
Tal Lavian August , 1999 _                                  Hot Interconnects, Stanford 

1 Open Programmable Architecture for Java-enabled Network Devices         Page  1 

Open Programmable Architecture 
for Java-enabled Network Devices 

 
Tal Lavian, Nortel Networks - Advanced Technology  Center 

Robert F. Jaeger, University of Maryland 
Jeffrey K. Holli ngsworth, University of Maryland 

 
Keywords: Open Architecture, Programmable Networks, Java-enabled Networking, 

JVM, Active Networks, Mobile Agents, Intelli gent Agents. 

1 Overview 
Current network devices enable connectivity between end systems given a set of protocol 
software bundled with vendor hardware. It is impossible for customers to add software 
functionality running locally on top of network devices to augment vendor software. Our 
vision is to open network devices so that  customized software can be downloaded, 
allowing for more flexibilit y and with a focus on industry and customer specific 
solutions. This brings considerable value to the customer. 
 
We have chosen to use Java because we can reuse its security mechanism and 
dynamically download software. We can isolate the Java VM and downloaded Java 
programs from the core router functionality.  
 
We implemented Java Virtual Machines (JVMs) on a family of  network devices, 
implemented an Open Services framework, and developed an SNMP MIB API and a 
Network API upon which we can demonstate the value of openness and programmabil ity 
of network devices.  
 

2 Open Network Services 

2.1 New Programmable Paradigm   
We are entering a new era where servers, switches, and routers are participating in 
applications. The IEEE P1520 recognized the need for a software infrastructure for 
programming networks and has initiatives which propose standard APIs to networking 
devices. [28-29].   
 
Programmable network technology allows dynamic downloading of software programs to 
network devices and moving intelli gence to these devices.  Downloading software 
enables customized application level computational interconnectivity between servers 
and network devices as well as among network devices.  Programmable networks  is an 
enabling technology for a new type of distributed applications that are not technically 
possible today.    
  



Tal Lavian August , 1999 _                                  Hot Interconnects, Stanford 

1 Open Programmable Architecture for Java-enabled Network Devices         Page  2 

2.2 PC-ifications of  Programmable Devices 
In network devices like switches and routers,  the software and the hardware are bundled 
and not openly programmable. We have created an Open Service Architecture that allows 
dynamic downloading of programs to theses devices.  
 
Our vision is that network devices will be open like software for PCs. For example, we 
buy software and hardware for PCs from different vendors, and then we install and 
customize the software on the computer. Network devices like switches and routers are 
also computers of a different type.  We have implemented  programmabilit y 
characteristics on these types of computers like the PCs so that additional functionality 
can be provided  to these devices. 
 

2.3 Enabling Technology  
Now, we are able to securely download and run Java applications on network devices.  
We can distribute the intelli gence to network devices for close-loop interaction on the 
nodes. This allows for new types of applications that were not possible until now because 
of scalabilit y issues.  
 
We have implemented technology that allows for a class of  downloadable applications 
which are not bundled with the vendor hardware including enhanced multicast services, 
application level filtering, and mobile/intelli gent agents [4] [13] [17].  The platform 
supports the Active Networking reference architecture upon which multiple non-
interfering Execution Environments can run concurrently [2-7] [9] [12] [14-18] [25].   
Operating systems for computers have recently been developed to allow user 
customization of services and policies.  Exokernel[1]] and Spin[8] provide new kernel 
architectures to support safety and extensibilit y. 
 

2.4 Static Agent vs. Dynamic Agents 
Usually, we are managing network devices via “get” and “set” , as static requests to 
SNMP agents. Having a dynamic agent on the device opens us to a new set of 
applications. Instead of external SNMP requests, we can download software that use 
SNMP calls via an internal device loop. 
 
The direction is to open network devices to 3rd party developers. To facilit ate this, we 
have created an Open Service Interface[26] using Java with additional security 
mechanisms.  The interface opens the network devices to 3rd party vendors and allow 
other domain experts to add value to network devices. 
 
Java has taken the computer world by storm. However, it is mainly used by client s and 
servers for browser and business applications. Until now, Java did not run on the network 
devices.  
 



Tal Lavian August , 1999 _                                  Hot Interconnects, Stanford 

1 Open Programmable Architecture for Java-enabled Network Devices         Page  3 

2.5 New type of Applications 
We can add value to network infrastructure by allowing tight code interaction between 
business applications and network devices.  This new paradigm allows a new type of 
distributed applications between servers and swiches/routers. All software in the 
applications can be dynamically loaded on to the servers and network devices.   

2.6 Domain Experts  
 Domain experts that work closely with customers know the problems the customer faces 
and may bring ideas from other business domains to the development of solutions.   
Allowing 3rd party experts to write custom applications allows for innovative  solutions to 
customer business requirements.    

2.7 Feature-on-demand 
Java beans with specific plug-in features can be developed and released quickly  
providing feature-on-demand capabilit y to address changing customer needs.  This 
approach circumvents the need for vendor support to add customer desired capabiliti es to 
network devices and avoids the need for the customer to wait for new features from the 
vendor in order to realize capabiliti es.  Also, features can be ported quickly to other 
products implementing  the Open Service Interface. 

3 Open Architecture 

3.1 What have we implemented? 
We have implemented JVMs on the Nortel Networks  Routing and  L3 Routing Switch 
family of products.   We can securely download and safely run Java applications on these 
devices and access native code running on these devices [1]. We developed an 
architecture that allows for downloading of new code to implement desired features.  We 
developed several APIs including an SNMP API and a Network API.  The SNMP API 
allows reading and writing of MIB variables [27].  The  Network API allows Java 
applications to control the hardware based forwarding and selection of packets to be 
delivered to Java applications based on packet signatures.  Consequently, our network 
devices are programmable allowing for customers to safely run dynamically downloaded  
Java code to realize additional functionality.    

3.2 Scalability 
Network Management via SNMP suffers scalabilit y in applications with massive close-
loop interactions. For example, assume an NMS application that monitors some network 
device parameters. Lets assume that we want to gather information on 10 parameters per 
port on a device with 100 ports and we want to sample 100 times per second.  These 
types of applications are not practical in the current SNMP model of  centralized 
management.   
 
Current technology like RMON provides an interface to  allow network devices to collect 
statistics locally.  It is restricted to a set of predefined types of data that can be collected 
and it does not address the  scalabilit y problem. 
 



Tal Lavian August , 1999 _                                  Hot Interconnects, Stanford 

1 Open Programmable Architecture for Java-enabled Network Devices         Page  4 

We overcome these limitations in our distributed intelli gence approach.  The data 
samples are local calls with no need for SNMP call for each sample. The NMS will be 
notified only when needed based on thresholds or trends. This allows an intelli gent  event 
notification mechanism rather than a polli ng mechanism.   

3.3 Security 
Computer networks have become vital to businesses.  It is criti cal that the network 
functions properly and a loss of operation is not tolerable.  To allow the openness that we 
are proposing, we needed to implement a strong security architecture.  Security is a key 
component of the Open Service Interface architecture. It includes security for 
downloadable applications and for the device’s code interface. In addition to the Java 
language security features, the architecture provides additional security including digital 
signatures and code certification.   
 

3.4 The JVM  
Implementing a JVM for embedded and real-time environments presents several 
challenges.  Such environments are especially concerned with reliabilit y, determinism, 
and restricted memory.  It is also crucially important that new Java programs must work 
without disturbing the existing non-Java functionality. 
 
Our JVM design satisfies these requirements by encapsulating the JVM into one 
framework. This JVM manages the Java threads and their memory usage within this 
framework and presents one unified task to the RTOS.     The Open Services Architecture 
was designed to insulate core router functionality from Java and JVM failures.  Even if 
the JVM crashes, the router remains operational. 
 

3.5 But Java is SLOW 
Java has often been criti cized for its speed and its use in a routing device has been 
questioned.  With the advent of ASIC technology for fast path data forwarding engines 
that achieve Gigabit forwarding rates, no serious routing platform is based on a software 
forwarding engine.  An active network platform that touches all network packets is 
doomed to fail .  However, control and management applications are well suited for Java 
based network services locally on the network device as well as active applications which 
don't require high packet per second rates to operate.  

3.6 Java MIB API 
The goal is to provide an interface that transparently gives access to the SNMP data, 
while hiding the SNMP machinery of PDUs, object identifiers and table iterations.  The 
MIB gives a fairly object-oriented model to the data, which fits quite naturally onto Java 
class decomposition. 
 
The MIB is structured as a collection of groups, with each group containing a number of 
variables.  Each group is modeled as a Java class, and each variable is modeled with 
accessory methods.  



Tal Lavian August , 1999 _                                  Hot Interconnects, Stanford 

1 Open Programmable Architecture for Java-enabled Network Devices         Page  5 

3.7 Inter-operating with SNMP MIB Compiler 
 
There are a large number of variables in the MIB and it is tedious and error prone to 
generate the Java bindings for them all by hand. To automate the binding, we provide a 
MIB compiler that takes the standard ASN.1 textual representation of the MIB and 
generates the necessary Java code.  This approach is similar to other mibgen tools and 
results in a Java API which represents the MIB tree.  Javadoc pages document the Java  
MIB API that results from the input MIB definition.   
 
An incremental strategy for MIB variable access is the result of this research.  MIB 
variables are queried and set by constructing SNMP PDUs that are sent to the loopback 
interface of the device and delivered to the underlying SNMP stack.  This approach 
allows us to evolve from the loopback strategy by incrementally adding direct low-level 
implementations of selected time-criti cal methods.   

4  Applications Examples  

4.1 Close-loop Applications 
Creating a closed-loop mechanism on the device itself allows for the development of 
tight local management applications. We can develop applications utili zing tight 
interactions with the traff ic pattern and the device capabiliti es.  We can move some of the 
intelli gence of NMS and policy servers to the network devices. This allows for new types 
of applications that are not feasible with centralized management schemes. 

4.2 Example 1: Interactions with Business Applications 
Currently, business applications are running on servers and networking applications are 
running separately on network devices.  There is very limited interconnection at the 
application level. Downloading and running Java applications on network devices 
enables collaborations between network devices and applications running on other 
servers. Business applications can take advantage of distributed computing in an 
environment consisting of  applications running on network devices which leverage the 
local-loop directly on the device.   For instance, an electronic auctioning service can use 
routers to filter bids which are no longer acceptable given that the bid price has already 
been surpassed [10].  Another application can dynamically configure the output priority 
queues on the network device as part of the application needs.   

4.3 Example 2: Interactions with other network devices 
Currently, network devices interact using a pre-defined set of protocols bundled with the 
hardware.  There are no interactions or sharing variables that is not within the confines of 
bundled vendor software.   In the Open Service Interface architecture,  network devices 
can run non-bundled distributed applications that interact at the application layer with 
applications running on other devices.   For example, a community of routers can make a 
dynamic configuration decision based on bottlenecks or load. The decision making 
process can be done as part of  a distributed application within this community. 



Tal Lavian August , 1999 _                                  Hot Interconnects, Stanford 

1 Open Programmable Architecture for Java-enabled Network Devices         Page  6 

4.4 Example 3: Mobile Agents 
The architecture provides a platform for mobile agent technology.   Mobile agents to 
perform information gathering such as L2 connectivity or traceroute are made possible 
through the Network API.     The mobile agent performs some work on the local device 
and moves to the next device to continue the work. For example, roaming diagnostic 
agents can gather performance information along the path from a client to the server. This 
mobile agent can identify and even solve problems along the network path.     

4.5 Example 4: Active Networks 
By developing an Open Services Interface, we provide a platform upon which Active 
Networking Execution Environments (EEs) can be hosted.  We allow for running Java-
based EEs as services on the router that can host active applications downloaded in the  
Active Network Encapsulation Protocol for distribution to EEs.   

4.6 Example 4: Local QoS implementation 
Instead of configuring the QoS mechanisms from remote station, we can do it locally on 
the network device.  For example, we can monitor locally the traff ic patterns and 
configure the QoS parameters based on policy that is  pushed to the device as an 
application.  

5 Conclusion  
 
We are entering a new era where servers, switches, and routers participate in networking 
applications. This is a powerful new technology that enables dynamic downloading of  
end-user applications.   We provide an open set of network services upon which new 
applications can be built to customize the behavior of network devices as well as 
management  networks.  We provide tools to developers enabling them to use their 
domain expertise to create solutions to specific business challenges.  Introducing domain 
expertise into the development process creates a virtual community of developers that can 
bring innovation to networking customers.  
 
The Nortel Open Service Interface functional prototype implements this enabling-
technology which is the foundation of this paradigm shift. The abilit y to download 
dynamic agents to network devices is much more powerful than the current use of static 
agents.  Dynamic  program loading into the switching and routing elements of a network 
bring new opportunities for configuring and  managing large, complex, and high 
performance networks. Pushing intelli gence into the network elements themselves solves 
the scalabilit y problems inherent in a centrally managed network.   
 

6 References 
� � � � � � � � � 	 
 	 � �  � � 	 � � � � � � � � 	 � 
 � � � � 	 � � � � � � � � � � � � 	 � 
 � 	 � � � � � � � � � �  ! " #  $  ! % & ' " & $ ( ) " * + , - . - / 0 1 1 2 3 4 5 4 6 7 7 8 1 9 : ; 3 < 1

= > ? @ A B > C D > E F G H I = = = J K C L B F @ M C B > N A B O A P C C @ > O Q P > O M P O D F R B A S D P T U V W X Y Z [ \ ] ^ V _ W ` a b c c a W d ` V W e [ ^ f g h i j Z b k l m n o
p q r s t r u v w q t x u y z { | } ~ � |

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �



Tal Lavian August , 1999 _                                  Hot Interconnects, Stanford 

1 Open Programmable Architecture for Java-enabled Network Devices         Page  7 

� �   ¡ ¢ £ ¤ ¥ ¦ § ¦ £ ¨ © ª « ¬  ® ¯ ° ± ² ³ ´ ¯ ® µ ¶ · ¸ ¹ ¯ º » ± ¼ ½ º ¼ µ ¯ ¾ ¿ À ¯ ¾ Á ½ Â ® ¯ ° Ã ® ¯ ¹ º ¼ ± Ä ½ Å ½ ¼ Â ® ¯ ° Æ Ç ½ ¯ Æ ± ® ² È É Ê ¸ · ¹ µ ³ µ Æ ¼ Ë Ì · Ì Ê Ê Ê

Í Î Ï Ð Ñ Ò Ó Ô Õ Ó Ö × Ø Ø Ó Ô × Ø Ñ Ù Ú Û Ü Ý Ù Û Þ Þ Ø ß à Ô á Þ Ö â ã à Ø ä à å æ × å ä Ð ç å × è à é × Ø Ø ç Ð Ó ê Ø Þ ç à å æ Ú Ó Ô ë Þ Ö ß ì Ö Þ Ô Þ é Þ Ø í Ñ î ì ï Ú Ù ð Ù ñ ò ó ô õ

ö ÷ ø ù ú û ü ý þ þ ý ÿ ü ý � � � � � þ ý � ú � � � ÿ þ � � � 	 � þ 
 � � � � �  ý � � � � �  � � þ � � � ú � � ÿ ü � � ÿ ý � � � � � � þ � � � � � � � � � � � � � � � � �  !  � " � � # $ % & ' ( ! �
)  � * ! ' + , ( - & ' & % &  � " .  / 0 ( � � � ! 1 � 2 � � � 3

4 � 5 6 3 7 3 .  ( (  ( 0 � % -  + ( 8 6 3 9  & 0  * + � � 3 . � : + * 8 - + ( + / & ' ;  (  & : � * < + * / 0 ' &  / & % *  3 , ( = % � & ' #  8 ' + � � # $ % & ' ( ! + ( 8
>  & : � * < ' ( ! � � � ? + ( @ � -  � � A � @ + ( 2 � � � 3

B C D E F E G H I J I K J L M F L K M I N O K F P Q R K S L T U S Q V S K H H K W N G X G Y R Q S Z T F [ J [ \ [ U ] [ ^ ^ ^ [ J Y N F _ Q S Z T ` Q a Q J b I T Y S I W c Y G L M d T Y G H T e
f a G S K Y I Q J T K J L g K J K V G H G J Y h i j j k F

l m n o p o q r s t u v q w u x p y z w q { s | } | x | w ~ � � u � q w ~ u { v � q r � � r � u { � q | { w t q � � � � � � q r u w | { � � ~ s w q � p � { � � w t � ~ � � p � { � � q r u w | { �
� ~ s w q � s � r | { � | � x q s � � q � p � � � � p

� � � � � � � � � � � � � � � � � � � � � � � � �   ¡ � � ¢ � £ � ¤ ¥ � £ ¥   � � � � � � ¡ ¤ ¦ � � � ¥ ¤ � � ¡ § � � � ¨ � © ª � � � � � ¥ ¤ � � � § « � � ¥ � £ � � ¡ � ¬  ª � ® ¯ ¯ ° � ± ² ³ � � ± �

� ³ ± � � ´ � µ  � £ � ¢   £ ¥ ¤ � � ¶ � · ¡ � � ¸ � � � � ¥ ¥ ¹ º » » © © © � � · � µ � £ � ¼ » ½

¾ ¿ ¿ À Á ½ Â ½ Ã Ä Å Æ Ç È Ç É Ê Æ ½ Ã Ë Ì Í Ç È Ä Ç Æ Î Ï Ä Ð Ñ Ç È Ê É Ò Ä Å Ó Ô Õ É Ç Ö Ï È × Ø Ò É Ç × É Ù È Ç Ú Ì È Ï Ñ Ñ Æ Ò × Ê É Ò Ì Ä Û Ü Ç Ý Ç Æ Â Ç Õ Ì Ù È × Ç Þ Ê Ä Ê Å Ç Ö Ç Ä É ½ ß Ä ¿ à É Ø
Ó Ô Ö Ñ ½ Ì Ä Ð Ñ Ç È Ê É Ò Ä Å Ó Ô Õ É Ç Ö Õ á È Ò Ä × Ò Ñ Æ Ç Õ â ¿ ã ã à ½

ä å æ ç è é ê é ë ì í î ï ð ñ ò ó ì ô ñ õ ö é ÷ é ö ø ù ò ú ô õ é û ñ ø ü ý ø ñ ò ì þ ÿ ø � ù � ý � î � ÿ ô ù î ú ì ý ø î ý í ù ø � � ù ô � � ÿ ì î ô ý ì � ñ � ò � ø î � ì î ñ ø ý � � ù ó ì ñ � é
� � � 	 
 
 � �  � � � � � � 
 � � � � � �  � 
 � � � � � � � � �  � 
 � 
  	 
 � � � � � �

 � ! " � � # $ � % � 
 � & $ � ' ( 
 $ � & ) $ 
 * + $ � � 	 & � � # � & , 
 - � � . � � � / � � � � 0 - 
 � � � � � 
 � � � �  � &  � ' 1 1 $ � 	 & � � �  / 
 2 
 $ # � & , �  � � ' � *
� � 3 � 4 * * 5 � 6 � � � � 6 �

 � 7 " / � 0 � � / 
 � , &  
 � & $ � ' 	 � � 2 
 ( 
 $ � & ) $ 
 * + $ � � 	 & � � � � � � # 4 � 4 * 5 � 8 � � � � 8 �

 � 6 " ' � * & $ $ 
 � 
 � & $ � 4 1 
 � & � �  � � % � � 
 , � + 1 1 � � � � � � � � � � � 	 � $ 9 � � � � 
 � � � : 
 	 �  � 	 & $ ( 
 1 � � � * � 0 � � � 0 � � 0 � ! � � � � ; 
 1 � � � �  � 2 � � �
� 
   � % $ 2 &  � & � � � � � �

 � � " < � � , � � � 
 � & $ � � - � � 	 � � & � 
 ' 	 	 
 $ 
 � & � �  � � 
 � - � � . � 2 � $ + � � �  � : 
 	 �  � 	 & $ ( 
 1 � � � * � 0 � � � 0 � � 0 ! 8 � � � � ; 
 1 � � � �  � 2 � � �
� 
   � % $ 2 &   � & � * & % � � � � �

 � = " ; � : 
   
  � � + � 
 
 � & $ � ' � + � 2 
 % � � ' 	 � � 2 
 � 
 � - � � . ( 
 � 
 & � 	 � � � � � � � � , , +  � 	 & � � �  � * & � & > �  
 � � � � = �

 � 8 " ; � / � : 
   
  � � + � 
 &  � ; � � 
 � � 
 � & $ $ � : � - & � � � &  & 	 � � 2 
  
 � - � � . & � 	 � � � 
 	 � + � 
 � �  * + $ � � , 
 � � & � � , 1 + � �  � &  �
� 
 � - � � . �  � � � � � &  < � � 
 � � ' � < &  � � � � �

 ? 6 " < �  & � � &  � , � � � � 
 � & $ � ' 	 � � 2 & � �  � � 
 � - � � . � @ ' � � � � � 
 � � ( 
 1 � � � � � 4 * � � � ( � ' 1 � � $ � � � � �

 ? � " : � / & 2 � &  � � � / & + � A < & 2 & 0 9 & � 
 � 4 1 
  � 
 � 2 � 	 
 �  � 
 � � & 	 
 � B 9 & % ' � 	 � � � 
 	 � + � 
 / & ) : ( � 8 0 C � C � * & � 	 � ! C � � � � 8 � 9 & %
� 
 � - � � . � � 9 ' / - 
 ) � � � 
 @ � � � 1 @ D E F G H I J K L M N O P Q R S G H T K L U G J E V G M M O E J N W P E X W K Y N R U Z L U [ W E \ ] \ U G H Y \ N H U Z V N M \ X G U K Z N H Q

^ _ ` a b c d e f g h f i j k h l m h f i b c k n n i o p q r e c s o h l h t u n f v w x y x z { | y z c } { h ~ | � g q m � n g � e � n k h � j b � � � � � � c d n g n � � n �
� � � � c

^ _ � a z � � � y � � _ � b n � n � n f g n x r � n � i � � � c m n n n � u m f c r � �

^ _ � a { m � � h � i o c i k h � h � i | c | c i � e h � � o c � � � � � � � � � � � � � � � � �   ¡ � � ¢ � � � � £ � � � ¡ � ¤ � ¥ � � � � � ¦ � § ¨ © ª « ¨ ¨ � « ¡ � � ¬ � «  ¬ � � « ®
¬ ª � « ¨ © ª � « ¡ � ¯ ¦ � ª ° ± ± ± ¢ ² ³ ´ µ ¡ © � « ® � § ® ¨ ° « � © � � © � ¶ ª · � § ¢ § �  § � � � �   ¸ ª ¹ ª © º � § ¥ ° « © ª § · � » ª ¨ ¼ � ° ± ± ± ½ � � � � « � » � © � � « ¨
� �  � ¤ � « ª � ¾ � ¸ ¿ À �


