level hardware access.
Thus, Bowman can directly be ported on to the Accelar
using VxWorks as its host OS.
For other Node OS efforts, the VxWorks platform already
implements much of the required functionality such as
memory management. However, it is not obvious if some
of the abstractions supported by these systems (e.g. the
path abstraction in Scout) can directly be mapped on to
the Accelar hardware features.

Java-based EEs can directly be ported on to the ORE.
Once a functional AN Node OS has been ported to run
over VxWorks, other “native” EEs such as CANEs can be
implemented on the Accelar.

6 CONCLUSION

2 See http://www.ccrc.wustl.edu/gigabitkits/kits.html
3 Control on Demand was co-developed by S.
Bhattacharjee

 7

We presented a summary of the challenges in bringing
Active Networking ideas to current high performance
hardware-based routers and switches. In addition, we
showed that while it is not possible to support active
packets for every packet at line speed on these systems
(nor any system), it is possible to exploit existing hardware
filtering mechanisms to allow a variety of scenarios that
require active functionality on routers. To demonstrate
the feasibility of our approach, we implemented a dynamic
classification service on a commercial-grade Gigabit L3
Routing Switch. The ORE supports the creation of
services in Java that are extensible, portable, and easily
distributed over the network. It provides a platform for
safely running these services without disturbing the
existing core functionality of the router. Through the
JFWD API, the packet capture, processing, and
modification capabilities are realized at the programmable
node. Because of the CarbonCopy and filter mapping
features provided in the JFWD API, we were able to create
an ORE service to perform dynamic DiffServ Classification
and DS-byte adjustment in an effort to improve the
performance of real-time network flows.

7 REFERENCES

1. "Architectural Framework for Active Networks

Version 0.9," . August 31, 1999,.Active Networks
Working Group.

2. "NodeOS Interface Specification," . June 15,
1999,.AN Node OS Working Group.

3. R. H. Arpaci, A. C. Dusseau, A. M. Vahdat, L. T.
Liu, T. E. Anderson, and D. A. Patterson, "The
Interaction of Parallel and Sequential Workloads
on a Network of Workstations," SIGMETRICS.
May 1995, Ottawa, pp. 267-278.

4. S. Bhattacharjee, Active Networks:
Architectures, Composition, and
Applications,Ph.D., Computer Science
Department Georgia Institute of
Technology,1999.

5. R. Braden, L. Zhang, S. Berson, S. Herzog, and S.
Jamin., Resource ReSerVation Protocol (RSVP),
RFC 2205, , September 1997.

6. D. Black, S. Blake, M. Carlson, E. Davies, Z.
Wang, and W. Weiss, An Architecture for
Differentiated Services, RFC2475, , Dec. 1998.

7. S. Floyd and V. Jacobson, "Random Early
Detection Gateways for Congestion Avoidance,"
IEEE/ACM Transactions on Networking, 1(4),
1993, pp. 397-413.

8. C. Hawblitzel, C. Chang, G. Czajkowski, D. Hu,
and T. v. Eicken, "Implementing Multiple
Protection Domains in Java," USENIX Technical
Conference Proceedings. June 1998.

9. G. Hja'lmtysson and S. Bhattacharjee, "Control
on Demand: An efficient approach to router
programmability," . April 1999.

10. P. Kruger and R. Chawla, "The Stealth
Distributed Scheduler," ICDCS. 1991, pp. 336-
343.

11. M. Litzkow, M. Livny, and M. Mutka, "Condor -
A Hunter of Idle Workstations," International
Conference on Distributed Computing Systems.
June 1988, pp. 104-111.

12. S. Merugu, S. Bhattacharjee, E. Zegura, and K.
Calvert, "Bowman: A Node OS for Active
Networks," to appear INFOCOM'2000.

13. J. E. v. d. Merwe, S. Rooney, M. Leslie, and S. A.
Crosby, "The Tempest - A Practical Framework
for Network Programmability," IEEE Network ,
12(3), 1998.

14. P.Bernadat, D. Lambright, and F. Travostino,
"Towards a Resource-safe Java for Service-
Guarantees in Uncooperative Environments,"
IEEE Symposium on Programming Languages
for Real-time Industrial Applications (PLRTIA) .
Dec. 98, Madrid, Spain.

15. K. D. Ryu and J. K. Hollingsworth, "Linger
Longer: Fine-Grain Cycle Stealing for Networks
of Workstations," SC'98. Nov. 1998, Orlando,
ACM Press.

16. D. Wetherall and e. al., "ANTS: A Toolkit for
Building and Dynamically Deploying Network
Protocols," OPENARACH'98. 1998.

17. Y. Yemini and S. da Silva, “Towards
Programmable Networks,” in IFIP/IEEE
International Workshop on Distributed Systems:
Operations and Management, L’Aquila, Italy,
October, 1996

