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Abstract – Curr ent Active Networks research projects are 
mainly realized in software-based host systems since 
commercial network devices lack required networking 
programmability. This paper studies the active networking 
approach using the Openet programmable networking 
platform. Openet comprises ORE (Oplet Runtime 
Environment) and hierarchical services from low-level systems 
to high-level applications, and provides a neutral service-based 
programmability to network devices. Moreover, Openet can 
have customer network services including Active Networks-
based services deployed on curr ent commercial network 
platforms. 

We demonstrate the active networking with commercial 
network devices by deploying the active network service ANTS 
onto the Accelar r outing switches. The performance of active 
network communication is examined by the experiment in an 
Accelar-routed active net and compared with regular non-active 
network communication. The experimental result reveals that 
Java network I /O is a bott leneck of enhancing capsule 
processing capability and ends up a look at what active network 
services are applicable to curr ent commercial network 
platforms.  Finally we present observations and future works 
about active networking through the Openet platform. 

I . INTRODUCTION 

Programmable networking technologies such as Active 
Networks [2] expose a novel approach that allows customers 
to introduce value-added services into the network “on-the-
fly” . Typically, through the Active Networks, applications can 
deploy new protocols and change their services dynamically 
for specific purposes in terms of active packets. Thus, the 
exciting opportunity is that the network infrastructure can be 
changed by network service providers and other third parties, 
rather than only network device providers. 

The present-day trend in commercial-grade routers and 
switches is to implement ever more functionali ty of network 
in hardware, resulting in ever-faster performance, but ever-
less flexibili ty, since only fixed sets of services and protocols 
are supported. As more of the functionali ty is frozen in 
sili con, less is the capabili ty to introduce new service and 
customization inside the network. This limi tation makes these 
network devices unsuitable for hosting Active Networks 
services, resulting in that their current implementations are 
primarily done in host-based systems. 

In order to enable programming services, network devices 
must be, in addition to fast performance, equipped with the 
networking programmabili ty. The Nortel Networks 

Technology Center has proposed out a programmable 
networking platform, Openet [1], which is a service-based 
internetworking infrastructure that delivers such 
programmabili ty to diversified network devices.  

This paper studies the deployment of Active Networks 
services using the Openet platform onto commercial network 
hardware. Openet provides the networking programmabili ty 
by introducing ORE and a stack of hierarchical network 
services. The ORE is an open, platform-neutral, pure Java 
runtime environment that is used to customize, download and 
initiate network services dynamically. In terms of Oplets, all 
network services are encapsulated as ORE-based services. 
These services are classified into four categories from low-
level system services such as JFWD (Java Forwarding) and 
JMIB (Java MIB access) to high-level application services 
such as active network EEs (Execution Environments) and 
their applications. Finally, services are injected into the 
network by having ORE download and activate their Oplets 
on network nodes. 

The Nortel Networks Accelar routing switches [4] are used 
with Openet in our investigation. They are commercial multi-
gigabit products that provide in hardware L3 routing, 
switching, fil tering and classification. To gain the wire-speed 
forwarding performance, the Accelar in the data plane 
employs the ASIC (Application Specific Integrated Circuit) 
hardware technology that is not re-programmable yet. 
However, the Accelar control plane is a CPU-based system 
that can run Java and external program code. This property 
allows Openet to be integrated so that the Accelar becomes a 
re-programmable device that allows deploying network 
services in the control plane.  

To demonstrate the active networking capabili ty on the 
Openet platform, the ORE ANTS service, which implements 
the MIT ANTS EE [6], is deployed on the commercial 
Accelar routing switches. Within the Nortel Networks 
corporate intranet, an experimental active network is 
constructed with active nodes, non-active nodes and a 
downloading server. We successfully run ANTS applications 
to enable the active network communication over the network 
and to examine the system performances of active and regular 
network communications through experiment.  The result 
shows that Java network I/O operations transmitting a capsule 
take much more time than processing a capsule once faster 
CPU is employed in network nodes. This becomes the 
number one cause impacting the network performance. 

The remainder of this paper is organized as follows. 
Section 2 briefs the DARPA Active Networks technology and 

0-7803-7064-3/01/$10.00 (C) 2001 IEEE IEEE OPENARCH 2001



 
 

2 

related works. Section 3 introduces the Openet programmable 
platform, including ORE, hierarchical services and Accelar. 
Section 4 argues how a service is injected to the Accelar, and 
details ORE APIs as well as the ANTS service deployment on 
the Accelar. Section 5 presents experimental results and 
related discussions. Finally, observations and future works 
are concluded about Openet and active networking. 

II . THE DARPA ACTIVE NETWORKS AND 
RELATED WORKS 

The DARPA Active Networks approach [2] is a major 
effort to supply the user networking abili ty under the Internet 
infrastructure. Through installi ng multiple active user 
interfaces or Execution Environments (EEs) on active nodes, 
users can flexibly compose new protocols and dynamically 
deploy new services for their specific purposes. These EEs 
are referred to virtual machines and “programming 
interfaces” that are available for the Active Networks 
applications to process active packets or capsules and to 
control the processing.  

Significant research works include: the MIT ANTS (Active 
Node Transfer System [6]) toolkit, the UPenn Switchware 
architecture [5], the Columbia University Netscript language 
[7], the USC/ISI Abone (Active Backbone) [9], the Active 
Networks protocol ANEP [8] and the BBN Smart Packet 
network management [10]. To date, these developments have 
been mainly realized in software-based hosts (e.g., Linux 
systems) that offer the required programmabili ty but lack the 
performance required in real networks. Nonetheless, the 
foremost goal of Active Networks is to bring these active 
networking technologies to commercial network nodes 
(routers and switches), in which they also gain performance 
from hardware acceleration. 

III . OPENET  

Openet is originated from the open programmable 
architecture for Java-enabled network devices [1]. The 
Openet architecture depicted in Figure 1 includes two major 
components of the Openet: ORE and Hierarchical Services. 
In this section introduces the two components as well as how 
Openet works with the commercial hardware Accelar. 

A. ORE   

The Oplet Runtime Environment (ORE) is the core of the 
Openet architecture. It is an open object-oriented networking 
environment for customer service creation and deployment. 
At runtime, it supports injecting customized software, e.g., 
the Active Networks EEs, into network devices through 
secure downloading, installation, and safe execution of Java-
based service code inside a JVM (Java Virtual Machine).  

In order to secure service downloading and management, 
we define the Oplet as a self-contained downloadable unit 

that embodies a non-empty set of services. Thus, services are 
encapsulated by one or multiple Oplets, and Oplets in turn 
publish those services they provide to ORE. Along with the 
service code, an Oplet also specifies service attributes, 
authentication information, and resource requirements. Like a 
Java object, a service can inherit particular functions from 
other services and offers its interfaces public to them.  

The ORE provides the mechanisms to download Oplets, to 
resolve service dependencies, to manage the Oplet li fecycle, 
and to maintain a registry of active services. Users can deploy 
network services to the network by having ORE to download 
and activate their Oplets on particular network nodes.  

 

Figure 1: The Openet architecture  

B. Service Hierarchy 

In Openet, all network services are encapsulated by Oplets 
and run within the ORE environment. Oplets are objects and 
provide public APIs accessible to application services. 

To ease service creation and gain platform independency, 
Openet employs a service hierarchy that places these services 
into four categories: System, Standard, Function and User, as 
shown in Figure 1.  

1) System services and JFWD  

“System services” are low-level network services that have 
direct access to the hardware features through JNI or native 
codes. For re-programmable hardware, they are built over 
native programming interfaces. Otherwise, for current ASCI-
based commercial hardware that is not re-programmable, they 
wrap the hardware instrumentation that controls the ASIC 
behaviors. Thus, in fact, they by their neutral APIs determine 
how much of the programmabili ty Openet brings to 
hardware. They require particular hardware knowledge, and 
provide neutral APIs to upper-level services. 

 
• JFWD:    routing and forwarding service, alters 

hardware packet processing behaviors  
• JMIB:      MIB access service, provides access to 

hardware instrumentation 
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• JSNMP:  SNMP client, provides access to the SNMP v2 
agent 

• JPCAP:   local packet capturing service using Berkeley 
libpcap (if available) 

 
Of the above system services, JFWD is a fundamental one 

that provides platform-independent Java APIs that customer 
services use to alter the routing and forwarding behaviors on 
network nodes. It includes a number of standard service 
mappings such as MAC address, ARP, IP routing, IP fil tering, 
IP Diffserv and VLAN (Virtual LAN). JFWD 
implementations on different network platforms (e.g., 
Accelar/VxWorks and Linux) require use of native codes or 
communications. On the Accelar routing switches, the JFWD 
implementations turn out to be a wrapper around the 
hardware instrumentation interfaces. 

A typical use of JFWD is to instruct the forwarding engine 
to alter packet processing through the installation of IP fil ters. 
A fil ter is composed of MAC address, IP or transport protocol 
header, or their combination, and a policy that specifies the 
action executed to the matched packets. The policy can define 
where the matched packets are delivered or how the packet 
content (e.g., Diffserv remarking) is altered. Diverting 
packets to the CPU (at the control plane) allows customer 
services such as AN EEs to capture packets that match 
particular fil ters (e.g., the protocol type is ANEP) from the 
forwarding plane and thus to process them. 

2) Standard services 

 “Standard Services” provide the ORE standard features 
for customer service creation and deployment. They are also 
used to conduct user interaction with ORE.  

 
• OpletService:    Oplet service API, extended to create 

service descriptions and interfaces 
• ManifestOplet: Oplet encapsulation abstract interface, 

implemented to create service-specifi c Oplet 
• Startup:            ORE startup service, auto-starts specified 

services when the ORE starts 
• Shell :          telnet-li ke user interface service, provides 

shell commands to manipulate Oplets and/or network 
services (e.g., start and stop) 

• Logger:            ORE log service, provides printout 
during running services 

3) Function services 

“Function Services” provide common functionali ty or 
utili ty used to rapidly create user-level services. They are 
intermediate services coming with the ORE release or 
contributed by a third party. 

 
• HTTP:           HTTP service 
• JDiffServ:     Diffserv interface, provides access to the 

hardware Diffserv feature 

• Jcapture:      Packet capturing service, sets IP filters and 
diverts packets to CPU 

• IpPacket:      IP packet utilit y, constructs IP/TCP/UDP 
header and payload 

4) User services 

Namely, “User Services” are the user-end application 
services for particular purposes. They are buil t using the other 
three lower categories, dependent on whether they require use 
of existing services and hardware features. Typical 
application services include altering packet forwarding 
priority, QoS setup, mobile agents, network monitoring, 
Active Networks EEs, network intrusion detection, protocol 
composition and personalized communications.  

 

Figure 2: Accelar and Openet 

C. Accelar Routing Switch 

The Accelar, or Passport1, achieves a significantly higher 
level of performance by introducing two separated working 
planes control and forwarding, as depicted in Figure 2. The 
forwarding plane along the data path is implemented using 
ASICs that can forward packets up to 256 gbps (gigabits per 
seconds) without consuming any CPU resource. 
Conventional routers and software-based routing systems 
involve CPUs in both packet forwarding and forwarding 
control, hence reduce the level of performance that they can 
achieve.  

The control plane utili zes the whole CPU resource, and 
resides the VxWorks OS and the embedded Java VM. 
Moreover, it runs ORE, and houses diversified network 
applications that make up of customers’ intelli gences and 

                                                 
1 Passport/Accelar 1100B, 8600 and other models are available in 
the commercial market without Openet. Openet is free and source 
open for the research purpose. 
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value-added services. As a result, the Accelar brings the 
Openet programmabili ty to real networks. 

How does Openet work with a network node like the 
Accelar? Basically, ORE and network services are initiated at 
the control plane. In fact, these services can be divided to two 
planes: control and data, according to which plane they serve. 
Control-plane services deal with network management issues 
such as changing network configurations (e.g., routes), or 
altering the forwarding behaviors (e.g., forwarding priority) 
along the data path. Data-plane services such as new protocol 
processor cut through the data path and take in and process 
particular packets before forwarding them. 

IV. SERVICE DEPLOYMENT 

With Openet, network services are composed using normal 
Java classes.  Before they get deployed to the network, they 
are encapsulated with the ORE Oplet interfaces to have the 
Openet programmabili ty. This section describes issues about 
the service deployment. 

It is obviously of interest that commercial network devices 
like the Accelar embodies the Active Networks approach to 
real networks by hosting these EEs. The MIT ANTS is a 
typical EE for composing and deploying new network 
protocols dynamically. It employs mobile code, demand 
loading, and caching techniques, and provides a software 
package that comes with a toolkit and several demonstrative 
applications such as ping and multicast. 

To deploy this service, we’ve buil t an ORE ANTS service 
named “AntsNodeService”, which provides the same ANTS 
EE capabili ty as the original MIT ANTS distribution does.  
Through wrapping the MIT ANTS code, this ORE ANTS 
implementation is completely injected onto the Accelar 
1100B and 8600 routing switches.  

A. Two Oplet APIs 

The ORE provides two Oplet APIs for service creation and 
encapsulation. 

1) Base service 

The first API “OpletService” is a base class of service 
creation that a new service extends to define its interface. 
That interface class includes the service description and the 
service function interfaces. 

A service also has another class (called as the object class) 
to implement its interface class. That object (e.g., 
AntsNodeServiceImpl.java) realizes the customer 
functionali ty that provides a service (e.g., an Active Networks 
EE) as well as two private methods that the service Oplet 
internally uses to start and stop the functionali ty. It also can 
import Java codes of other services or user programs. 

2) Service Encapsulation 

The second “ManifestOplet” is an abstract interface of 

service encapsulation that an Oplet (e.g., AntsNodeOplet) 
implements to encapsulate the service and register it to the 
ORE. ManifestOplet has two methods: startService() and 
stopService(), which are used by the ORE to start or stop a 
service. 

While loading the Oplet, the ORE extracts the service 
information from a manifest file like “Ants.mf” , including the 
Oplet name, service package and description and dependent 
services. This file is consistent with the service Oplet. 

B. Service Package 

The Java code of a service is packed to a jar file for ORE 
downloading, which may include the below Java classes and 
other user-defined classes. 

 
• AntsNodeService.java:         the AntsNodeService public 

interface 
• AntsNodeServiceImpl.java: the AntsNodeService 

implementation, wraps “ package ants”  
• AntsNodeOplet.java:            the Oplet, provides the 

“ AntsNodeService” service 
• Ants.mf:                                the service manifest, provide 

the service information 
 
The jar file (e.g., ore-ants.jar) can be stored in the local 

ORE directory “<OREROOT>/ore/jars/” , or uploaded to a 
trusted server for later downloading.  

C. Service Injection 

The final stage of service deployment is to inject network 
services to network nodes, which implies downloading and 
activating their code within the ORE. There are at least three 
ways to do dynamic service injection, e.g., the ORE shell 
service, the ORE startup service and a user service initiation 
service. Once ORE downloads and then activates the service 
Oplets, they are injected and thus become local services (e.g., 
on the Accelar).  

The “AntsNodeService” is actually the ORE wrapper 
around the ANTS code and generates an instance of the MIT 
ANTS EE (version 1.2). The ORE ANTS service is packed 
with both the MIT ANTS package and the AntsNodeService 
one. Then, it’s stored in a Linux HTTP server (see Figure 3).  

The Openet software including the ORE 0.3.3 and the 
whole ORE ANTS are available via 
“http://www.openetlab.org/downloads/” . More statements 
about this service deployment are detailed in [11]. 

D. Our Active Net 

Within the Nortel Networks corporate intranet, we 
construct an experimental active net that mainly includes 3 
active nodes and 3 non-active ones, shown in Figure 3. The 
Accelar 1100B or 8600 routing switch, and 3 PC boxes are 
located in an experiment network (net 10), which is routed to 
the intranet where working machines such as Sun 
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workstations are. The ORE ANTS service is loaded on the 
Accelar node and tested with the ANTS applications such as 
the ANTS Ping (APing). 

 
• Accelar 1100B: PowerPC 403/66Mhz with 32 MB 

memory and VxWorks 5.3, as the active router running 
the ORE ANTS 

• Accelar 8600: PowerPC 740/266Mhz with 64 MB 
memory and VxWorks 5.3, as the active router running 
the ORE ANTS 

• 2 Sun workstations: UltraSPARC I/167Mhz with 128 MB 
memory and Solaris 2.7, as Source and Destination hosts 
running MIT ANTS 

• HTTP server: PII /400MHz system with 32 MB memory 
and Linux 2.2.14, providing the ORE service jar files and 
the ORE ANTS configuration 

• 2 PCs: PII /400MHz systems with 32 MB memory and 
Linux 2.2.14, as source and destination hosts running 
regular Ping. 

 

 

Figure 3:  The experimental active net running ANTS EEs 

To reflect the above network, we modify some ANTS 
configuration files such as “ants.config” and “ping.routes” to 
use the Accelar as the active router and two Sun workstations 
as the Source and Destination hosts. All the configuration 
files are also stored in the same HTTP server.  

The ORE ANTS service runs as follows. After booting 
(with the ORE boot image), the Accelar downloads and then 
starts the ORE core, the ORE ANTS and other services from 
the HTTP server. When the ORE ANTS service is loaded, it 
further downloads these configurations and uses them to set 
up the ANTS EE. On the two hosts, the original MIT package 
is used to start the ANTS EEs with their own configurations. 

To use this service, the ANTS Ping application is started at 
the Source host and sends 100 capsules to the Destination at a 
given interval. Initial processing the capsules by the ORE 
ANTS EE at the Accelar indicates that it encounters a new 
active service, i.e., the Aping service. Then it sends a request 
to the capsule’s source for loading the Aping service code. 

Once the code is transferred to the Accelar, the ORE ANTS 
EE executes it to process the first and then subsequent 
capsules so that they are forwarded to next ANTS-enabled 
node (i.e., the Destination host). When the Destination echoes 
the APing capsules, the Accelar (now the Aping code is 
installed) can readily process each feedback capsule and 
forward to the intended Source host. Those capsules 
transmitted and received at each node show that all the ANTS 
EEs are working properly, including the ORE ANTS services 
on the Accelar. 

V. EXPERIMENT AND RESULT  

System performance is a very concerned issue to the active 
networking approach. In this section, we study the 
performance in terms of delay and throughput and compare 
active networking communication with regular IP 
communication, through our experiment based on the active 
net shown in Figure 3. The Accelar node, which is either 
1100B or 8600, routes both active and regular IP packet 
traffic during the experiment.  

A. Experiment 

The experiment has two fundamental goals regarding the 
active networking services with the commercial network 
hardware platform. The first goal is to verify that through 
Openet the ANTS EE is deployed on the Accelar and works 
with other ANTS EEs on the Source and Destination hosts. 
Section IV has already described how to achieve this goal by 
loading and activating the ANTS EEs and applications on the 
Accelar and Sun workstations. 

 The second goal is to evaluate the service performance 
and to determine the impact of active communication and 
capsule processing on the system performance, as compared 
to regular non-active network communication. To achieve 
this, both ANTS Ping (APing) and regular Linux Ping (Ping) 
applications are tested (because other ANTS applications are 
not easily comparable). In the active net, the Aping test uses 
two Sun workstations as Source and Destination hosts, the 
Accelar as the active router and a Linux PC as the HTTP 
server. The Ping test uses two Linux PCs as source and 
destination, which are also connected by the same Accelar. 

Two Accelar routing switches 1100B and 8600 are used 
respectively in the active net, with all the tests repeated. 
Accelar 1100B has a slow CPU while Accelar 8600 has a fast 
CPU. Through testing with these two Accelars, we can 
understand how those CPUs perform capsule processing 
differently.  

The two applications are tested by sending at least 100 
packets or capsules at some regular intervals. The Aping 
capsule size is 83 bytes while the Ping packet size is 64 bytes. 
Initially, when Aping is started the first time, it sends 100 
capsules at 1000ms interval. Then, Aping is repeatedly tested 
and measured under 4 different intervals from 0 to 1000 ms. 
Ping is tested only twice by sending 100 (or more) packets at 
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two extreme intervals, one interval is 0 (using “ping –f” ) and 
the other is 1000ms (using “ping” ). Both APing and Ping are 
tested under normal traffic rather than overloaded. It seems 
senseless having background traffic congest the network in 
this experiment since the Accelar has a throughput as much as 
10 gbps.  

B. Results and Analysis  

Network communications in the experiment are packet- or 
capsules-based. At each node, all packets or capsules 
transmitted and received are counted, and their departure and 
arrival time are measured. Following the experimental result 
is our analysis. 

1) Loss 

Having all the capsules delivered is very important to 
active networks applications, even though the network may 
not guarantee it. In Aping, when the Destination host receives 
a capsule, it returns a feedback capsule to the Source host. 
The numbers of feedback capsules received at the Source 
host are drawn in Figure 4 and indicate how many capsules 
are securely conveyed in the active net.  

Packet received at Source Node
(100 packets or capsules sent)

100

21

60

100100 100 100

0

20

40

60

80

100

120

0 10 100 1000

Interval
 (ms)

Packets

Ping

Aping(1100B)

Aping(8600)

 

Figure 4:  Received packets for Ping and Aping 

In this experiment, of all the Aping tests with four 
intervals, only two tests that use Accelar 1100B and work at 
other intervals (0 and 10ms, less than the capsule round-trip 
time) lose their capsules. Other tests that either work at 
intervals 100ms and 1000ms or use Accelar 8600 
communicate all the 100 capsules and their feedback ones. 

The worst case that the Source host only receives 21 
feedback capsules happens when Aping sends capsules to 
Accelar 1100B uninterruptedly (i.e., its interval is 0ms). The 
reason is that the ANTS communication is based on the UDP 
channel and thus does not guarantee packet delivery. The 
UDP communication is actually blocked when the next-hop 
nodes (i.e., the Accelar and the Destination host) are busy in 
receiving and processing incoming capsules. 

In comparison, all the APing tests using Accelar 8600 at all 

intervals do not lose capsule. This Accelar has sufficient CPU 
competence to process incoming capsules in time, as a result, 
no UDP communication is blocked even at 0ms interval. 

On the other hand, the two Ping tests with 0 and 1000ms 
intervals receive all the feedback packets, without loss. This 
is because that both Accelar and Sun workstation can process 
the well -defined ICMP packets immediately without blocking 
the arrival of next packet. 

2) Delay and Throughput 

Table 1 lists the packet delay and throughput values of the 
APing and Ping tests. All APing tests are measured after the 
Accelar and the Destination have loaded the APing service 
code, except the APing ones “1000 (startup)” at the bottom 
lines in Table 1. These “startup” ones are the first tests in 
which the Accelar and the Destination need to load the APing 
service code from the Source host before they can process the 
first incoming capsule. 

 
Table 1:  Packet Delays of Ping and Aping Tests 

(In milli seconds) 
Ping 

Interval First packet Average Throughput (pps) 
0 1.2 0.1 10000 
10 - - - 
100 - - - 
1000 0.8 0.1 10000 

APing (1100B) 
Interval First capsule Average Throughput (cps) 

0 3209 - - 
10 551 - - 
100 139 32 31.5 
1000 131 31 32.3 

1000 (startup) 760 53 19.6 
APing (8600) 

Interval First capsule Average Throughput (cps) 
0 47 391 2.55 
10 12 11 90.9 
100 12 11 90.9 
1000 13 11 90.9 

1000 (startup) 462 36 27.7 
 
Only the two APing tests that lose capsules cannot 

calculate their average delays and throughputs. Particularly, 
for the Aping test at 0ms interval, it is 3209ms past when the 
Source host receives the first capsule feedback. Why? The 
experiment shows that the Source host sends out all 100 
capsules (consuming 3208 ms totally) before turning to 
receive capsules. For Accelar 8600, the APing test at 0ms 
interval has a larger average delay of 391ms, which indicates 
that capsules are ever buffered heavily before processing. 

In other tests that do not lose their capsules, their average 
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delays and throughputs are pretty close, 31ms for Accelar 
1100B and 11ms for Accelar 8600. 

It’s also noticed that the first tests “1000 (startup)” at 
1000ms interval have bigger delays (i.e., 760 ms for Accelar 
1100B and 462ms for Accelar 8600) when the Source 
receives the first feedback capsule, but further tests “1000” at 
the same interval have much shorter delays, 31ms and 11ms 
respectively. The reason is that the later tests save time 
loading the Aping service code on each node along the 
capsule route. 

The maximal throughput of the APing tests is found to be 
32.3 cps (capsule per second) for Accelar 1100B and 90.9 cps 
for Accelar 8600. However the two Ping tests have the same 
throughput of 10,000 pps (packet per second) and the same 
average delay of 0.1ms as well . This comparison reveals that 
packet-by-packet processing in the ANTS service 
significantly reduces the network throughput. 

3) Delay Contributions of APing tests 

To look into what contributes the capsule delay, capsule-
processing time consumed at each node is measured by 
comparing the time of receiving and re-transmitting one 
capsule. Figure 5 depicts the delay contributions among 
different components in the Aping tests that have the minimal 
average capsule delays: 31ms for Accelar 1100B and 11ms 
for Accelar 8600. 

Delay Contributions

0

13

0

8

1x2

2x8

1x2
2x0.5

0

5

10

15

20

Source Destination Accelar Java I/O (4)

Time (ms) Aping(1100B)
Aping(8600)

 

Figure 5:  Delay distribution among components 

The Source host does not process a capsule (excluding 
transmission) and takes 0ms. The Destination host takes 2ms 
to process a capsule before returning a feedback capsule. The 
Accelar processes a capsule sent from the Source and a 
feedback capsule returned from the Destination, consuming 
totally 16ms for Accelar 1100B and 8ms for Accelar 8600. 
That is, the Accelar 1100B takes averagely 8ms processing 
each capsule, or 3 times slower than the Destination (i.e., a 
Sun workstation). However Accelar 8600 takes 0.5ms, 3 
times faster than the Destination. 

The remaining time (13ms for Accelar 1100B and 8ms for 
Accelar 8600) is consumed by the round-trip communication 
of a capsule. In fact, it takes li ttle time (less than 1 ms) 
transferring a capsule among three nodes by the wire 

communication. So, that time is supposedly used by 4 pairs of 
Java network I/O operations (write and read) on the three 
nodes (1 on the Source, 1 on the Destination and 2 on the 
Accelar). That is out of our expectation! However, additional 
network tests based on a Linux PC and a Sun workstation 
confirms that the Java overhead for a pair of simple UDP 
socket I/O operations (i.e., a DatagramSocket server writes a 
32-byte message and a DatagramSocket client reads it) needs 
2~3 ms while the same socket operations using C/C++ takes 
almost 0 ms.  

That is, on Accelar 8600, a capsule and its feedback need 
2x0.5ms processing and 2x2ms I/O operation. The total time 
of a capsule delay related to Accelar 8600 is averagely 5ms, 
or at a throughput of 200 cps. 

Compared with Accelar 1100B, in an APing test using 
Accelar 8600, the whole Java I/O of a capsule 
communication takes 8ms reduced from 16ms, however 
nearly 75% of the total 11ms capsule round-trip time arising 
from 42% of 31ms. This gives a lesson that JVM 
implementation, particularly in Java network I/O operations, 
is the bottleneck of active networking performance once the 
capsule processing abili ty is enhanced. 

C. Discussion 

The above experiment may not be complicated but it is 
adequate to reach the two experimental goals. It has verified 
the deployment of the active networks service ANTS through 
Openet and also examined the performance of the Accelar-
based active networking. Here we discuss common issues 
about the active networking services with the Openet 
platform and the commercial network platform, including the 
performance evaluation of this experiment, potential 
performance improvement through hardware and software 
approaches, and finally the classification of active networking 
services that are applicable to the current commercial 
network hardware platforms. 

1) Performance evaluation 

Generally speaking, in this experiment, the overall 
performance of the ANTS service running in current Accelar-
based active network is similar to that in conventional host-
only active networks, and largely depending on CPU 
competence and Java runtime execution. The maximal 
throughput of APing is 32.3 cps using Accelar 1100B or 90.9 
cps using Accelar 8600, which is not comparable to the 
throughput of regular Ping, 10,000 pps. This is not a 
surprising result. The main reason is that like a host system 
the Accelar has to use its limi ted CPU to process every 
capsule prior to forwarding since its ASIC-accelerated 
forwarding engines cannot process packets whose protocols 
are not integrated. Actually those CPUs used in the host 
systems here are Sun UltraSPARC 1 @167MHz and Intel 
Pentium II @400MHz, neither of them is the strongest CPU 
today. Of the Accelar routing switch family, Accelar 1100B is 
an economic product that is equipped with a PowerPC 
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403@67MHz CPU and Accelar 8600 is a superior one that is 
equipped with a PowerPC 740@266Mhz CPU. That’s why 
Figure 5 shows that the Accelar switches process an Aping 
capsule distinctively, i.e., Accelar 1100B takes four-fold time 
of a Sun host does While Accelar 8600 takes one quarter of a 
Sun host does. 

In contrast, the regular traffic of Ping maintains the same 
throughput that is different from the active network 
communication, as shown in Table 1. This result is li ttle 
changed in the experiment even if both Ping and APing are 
tested at the same interval simultaneously, because the 
Accelar separates control and data planes. The Accelar 
forwarding engines that deal with the regular traffic are not 
impacted under the condition that the Accelar CPU is busy in 
processing the active network traffic. 

2) How can we enhance the performance? 

Typically, the ASIC technology enables commercial 
network devices like the Accelar switches with high 
capabili ty that can forward regular traffic with well -defined 
protocols at a designated rate of 1 gbps per port, or nearly 2 
milli on 40-byte IP packets per second. In contrast, the active 
packets that exercise their own protocol are processed by the 
Accelar CPU system at a rate around 200 cps. Such a low 
throughput cannot meet the performance requirement of 
commercial data communications.  

How can we enhance the performance? Obviously, 
integrating stronger CPUs such as latest PowerPC chips into 
commercial network devices like the Accelar is reasonable 
and has no problem in implementation. Accelar 8600 coming 
with faster CPUs such as PowerPC 740@266Mhz already 
shows a very good performance improvement (see Figure 5). 
But it is li ttle possible to enhance shortly the active 
networking performance as high as the Accelar designated 
rate due to the Java I/O overhead. Recent network 
development using network processors such as IXP 1200 [12] 
exposes another hardware approach achieving this 
performance level, provided that Openet or similar 
programming platforms become available. But it has to 
resolve the same overhead issue when it deals with Java 
applications. 

The software approach can also enhance the performance. 
In Openet, all network services except some low-level service 
implementation are programmed using Java. Java is good 
across platforms, but poor at performance (see Figure 5). 
Improving JVM with code caching and JIT (just-in-time) 
technologies cannot change this weakness since the active 
code is dynamically loaded. However improving JVM in 
expediting Java I/O operations is absolutely imperative and 
efficiently. 

Moreover, re-engineering the active network services to 
couple tightly with commercial network hardware platforms 
so that they can make better use of the high-performance 
forwarding abili ty. This is potentially a viable solution to the 
data-plane services, however it must avoid the platform-
dependent issue. The Openet service hierarchy can solve it by 

building high-level application services upon low-level 
system services that shelter the hardware diversity. See next 
discussion for detail . 

Finally, what can Openet do for that? In fact, Openet does 
not affect the service execution except starting and 
terminating. Once a service is activated, the ORE Oplet 
encapsulation that is just a wrapper of the service code does 
nothing with the service functionali ty. In the future, through 
controlli ng use of resources (e.g., CPU, memory) per service, 
Openet can prioritize but improve service performance. 

3) With Openet, what active network services are 
applicable to current commercial hardware? 

The Openet’s goal is to provide a hardware-independent 
programming platform that users can create and deploy 
network services with their intelli gence and application 
purposes onto commercial network devices. Active network 
services are particularly important but computation-intensive, 
thus not all of them are sufficiently supported by current 
commercial hardware due to low CPU competence. However 
some of them are, particularly those do not generate large 
traffic and/or perform real-time communication. 

As stated in Section III , in Openet, according to the planes 
they serve all the network services including active network 
services can also be divided into control-plane and data-plane 
services, regardless what levels they are. Data-plane services 
usually are involved in application-specific communication 
and can apply user-defined protocols rather than well -defined 
protocols to packet processing. Some data-plane services 
such as active multimedia services require service quali ty 
guarantee such as real-time support, and thus are not 
applicable to current network devices. Other data-plane 
services like ANTS have loose or elastic time requirement 
and are thus applicable. 

Control-plane services mainly deal with network 
management such as configuration, service initiation, policy 
notification and monitoring. They affect the data-plane 
behaviors such as forwarding and routing by changing service 
policies, but do not process data packets directly. These 
services can be done at system startup, on schedule, or 
triggered by events, therefore they have few strict 
requirements such as real-time configuration. They are 
definitely the most potential network services applicable to 
current commercial network devices. 

Moreover, with Openet, customer services such as active 
network services are hardware-independent. On commercial 
network nodes like the Accelar, the core part ORE sits in the 
control plane. Through the Oplet encapsulation, network 
services whether they are active networking-based or not are 
easily encapsulated as Oplets, and ORE treats them in the 
same way. Furthermore, through the service hierarchy, 
customer services at the data plane are loaded to the control 
plane and then access the data plane through invoking low-
level services. Some low-level services such as JFWD and 
JMIB requiring both Java and native codes may rely on 
platform-dependent implementations but provide platform-
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independent APIs. They can be used by Active network 
services such as Netscript [7] that requires access local 
routing and interfaces and active IP accounting [3] that uses 
local traffic monitoring features. Since ORE is Java only and 
platform-neutral, customer services are also programmed 
using Java so that they are portable to other network 
platforms. 

VI . CONCLUSION 

This paper presents two major contributions. The first 
contribution is that Openet is presented as a programmable 
networking platform by which customer network services 
including active networks services can be deployed onto 
commercial network devices. The deployment of the ORE 
ANTS service on the Accelar routing switch shows that now 
it becomes doable bringing the active networking technology 
to real network nodes. Moreover, these services under Openet 
are portable across network hardware platforms. 

The other is that through experiment the performance of 
active networking on the commercial network hardware 
platform is examined using two commercial Accelar routing 
switches. Since commercial hardware like the Accelar has 
high forwarding abili ty for pre-defined network protocols but 
limi ted packet processing abili ty for customized protocols, 
the throughput of active network traffic is not comparable to 
that of regular traffic. The main reason is that Java network 
I/O operations is much more serious in impacting the active 
networking performance than Java capsule processing. 
Several hardware and software approaches have been 
analyzed in commercial network devices improving the 
performance, particularly employing stronger CPUs in 
network hardware and re-engineering the active network 
services to make better use of the wire-speed forwarding 
hardware.  

Through service classification, we realize that some active 
network services including most control-plane and certain 
data-plane services are applicable to current commercial 
network hardware, as long as they do not require real-time 
communication or heavy packet processing. 

At this stage, we’re having some works doing with Openet, 
active networking and network hardware platforms. First, 
we’re exploring Openet to develop practical active 
networking applications such as new service creation, QoS 
provisioning and monitoring. Second, porting Openet 
services to more network hardware platforms including non-
Nortel brand and network processor-based network devices is 
highly demanded. Third, Openet will i ntroduce new 
mechanisms in improving service deployment, e.g., service 
security enhancement and thread-based resource allocation. 
Finally, even though latest commercial network products such 
as Accelar 8600 are equipped with fast CPUs, how to make 
most use of both CPU and forwarding hardware in enhancing 
the abili ty of customized packet processing in both control-
plane and data-plane and finally the performance of active 

networking is another investigating issue. 
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