

1

Active Networking On A Programmable Networking Platform

Tal Lavian, Phil Yonghui Wang
{tlavian, pywang}@nortelnetworks.com

Technology Centre, Nortel Networks Corporation

Abstract – Curr ent Active Networks research projects are
mainly realized in software-based host systems since
commercial network devices lack required networking
programmability. This paper studies the active networking
approach using the Openet programmable networking
platform. Openet comprises ORE (Oplet Runtime
Environment) and hierarchical services from low-level systems
to high-level applications, and provides a neutral service-based
programmability to network devices. Moreover, Openet can
have customer network services including Active Networks-
based services deployed on curr ent commercial network
platforms.

We demonstrate the active networking with commercial
network devices by deploying the active network service ANTS
onto the Accelar r outing switches. The performance of active
network communication is examined by the experiment in an
Accelar-routed active net and compared with regular non-active
network communication. The experimental result reveals that
Java network I /O is a bott leneck of enhancing capsule
processing capability and ends up a look at what active network
services are applicable to curr ent commercial network
platforms. Finally we present observations and future works
about active networking through the Openet platform.

I . INTRODUCTION

Programmable networking technologies such as Active
Networks [2] expose a novel approach that allows customers
to introduce value-added services into the network “on-the-
fly” . Typically, through the Active Networks, applications can
deploy new protocols and change their services dynamically
for specific purposes in terms of active packets. Thus, the
exciting opportunity is that the network infrastructure can be
changed by network service providers and other third parties,
rather than only network device providers.

The present-day trend in commercial-grade routers and
switches is to implement ever more functionali ty of network
in hardware, resulting in ever-faster performance, but ever-
less flexibili ty, since only fixed sets of services and protocols
are supported. As more of the functionali ty is frozen in
sili con, less is the capabili ty to introduce new service and
customization inside the network. This limi tation makes these
network devices unsuitable for hosting Active Networks
services, resulting in that their current implementations are
primarily done in host-based systems.

In order to enable programming services, network devices
must be, in addition to fast performance, equipped with the
networking programmabili ty. The Nortel Networks

Technology Center has proposed out a programmable
networking platform, Openet [1], which is a service-based
internetworking infrastructure that delivers such
programmabili ty to diversified network devices.

This paper studies the deployment of Active Networks
services using the Openet platform onto commercial network
hardware. Openet provides the networking programmabili ty
by introducing ORE and a stack of hierarchical network
services. The ORE is an open, platform-neutral, pure Java
runtime environment that is used to customize, download and
initiate network services dynamically. In terms of Oplets, all
network services are encapsulated as ORE-based services.
These services are classified into four categories from low-
level system services such as JFWD (Java Forwarding) and
JMIB (Java MIB access) to high-level application services
such as active network EEs (Execution Environments) and
their applications. Finally, services are injected into the
network by having ORE download and activate their Oplets
on network nodes.

The Nortel Networks Accelar routing switches [4] are used
with Openet in our investigation. They are commercial multi-
gigabit products that provide in hardware L3 routing,
switching, fil tering and classification. To gain the wire-speed
forwarding performance, the Accelar in the data plane
employs the ASIC (Application Specific Integrated Circuit)
hardware technology that is not re-programmable yet.
However, the Accelar control plane is a CPU-based system
that can run Java and external program code. This property
allows Openet to be integrated so that the Accelar becomes a
re-programmable device that allows deploying network
services in the control plane.

To demonstrate the active networking capabili ty on the
Openet platform, the ORE ANTS service, which implements
the MIT ANTS EE [6], is deployed on the commercial
Accelar routing switches. Within the Nortel Networks
corporate intranet, an experimental active network is
constructed with active nodes, non-active nodes and a
downloading server. We successfully run ANTS applications
to enable the active network communication over the network
and to examine the system performances of active and regular
network communications through experiment. The result
shows that Java network I/O operations transmitting a capsule
take much more time than processing a capsule once faster
CPU is employed in network nodes. This becomes the
number one cause impacting the network performance.

The remainder of this paper is organized as follows.
Section 2 briefs the DARPA Active Networks technology and

0-7803-7064-3/01/$10.00 (C) 2001 IEEE IEEE OPENARCH 2001

2

related works. Section 3 introduces the Openet programmable
platform, including ORE, hierarchical services and Accelar.
Section 4 argues how a service is injected to the Accelar, and
details ORE APIs as well as the ANTS service deployment on
the Accelar. Section 5 presents experimental results and
related discussions. Finally, observations and future works
are concluded about Openet and active networking.

II . THE DARPA ACTIVE NETWORKS AND
RELATED WORKS

The DARPA Active Networks approach [2] is a major
effort to supply the user networking abili ty under the Internet
infrastructure. Through installi ng multiple active user
interfaces or Execution Environments (EEs) on active nodes,
users can flexibly compose new protocols and dynamically
deploy new services for their specific purposes. These EEs
are referred to virtual machines and “programming
interfaces” that are available for the Active Networks
applications to process active packets or capsules and to
control the processing.

Significant research works include: the MIT ANTS (Active
Node Transfer System [6]) toolkit, the UPenn Switchware
architecture [5], the Columbia University Netscript language
[7], the USC/ISI Abone (Active Backbone) [9], the Active
Networks protocol ANEP [8] and the BBN Smart Packet
network management [10]. To date, these developments have
been mainly realized in software-based hosts (e.g., Linux
systems) that offer the required programmabili ty but lack the
performance required in real networks. Nonetheless, the
foremost goal of Active Networks is to bring these active
networking technologies to commercial network nodes
(routers and switches), in which they also gain performance
from hardware acceleration.

III . OPENET

Openet is originated from the open programmable
architecture for Java-enabled network devices [1]. The
Openet architecture depicted in Figure 1 includes two major
components of the Openet: ORE and Hierarchical Services.
In this section introduces the two components as well as how
Openet works with the commercial hardware Accelar.

A. ORE

The Oplet Runtime Environment (ORE) is the core of the
Openet architecture. It is an open object-oriented networking
environment for customer service creation and deployment.
At runtime, it supports injecting customized software, e.g.,
the Active Networks EEs, into network devices through
secure downloading, installation, and safe execution of Java-
based service code inside a JVM (Java Virtual Machine).

In order to secure service downloading and management,
we define the Oplet as a self-contained downloadable unit

that embodies a non-empty set of services. Thus, services are
encapsulated by one or multiple Oplets, and Oplets in turn
publish those services they provide to ORE. Along with the
service code, an Oplet also specifies service attributes,
authentication information, and resource requirements. Like a
Java object, a service can inherit particular functions from
other services and offers its interfaces public to them.

The ORE provides the mechanisms to download Oplets, to
resolve service dependencies, to manage the Oplet li fecycle,
and to maintain a registry of active services. Users can deploy
network services to the network by having ORE to download
and activate their Oplets on particular network nodes.

Figure 1: The Openet architecture

B. Service Hierarchy

In Openet, all network services are encapsulated by Oplets
and run within the ORE environment. Oplets are objects and
provide public APIs accessible to application services.

To ease service creation and gain platform independency,
Openet employs a service hierarchy that places these services
into four categories: System, Standard, Function and User, as
shown in Figure 1.

1) System services and JFWD

“System services” are low-level network services that have
direct access to the hardware features through JNI or native
codes. For re-programmable hardware, they are built over
native programming interfaces. Otherwise, for current ASCI-
based commercial hardware that is not re-programmable, they
wrap the hardware instrumentation that controls the ASIC
behaviors. Thus, in fact, they by their neutral APIs determine
how much of the programmabili ty Openet brings to
hardware. They require particular hardware knowledge, and
provide neutral APIs to upper-level services.

• JFWD: routing and forwarding service, alters

hardware packet processing behaviors
• JMIB: MIB access service, provides access to

hardware instrumentation

0-7803-7064-3/01/$10.00 (C) 2001 IEEE IEEE OPENARCH 2001

3

• JSNMP: SNMP client, provides access to the SNMP v2
agent

• JPCAP: local packet capturing service using Berkeley
libpcap (if available)

Of the above system services, JFWD is a fundamental one

that provides platform-independent Java APIs that customer
services use to alter the routing and forwarding behaviors on
network nodes. It includes a number of standard service
mappings such as MAC address, ARP, IP routing, IP fil tering,
IP Diffserv and VLAN (Virtual LAN). JFWD
implementations on different network platforms (e.g.,
Accelar/VxWorks and Linux) require use of native codes or
communications. On the Accelar routing switches, the JFWD
implementations turn out to be a wrapper around the
hardware instrumentation interfaces.

A typical use of JFWD is to instruct the forwarding engine
to alter packet processing through the installation of IP fil ters.
A fil ter is composed of MAC address, IP or transport protocol
header, or their combination, and a policy that specifies the
action executed to the matched packets. The policy can define
where the matched packets are delivered or how the packet
content (e.g., Diffserv remarking) is altered. Diverting
packets to the CPU (at the control plane) allows customer
services such as AN EEs to capture packets that match
particular fil ters (e.g., the protocol type is ANEP) from the
forwarding plane and thus to process them.

2) Standard services

 “Standard Services” provide the ORE standard features
for customer service creation and deployment. They are also
used to conduct user interaction with ORE.

• OpletService: Oplet service API, extended to create

service descriptions and interfaces
• ManifestOplet: Oplet encapsulation abstract interface,

implemented to create service-specifi c Oplet
• Startup: ORE startup service, auto-starts specified

services when the ORE starts
• Shell : telnet-li ke user interface service, provides

shell commands to manipulate Oplets and/or network
services (e.g., start and stop)

• Logger: ORE log service, provides printout
during running services

3) Function services

“Function Services” provide common functionali ty or
utili ty used to rapidly create user-level services. They are
intermediate services coming with the ORE release or
contributed by a third party.

• HTTP: HTTP service
• JDiffServ: Diffserv interface, provides access to the

hardware Diffserv feature

• Jcapture: Packet capturing service, sets IP filters and
diverts packets to CPU

• IpPacket: IP packet utilit y, constructs IP/TCP/UDP
header and payload

4) User services

Namely, “User Services” are the user-end application
services for particular purposes. They are buil t using the other
three lower categories, dependent on whether they require use
of existing services and hardware features. Typical
application services include altering packet forwarding
priority, QoS setup, mobile agents, network monitoring,
Active Networks EEs, network intrusion detection, protocol
composition and personalized communications.

Figure 2: Accelar and Openet

C. Accelar Routing Switch

The Accelar, or Passport1, achieves a significantly higher
level of performance by introducing two separated working
planes control and forwarding, as depicted in Figure 2. The
forwarding plane along the data path is implemented using
ASICs that can forward packets up to 256 gbps (gigabits per
seconds) without consuming any CPU resource.
Conventional routers and software-based routing systems
involve CPUs in both packet forwarding and forwarding
control, hence reduce the level of performance that they can
achieve.

The control plane utili zes the whole CPU resource, and
resides the VxWorks OS and the embedded Java VM.
Moreover, it runs ORE, and houses diversified network
applications that make up of customers’ intelli gences and

1 Passport/Accelar 1100B, 8600 and other models are available in
the commercial market without Openet. Openet is free and source
open for the research purpose.

0-7803-7064-3/01/$10.00 (C) 2001 IEEE IEEE OPENARCH 2001

4

value-added services. As a result, the Accelar brings the
Openet programmabili ty to real networks.

How does Openet work with a network node like the
Accelar? Basically, ORE and network services are initiated at
the control plane. In fact, these services can be divided to two
planes: control and data, according to which plane they serve.
Control-plane services deal with network management issues
such as changing network configurations (e.g., routes), or
altering the forwarding behaviors (e.g., forwarding priority)
along the data path. Data-plane services such as new protocol
processor cut through the data path and take in and process
particular packets before forwarding them.

IV. SERVICE DEPLOYMENT

With Openet, network services are composed using normal
Java classes. Before they get deployed to the network, they
are encapsulated with the ORE Oplet interfaces to have the
Openet programmabili ty. This section describes issues about
the service deployment.

It is obviously of interest that commercial network devices
like the Accelar embodies the Active Networks approach to
real networks by hosting these EEs. The MIT ANTS is a
typical EE for composing and deploying new network
protocols dynamically. It employs mobile code, demand
loading, and caching techniques, and provides a software
package that comes with a toolkit and several demonstrative
applications such as ping and multicast.

To deploy this service, we’ve buil t an ORE ANTS service
named “AntsNodeService”, which provides the same ANTS
EE capabili ty as the original MIT ANTS distribution does.
Through wrapping the MIT ANTS code, this ORE ANTS
implementation is completely injected onto the Accelar
1100B and 8600 routing switches.

A. Two Oplet APIs

The ORE provides two Oplet APIs for service creation and
encapsulation.

1) Base service

The first API “OpletService” is a base class of service
creation that a new service extends to define its interface.
That interface class includes the service description and the
service function interfaces.

A service also has another class (called as the object class)
to implement its interface class. That object (e.g.,
AntsNodeServiceImpl.java) realizes the customer
functionali ty that provides a service (e.g., an Active Networks
EE) as well as two private methods that the service Oplet
internally uses to start and stop the functionali ty. It also can
import Java codes of other services or user programs.

2) Service Encapsulation

The second “ManifestOplet” is an abstract interface of

service encapsulation that an Oplet (e.g., AntsNodeOplet)
implements to encapsulate the service and register it to the
ORE. ManifestOplet has two methods: startService() and
stopService(), which are used by the ORE to start or stop a
service.

While loading the Oplet, the ORE extracts the service
information from a manifest file like “Ants.mf” , including the
Oplet name, service package and description and dependent
services. This file is consistent with the service Oplet.

B. Service Package

The Java code of a service is packed to a jar file for ORE
downloading, which may include the below Java classes and
other user-defined classes.

• AntsNodeService.java: the AntsNodeService public

interface
• AntsNodeServiceImpl.java: the AntsNodeService

implementation, wraps “ package ants”
• AntsNodeOplet.java: the Oplet, provides the

“ AntsNodeService” service
• Ants.mf: the service manifest, provide

the service information

The jar file (e.g., ore-ants.jar) can be stored in the local

ORE directory “<OREROOT>/ore/jars/” , or uploaded to a
trusted server for later downloading.

C. Service Injection

The final stage of service deployment is to inject network
services to network nodes, which implies downloading and
activating their code within the ORE. There are at least three
ways to do dynamic service injection, e.g., the ORE shell
service, the ORE startup service and a user service initiation
service. Once ORE downloads and then activates the service
Oplets, they are injected and thus become local services (e.g.,
on the Accelar).

The “AntsNodeService” is actually the ORE wrapper
around the ANTS code and generates an instance of the MIT
ANTS EE (version 1.2). The ORE ANTS service is packed
with both the MIT ANTS package and the AntsNodeService
one. Then, it’s stored in a Linux HTTP server (see Figure 3).

The Openet software including the ORE 0.3.3 and the
whole ORE ANTS are available via
“http://www.openetlab.org/downloads/” . More statements
about this service deployment are detailed in [11].

D. Our Active Net

Within the Nortel Networks corporate intranet, we
construct an experimental active net that mainly includes 3
active nodes and 3 non-active ones, shown in Figure 3. The
Accelar 1100B or 8600 routing switch, and 3 PC boxes are
located in an experiment network (net 10), which is routed to
the intranet where working machines such as Sun

0-7803-7064-3/01/$10.00 (C) 2001 IEEE IEEE OPENARCH 2001

5

workstations are. The ORE ANTS service is loaded on the
Accelar node and tested with the ANTS applications such as
the ANTS Ping (APing).

• Accelar 1100B: PowerPC 403/66Mhz with 32 MB

memory and VxWorks 5.3, as the active router running
the ORE ANTS

• Accelar 8600: PowerPC 740/266Mhz with 64 MB
memory and VxWorks 5.3, as the active router running
the ORE ANTS

• 2 Sun workstations: UltraSPARC I/167Mhz with 128 MB
memory and Solaris 2.7, as Source and Destination hosts
running MIT ANTS

• HTTP server: PII /400MHz system with 32 MB memory
and Linux 2.2.14, providing the ORE service jar files and
the ORE ANTS configuration

• 2 PCs: PII /400MHz systems with 32 MB memory and
Linux 2.2.14, as source and destination hosts running
regular Ping.

Figure 3: The experimental active net running ANTS EEs

To reflect the above network, we modify some ANTS
configuration files such as “ants.config” and “ping.routes” to
use the Accelar as the active router and two Sun workstations
as the Source and Destination hosts. All the configuration
files are also stored in the same HTTP server.

The ORE ANTS service runs as follows. After booting
(with the ORE boot image), the Accelar downloads and then
starts the ORE core, the ORE ANTS and other services from
the HTTP server. When the ORE ANTS service is loaded, it
further downloads these configurations and uses them to set
up the ANTS EE. On the two hosts, the original MIT package
is used to start the ANTS EEs with their own configurations.

To use this service, the ANTS Ping application is started at
the Source host and sends 100 capsules to the Destination at a
given interval. Initial processing the capsules by the ORE
ANTS EE at the Accelar indicates that it encounters a new
active service, i.e., the Aping service. Then it sends a request
to the capsule’s source for loading the Aping service code.

Once the code is transferred to the Accelar, the ORE ANTS
EE executes it to process the first and then subsequent
capsules so that they are forwarded to next ANTS-enabled
node (i.e., the Destination host). When the Destination echoes
the APing capsules, the Accelar (now the Aping code is
installed) can readily process each feedback capsule and
forward to the intended Source host. Those capsules
transmitted and received at each node show that all the ANTS
EEs are working properly, including the ORE ANTS services
on the Accelar.

V. EXPERIMENT AND RESULT

System performance is a very concerned issue to the active
networking approach. In this section, we study the
performance in terms of delay and throughput and compare
active networking communication with regular IP
communication, through our experiment based on the active
net shown in Figure 3. The Accelar node, which is either
1100B or 8600, routes both active and regular IP packet
traffic during the experiment.

A. Experiment

The experiment has two fundamental goals regarding the
active networking services with the commercial network
hardware platform. The first goal is to verify that through
Openet the ANTS EE is deployed on the Accelar and works
with other ANTS EEs on the Source and Destination hosts.
Section IV has already described how to achieve this goal by
loading and activating the ANTS EEs and applications on the
Accelar and Sun workstations.

 The second goal is to evaluate the service performance
and to determine the impact of active communication and
capsule processing on the system performance, as compared
to regular non-active network communication. To achieve
this, both ANTS Ping (APing) and regular Linux Ping (Ping)
applications are tested (because other ANTS applications are
not easily comparable). In the active net, the Aping test uses
two Sun workstations as Source and Destination hosts, the
Accelar as the active router and a Linux PC as the HTTP
server. The Ping test uses two Linux PCs as source and
destination, which are also connected by the same Accelar.

Two Accelar routing switches 1100B and 8600 are used
respectively in the active net, with all the tests repeated.
Accelar 1100B has a slow CPU while Accelar 8600 has a fast
CPU. Through testing with these two Accelars, we can
understand how those CPUs perform capsule processing
differently.

The two applications are tested by sending at least 100
packets or capsules at some regular intervals. The Aping
capsule size is 83 bytes while the Ping packet size is 64 bytes.
Initially, when Aping is started the first time, it sends 100
capsules at 1000ms interval. Then, Aping is repeatedly tested
and measured under 4 different intervals from 0 to 1000 ms.
Ping is tested only twice by sending 100 (or more) packets at

0-7803-7064-3/01/$10.00 (C) 2001 IEEE IEEE OPENARCH 2001

6

two extreme intervals, one interval is 0 (using “ping –f”) and
the other is 1000ms (using “ping”). Both APing and Ping are
tested under normal traffic rather than overloaded. It seems
senseless having background traffic congest the network in
this experiment since the Accelar has a throughput as much as
10 gbps.

B. Results and Analysis

Network communications in the experiment are packet- or
capsules-based. At each node, all packets or capsules
transmitted and received are counted, and their departure and
arrival time are measured. Following the experimental result
is our analysis.

1) Loss

Having all the capsules delivered is very important to
active networks applications, even though the network may
not guarantee it. In Aping, when the Destination host receives
a capsule, it returns a feedback capsule to the Source host.
The numbers of feedback capsules received at the Source
host are drawn in Figure 4 and indicate how many capsules
are securely conveyed in the active net.

Packet received at Source Node
(100 packets or capsules sent)

100

21

60

100100 100 100

0

20

40

60

80

100

120

0 10 100 1000

Interval
 (ms)

Packets

Ping

Aping(1100B)

Aping(8600)

Figure 4: Received packets for Ping and Aping

In this experiment, of all the Aping tests with four
intervals, only two tests that use Accelar 1100B and work at
other intervals (0 and 10ms, less than the capsule round-trip
time) lose their capsules. Other tests that either work at
intervals 100ms and 1000ms or use Accelar 8600
communicate all the 100 capsules and their feedback ones.

The worst case that the Source host only receives 21
feedback capsules happens when Aping sends capsules to
Accelar 1100B uninterruptedly (i.e., its interval is 0ms). The
reason is that the ANTS communication is based on the UDP
channel and thus does not guarantee packet delivery. The
UDP communication is actually blocked when the next-hop
nodes (i.e., the Accelar and the Destination host) are busy in
receiving and processing incoming capsules.

In comparison, all the APing tests using Accelar 8600 at all

intervals do not lose capsule. This Accelar has sufficient CPU
competence to process incoming capsules in time, as a result,
no UDP communication is blocked even at 0ms interval.

On the other hand, the two Ping tests with 0 and 1000ms
intervals receive all the feedback packets, without loss. This
is because that both Accelar and Sun workstation can process
the well -defined ICMP packets immediately without blocking
the arrival of next packet.

2) Delay and Throughput

Table 1 lists the packet delay and throughput values of the
APing and Ping tests. All APing tests are measured after the
Accelar and the Destination have loaded the APing service
code, except the APing ones “1000 (startup)” at the bottom
lines in Table 1. These “startup” ones are the first tests in
which the Accelar and the Destination need to load the APing
service code from the Source host before they can process the
first incoming capsule.

Table 1: Packet Delays of Ping and Aping Tests

(In milli seconds)
Ping

Interval First packet Average Throughput (pps)
0 1.2 0.1 10000
10 - - -
100 - - -
1000 0.8 0.1 10000

APing (1100B)
Interval First capsule Average Throughput (cps)

0 3209 - -
10 551 - -
100 139 32 31.5
1000 131 31 32.3

1000 (startup) 760 53 19.6
APing (8600)

Interval First capsule Average Throughput (cps)
0 47 391 2.55
10 12 11 90.9
100 12 11 90.9
1000 13 11 90.9

1000 (startup) 462 36 27.7

Only the two APing tests that lose capsules cannot

calculate their average delays and throughputs. Particularly,
for the Aping test at 0ms interval, it is 3209ms past when the
Source host receives the first capsule feedback. Why? The
experiment shows that the Source host sends out all 100
capsules (consuming 3208 ms totally) before turning to
receive capsules. For Accelar 8600, the APing test at 0ms
interval has a larger average delay of 391ms, which indicates
that capsules are ever buffered heavily before processing.

In other tests that do not lose their capsules, their average

0-7803-7064-3/01/$10.00 (C) 2001 IEEE IEEE OPENARCH 2001

7

delays and throughputs are pretty close, 31ms for Accelar
1100B and 11ms for Accelar 8600.

It’s also noticed that the first tests “1000 (startup)” at
1000ms interval have bigger delays (i.e., 760 ms for Accelar
1100B and 462ms for Accelar 8600) when the Source
receives the first feedback capsule, but further tests “1000” at
the same interval have much shorter delays, 31ms and 11ms
respectively. The reason is that the later tests save time
loading the Aping service code on each node along the
capsule route.

The maximal throughput of the APing tests is found to be
32.3 cps (capsule per second) for Accelar 1100B and 90.9 cps
for Accelar 8600. However the two Ping tests have the same
throughput of 10,000 pps (packet per second) and the same
average delay of 0.1ms as well . This comparison reveals that
packet-by-packet processing in the ANTS service
significantly reduces the network throughput.

3) Delay Contributions of APing tests

To look into what contributes the capsule delay, capsule-
processing time consumed at each node is measured by
comparing the time of receiving and re-transmitting one
capsule. Figure 5 depicts the delay contributions among
different components in the Aping tests that have the minimal
average capsule delays: 31ms for Accelar 1100B and 11ms
for Accelar 8600.

Delay Contributions

0

13

0

8

1x2

2x8

1x2
2x0.5

0

5

10

15

20

Source Destination Accelar Java I/O (4)

Time (ms) Aping(1100B)
Aping(8600)

Figure 5: Delay distribution among components

The Source host does not process a capsule (excluding
transmission) and takes 0ms. The Destination host takes 2ms
to process a capsule before returning a feedback capsule. The
Accelar processes a capsule sent from the Source and a
feedback capsule returned from the Destination, consuming
totally 16ms for Accelar 1100B and 8ms for Accelar 8600.
That is, the Accelar 1100B takes averagely 8ms processing
each capsule, or 3 times slower than the Destination (i.e., a
Sun workstation). However Accelar 8600 takes 0.5ms, 3
times faster than the Destination.

The remaining time (13ms for Accelar 1100B and 8ms for
Accelar 8600) is consumed by the round-trip communication
of a capsule. In fact, it takes li ttle time (less than 1 ms)
transferring a capsule among three nodes by the wire

communication. So, that time is supposedly used by 4 pairs of
Java network I/O operations (write and read) on the three
nodes (1 on the Source, 1 on the Destination and 2 on the
Accelar). That is out of our expectation! However, additional
network tests based on a Linux PC and a Sun workstation
confirms that the Java overhead for a pair of simple UDP
socket I/O operations (i.e., a DatagramSocket server writes a
32-byte message and a DatagramSocket client reads it) needs
2~3 ms while the same socket operations using C/C++ takes
almost 0 ms.

That is, on Accelar 8600, a capsule and its feedback need
2x0.5ms processing and 2x2ms I/O operation. The total time
of a capsule delay related to Accelar 8600 is averagely 5ms,
or at a throughput of 200 cps.

Compared with Accelar 1100B, in an APing test using
Accelar 8600, the whole Java I/O of a capsule
communication takes 8ms reduced from 16ms, however
nearly 75% of the total 11ms capsule round-trip time arising
from 42% of 31ms. This gives a lesson that JVM
implementation, particularly in Java network I/O operations,
is the bottleneck of active networking performance once the
capsule processing abili ty is enhanced.

C. Discussion

The above experiment may not be complicated but it is
adequate to reach the two experimental goals. It has verified
the deployment of the active networks service ANTS through
Openet and also examined the performance of the Accelar-
based active networking. Here we discuss common issues
about the active networking services with the Openet
platform and the commercial network platform, including the
performance evaluation of this experiment, potential
performance improvement through hardware and software
approaches, and finally the classification of active networking
services that are applicable to the current commercial
network hardware platforms.

1) Performance evaluation

Generally speaking, in this experiment, the overall
performance of the ANTS service running in current Accelar-
based active network is similar to that in conventional host-
only active networks, and largely depending on CPU
competence and Java runtime execution. The maximal
throughput of APing is 32.3 cps using Accelar 1100B or 90.9
cps using Accelar 8600, which is not comparable to the
throughput of regular Ping, 10,000 pps. This is not a
surprising result. The main reason is that like a host system
the Accelar has to use its limi ted CPU to process every
capsule prior to forwarding since its ASIC-accelerated
forwarding engines cannot process packets whose protocols
are not integrated. Actually those CPUs used in the host
systems here are Sun UltraSPARC 1 @167MHz and Intel
Pentium II @400MHz, neither of them is the strongest CPU
today. Of the Accelar routing switch family, Accelar 1100B is
an economic product that is equipped with a PowerPC

0-7803-7064-3/01/$10.00 (C) 2001 IEEE IEEE OPENARCH 2001

8

403@67MHz CPU and Accelar 8600 is a superior one that is
equipped with a PowerPC 740@266Mhz CPU. That’s why
Figure 5 shows that the Accelar switches process an Aping
capsule distinctively, i.e., Accelar 1100B takes four-fold time
of a Sun host does While Accelar 8600 takes one quarter of a
Sun host does.

In contrast, the regular traffic of Ping maintains the same
throughput that is different from the active network
communication, as shown in Table 1. This result is li ttle
changed in the experiment even if both Ping and APing are
tested at the same interval simultaneously, because the
Accelar separates control and data planes. The Accelar
forwarding engines that deal with the regular traffic are not
impacted under the condition that the Accelar CPU is busy in
processing the active network traffic.

2) How can we enhance the performance?

Typically, the ASIC technology enables commercial
network devices like the Accelar switches with high
capabili ty that can forward regular traffic with well -defined
protocols at a designated rate of 1 gbps per port, or nearly 2
milli on 40-byte IP packets per second. In contrast, the active
packets that exercise their own protocol are processed by the
Accelar CPU system at a rate around 200 cps. Such a low
throughput cannot meet the performance requirement of
commercial data communications.

How can we enhance the performance? Obviously,
integrating stronger CPUs such as latest PowerPC chips into
commercial network devices like the Accelar is reasonable
and has no problem in implementation. Accelar 8600 coming
with faster CPUs such as PowerPC 740@266Mhz already
shows a very good performance improvement (see Figure 5).
But it is li ttle possible to enhance shortly the active
networking performance as high as the Accelar designated
rate due to the Java I/O overhead. Recent network
development using network processors such as IXP 1200 [12]
exposes another hardware approach achieving this
performance level, provided that Openet or similar
programming platforms become available. But it has to
resolve the same overhead issue when it deals with Java
applications.

The software approach can also enhance the performance.
In Openet, all network services except some low-level service
implementation are programmed using Java. Java is good
across platforms, but poor at performance (see Figure 5).
Improving JVM with code caching and JIT (just-in-time)
technologies cannot change this weakness since the active
code is dynamically loaded. However improving JVM in
expediting Java I/O operations is absolutely imperative and
efficiently.

Moreover, re-engineering the active network services to
couple tightly with commercial network hardware platforms
so that they can make better use of the high-performance
forwarding abili ty. This is potentially a viable solution to the
data-plane services, however it must avoid the platform-
dependent issue. The Openet service hierarchy can solve it by

building high-level application services upon low-level
system services that shelter the hardware diversity. See next
discussion for detail .

Finally, what can Openet do for that? In fact, Openet does
not affect the service execution except starting and
terminating. Once a service is activated, the ORE Oplet
encapsulation that is just a wrapper of the service code does
nothing with the service functionali ty. In the future, through
controlli ng use of resources (e.g., CPU, memory) per service,
Openet can prioritize but improve service performance.

3) With Openet, what active network services are
applicable to current commercial hardware?

The Openet’s goal is to provide a hardware-independent
programming platform that users can create and deploy
network services with their intelli gence and application
purposes onto commercial network devices. Active network
services are particularly important but computation-intensive,
thus not all of them are sufficiently supported by current
commercial hardware due to low CPU competence. However
some of them are, particularly those do not generate large
traffic and/or perform real-time communication.

As stated in Section III , in Openet, according to the planes
they serve all the network services including active network
services can also be divided into control-plane and data-plane
services, regardless what levels they are. Data-plane services
usually are involved in application-specific communication
and can apply user-defined protocols rather than well -defined
protocols to packet processing. Some data-plane services
such as active multimedia services require service quali ty
guarantee such as real-time support, and thus are not
applicable to current network devices. Other data-plane
services like ANTS have loose or elastic time requirement
and are thus applicable.

Control-plane services mainly deal with network
management such as configuration, service initiation, policy
notification and monitoring. They affect the data-plane
behaviors such as forwarding and routing by changing service
policies, but do not process data packets directly. These
services can be done at system startup, on schedule, or
triggered by events, therefore they have few strict
requirements such as real-time configuration. They are
definitely the most potential network services applicable to
current commercial network devices.

Moreover, with Openet, customer services such as active
network services are hardware-independent. On commercial
network nodes like the Accelar, the core part ORE sits in the
control plane. Through the Oplet encapsulation, network
services whether they are active networking-based or not are
easily encapsulated as Oplets, and ORE treats them in the
same way. Furthermore, through the service hierarchy,
customer services at the data plane are loaded to the control
plane and then access the data plane through invoking low-
level services. Some low-level services such as JFWD and
JMIB requiring both Java and native codes may rely on
platform-dependent implementations but provide platform-

0-7803-7064-3/01/$10.00 (C) 2001 IEEE IEEE OPENARCH 2001

9

independent APIs. They can be used by Active network
services such as Netscript [7] that requires access local
routing and interfaces and active IP accounting [3] that uses
local traffic monitoring features. Since ORE is Java only and
platform-neutral, customer services are also programmed
using Java so that they are portable to other network
platforms.

VI . CONCLUSION

This paper presents two major contributions. The first
contribution is that Openet is presented as a programmable
networking platform by which customer network services
including active networks services can be deployed onto
commercial network devices. The deployment of the ORE
ANTS service on the Accelar routing switch shows that now
it becomes doable bringing the active networking technology
to real network nodes. Moreover, these services under Openet
are portable across network hardware platforms.

The other is that through experiment the performance of
active networking on the commercial network hardware
platform is examined using two commercial Accelar routing
switches. Since commercial hardware like the Accelar has
high forwarding abili ty for pre-defined network protocols but
limi ted packet processing abili ty for customized protocols,
the throughput of active network traffic is not comparable to
that of regular traffic. The main reason is that Java network
I/O operations is much more serious in impacting the active
networking performance than Java capsule processing.
Several hardware and software approaches have been
analyzed in commercial network devices improving the
performance, particularly employing stronger CPUs in
network hardware and re-engineering the active network
services to make better use of the wire-speed forwarding
hardware.

Through service classification, we realize that some active
network services including most control-plane and certain
data-plane services are applicable to current commercial
network hardware, as long as they do not require real-time
communication or heavy packet processing.

At this stage, we’re having some works doing with Openet,
active networking and network hardware platforms. First,
we’re exploring Openet to develop practical active
networking applications such as new service creation, QoS
provisioning and monitoring. Second, porting Openet
services to more network hardware platforms including non-
Nortel brand and network processor-based network devices is
highly demanded. Third, Openet will i ntroduce new
mechanisms in improving service deployment, e.g., service
security enhancement and thread-based resource allocation.
Finally, even though latest commercial network products such
as Accelar 8600 are equipped with fast CPUs, how to make
most use of both CPU and forwarding hardware in enhancing
the abili ty of customized packet processing in both control-
plane and data-plane and finally the performance of active

networking is another investigating issue.

ACKNOWLEDGEMENT

The authors would like to thank Franco Travostino and
Doan Hoang at Nortel Networks Corp. for their reviews and
constructive suggestions, and Ramesh Durairaj for his help in
the experiment setup. We also thank Norman Brickman at
MITRE Corp., Steve Zabele and his team at TASC Inc. for
their valuable discussions about deploying the ANTS service
on the Accelar routing switch.

REFERENCES

[1] T. Lavian, R. Jaeger, J. Holli ngsworth, “Open Programmable
Architecture for Java-enable Network Devices” , Stanford Hot
Interconnects, August 1999.

[2] David L. Tennenhouse, et al, “A Survey of Active Network
Research” , IEEE Communications Magazine, Vol. 35, No. 1,
January 1997

[3] F. Travostino, “Active IP Accounting Infrastructure,” IEEE
OpenArch 2000, Tel Aviv, March 2000.

[4] Nortel Networks Corp., “Networking Concepts for the
Passport/Accelar 8000 Series Switch” , April 2000

[5] D. Scott Alexander, et al , “The SwitchWare Active Network
Architecture”, IEEE Network Special Issue on Active and
Controllable Networks, vol. 12 no. 3, July 1998

[6] David J. Wetherall, John Guttag, and David L. Tennenhouse,
“ANTS: A Toolkit for Building and Dynamically Deploying
Network Protocols” , IEEE OPENARCH'98, San Francisco,
CA, April 1998.

[7] Y. Yemini and S. da Silva. “Towards Programmable
Networks” , IFIP/IEEE Intl. Workshop on Distributed Systems:
Operations and Management, L'Aquila, Italy, October 1996.

[8] D. Scott Alexander, et al, “ANEP: Active Network
Encapsulation Protocol” , Active Networks Group, Request for
Comments,
http://www.cis.upenn.edu/~switchware/ANEP/docs/ANEP.txt,
July 1977

[9] Active Network Backbone (ABone), http://www.isi.edu/abone/
[10] B. Schwartz, A. Jackson, T. Strayer, W. Zhou, R. Rockwell

and C. Partridge, “Smart Packets for Active Networks” , IEEE
OpenArch 99, New York, March 1999

[11] Phil Wang, “ORE ANTS service on Accelar” ,
http://www.openetlab.org/downloads/HOWTO.ore-ants, May
2000

[12] Intel Internet Exchange Arcitecture (IXA),
http://developer.intel.com/design/ixa/white_paper.htm

0-7803-7064-3/01/$10.00 (C) 2001 IEEE IEEE OPENARCH 2001

