
Rob Jaeger, University of Maryland,
Department of Computer Science

1

 Practical Considerations for
Deploying a Java Active

Networking Platform

Robert F. Jaeger
University of Maryland

Department of Computer Science
 rfj@cs.umd.edu

Rob Jaeger, University of Maryland,
Department of Computer Science

2

 Programmable Network Devices

Openly Programmable devices enable

 new types of intelligence on the network

Rob Jaeger, University of Maryland,
Department of Computer Science

3

Agenda

• Local Computation

• New types of applications

• Programmable and Active Networks

• Network Services Architecture

• Issues

• Summary

Rob Jaeger, University of Maryland,
Department of Computer Science

4

 Changing the Rules of the Game

• Move Turing Machine onto
device
– Run non-vendor/non-bundled

applications on network device

while (true) {
doLocalProcessingOnDevice()

 }

Rob Jaeger, University of Maryland,
Department of Computer Science

5

 Non-vendor/Non-bundled Applications

Reversed Applets

non-bundled application
Server

The JVM is in the Device: supports non-bundled apps

Web Server Web Browser

Applet

The JVM is in the Browser

 Download applications for local processingDownload applications for local processing

Rob Jaeger, University of Maryland,
Department of Computer Science

6

The Web Changed Everything

• Browsers
– Introducing JVM to browsers

allowed dynamic loading of Java
Applets to end stations

• Routers
– Introducing JVM to routers allows

dynamic loading of Java Services
to routers

This Capability WILL Change Everything

Rob Jaeger, University of Maryland,
Department of Computer Science

7

Architecture to Augment Vendor-
Provided Software

• Supports non-vendor applications

• End-user custom application development
– Tight interaction between business applications and

network devices
• Domain experts who understand business goals
• Innovative approaches

– “Features on Demand”
• download software services
• dynamically add new capabilities

Rob Jaeger, University of Maryland,
Department of Computer Science

8

Java-based
Application

 Paradigm Shift

• Supports distributed
computing applications in
which network devices
participate
– router to router

– server to router

Java-based
Application

Java-based
Application

Rob Jaeger, University of Maryland,
Department of Computer Science

9

Network Device

Dynamic
loading

 Example: Downloading Intelligence Example: Downloading Intelligence

HW
OS

 JVM

 React

Monitor
A

ut
he

nt
ic

at
io

n

S
ec

ur
it

y

Intelligence
application

Rob Jaeger, University of Maryland,
Department of Computer Science

10

Device-based Intelligence

• Static-vs-Dynamic Agents
– Static

• SNMP set/get mechanisms
• Telnet, User Interfaces (cli, web, etc…)

– Dynamic closed-loop interaction on nodes
• capable of dealing with new and difficult situations

• autonomous and rational properties
• system monitoring & modification
• report status and trends

Rob Jaeger, University of Maryland,
Department of Computer Science

11

Agenda

• Local Computation

• New types of Applications

• Programmable and Active Networks

• Network Services Architecture

• Issues

• Summary

Rob Jaeger, University of Maryland,
Department of Computer Science

12

New Types of Applications

• Mobile Agents

• Local Intelligence for NMS

• Application layer collaboration among
routers

• Distributed computing involving network
devices and servers

• E-commerce

Rob Jaeger, University of Maryland,
Department of Computer Science

13

Mobile Agents

• Intrusion Detection - Hacker Chaser

• Traceroute for Layer 2

• Mobile Connectivity Mapper

Rob Jaeger, University of Maryland,
Department of Computer Science

14

Local Intelligence for NMS:
Diagnostic Agents

• Download Intelligent Agent
monitor from NMS to the
device.

• Wait for threshold.
• Might be complex conditions
• Trend analysis

• Send “condition exceeded”
event to NMS.

• Automatic download
appropriate application

• Application takes action.

Monitor

Appropriate
Application

Download

Download

Complex Condition
Exceeded

NMS

No more
polling

router

Extensive access
to internal resources

Rob Jaeger, University of Maryland,
Department of Computer Science

15

Application Layer Collaboration
Among Routers and Servers

• Multicast Caching

• Web Caching

• Server farm load balancing
– server state monitored
– rerouting based on congestion/load

• Auctioning Applications

Rob Jaeger, University of Maryland,
Department of Computer Science

16

E-Commerce Example

Matching Customers with Suppliers
– comparing price/capability options
– ISP QoS capabilities & availability

Business logic based operation changes
– Resize forwarding queues
– Modify congestion control algorithm
– Adjust Packet Scheduling
– Change routing table

Rob Jaeger, University of Maryland,
Department of Computer Science

17

Agenda

• Local Computation

• New types of applications

• Programmable and Active Networks

• Architecture

• Issues

• Summary

Rob Jaeger, University of Maryland,
Department of Computer Science

18

Programmable Networks

• IEEE P1520 Working Group

• Benefits of Standard Network APIs
– separation of service business/vendor business

• ISP resources visible for controlled modification
• 3rd party signaling vendors

– faster standardization
– extensibility

– richer semantics
• e.g. dynamic binding

 http://www.ieee-pin.org

Rob Jaeger, University of Maryland,
Department of Computer Science

19

Programmable Networks
• IETF - vs- IEEE P1520

– IEFT - Internet standardized algorithms and
protocol semantics

– P1520 standardized programming interfaces

• MPLS Example
– Create IDL that captures the programmability

requirements of IP routers/switches from MPLS
algorithm perspective

– Common interface definitions would be used
by RSVP, LDP, or traffic engineering

Rob Jaeger, University of Maryland,
Department of Computer Science

20

The P1520 Reference Model

Algorithms for value-added communication
services created by network operators, users,
and third parties

 Algorithms for routing and connection
management, directory services etc.

Value Added
Services Level

Virtual Network Device (software representation)

Physical Elements (hardware, namespace)

L interface

Network Generic
Services Level

Virtual Network
Devices Level

End User Applications
V interface

U interface

CCM interface

PE Level

Rob Jaeger, University of Maryland,
Department of Computer Science

21

Active Networking

“The active network provides a
platform on which network

services can be experimented
with, developed, and

deployed”

http://www.darpa.mil/ito/research/anets/index.html

Rob Jaeger, University of Maryland,
Department of Computer Science

22

Active Network Objectives

• Minimize amount of global agreement
– Do not require global agreement to support dynamic

modification of the network

• Support fast-path processing optimization

• Scale to very large global active networks
• Provide mechanisms to ensure security and

robustness of nodes and of the network
• Provide mechanisms to support different QoS/CoS

Rob Jaeger, University of Maryland,
Department of Computer Science

23

Active Network Architecture

• NodeOS - manages resources for the node
• Execution Environment -

– provides an API to applications or
– a shell interface through which end-to-end

nework services can be accessed.

• Active Applications - implementation of
network services which utilize the local
computation and access to router resources.

Rob Jaeger, University of Maryland,
Department of Computer Science

24

Node Operating System

• Latest Specification (June 15, 1999)

• Abstractions
– Channels

– Memory Pools
– Thread Pools
– Files

– Flows

Rob Jaeger, University of Maryland,
Department of Computer Science

25

NodeOS - Channels
• Flows create channels to

send, receive and forward
packets
– InChan - receives packet

from network to EE
– OutChan - puts packets onto

the network from EE
– CutChan - bypasses the

Execution Environment

• Bandwidth Limitation
• Buffer Pool -- queued pkts

NodeOs

Execution Environment

CutChan

OutChanInChan

Transmission Facilities

Applications Applications. . .

Rob Jaeger, University of Maryland,
Department of Computer Science

26

Active Network Encapsulation
Protocol

• Routes AN packets to EEs
• ANEP_PORT = udp 3322
• TypeID identifies EE
• Tag Length Values (TLVs)

– specify source/dest IP addresses
– port numbers

– Payload NodeOS

ANTS
Execution

Environment

typeID=18

PLAN
Execution

Environment

ANEPd

 Transmission Facilities

typeID=19

Rob Jaeger, University of Maryland,
Department of Computer Science

27

NodeOS - Memory Pools

• Combines memory for one or more flows
• Shared by threads within flows
• mmap-style interface to page allocation
• flow in which thread runs charged for

resource
• EE notified when flow exceeds limits

• Flow (and associated threads) terminated
upon violation

Rob Jaeger, University of Maryland,
Department of Computer Science

28

NodeOS - Thread Pools

• Computational Abstraction
– Number of threads in Pool
– Scheduler to be used (round robin, …)
– Max execution time between yields
– Per thread stack size

• No explicit operation for creation/
termination -- activated by events

• Termination of flow if thread
misbehaves

Rob Jaeger, University of Maryland,
Department of Computer Science

29

NodeOS - File

• Not Manditory

• Provides Persistent Storage

• EE specific view of filesystem
– via namespace(AN/ANTS; AN/PANTS)

• Shared Memory for inter-EE
communication

Rob Jaeger, University of Maryland,
Department of Computer Science

30

NodeOS - Flows

• Primary abstraction for
accounting, admission
control, and scheduling

• Flow consists of:
– Channels
– Memory
– Threads

• Flow can be
– Execution Environments
– Active Applications

NodeOs

Execution Environment

CutChan

OutChanInChan

Transmission Facilities

Applications Applications. . .

Rob Jaeger, University of Maryland,
Department of Computer Science

31

ANTS Execution Environment

• Facilitates deploying
new protocols and
services in network

• Toolkit for
implementing an
active network
– Active Nodes
– Network Nodes NodeOs

ANTS
Execution Environment

CutThru

OutChanInChan

Mobile Code Multicast Ping

Rob Jaeger, University of Maryland,
Department of Computer Science

32

ANTS Execution Environment

• Capsules are the unit of transfer for data
and code
– source & destination addresses
– previous node address
– resource limits

– encoding and evaluation methods methods
– Protocol/Group/Method ID access methods

• Data Capsule
– source & destination port numbers

– identifies active application

Rob Jaeger, University of Maryland,
Department of Computer Science

33

ANTS Code Distribution
• “Node” object is core of Runtime System

– UDP Channels
– Methods to Send/Receive Capsules

– Supports numbers applications identified by
port number

• Consists of Built-in protocols
• Accepts registration of new protocol

– capsule code stored in code cache

– signature (hash) computed for code

Rob Jaeger, University of Maryland,
Department of Computer Science

34

ANTS Code Distribution
• Allows Definition of additional protocols

– Protocol
– Code Group (transitive closure of calls)

• Dynamic Code Distribution via Capsules
– Capsule arrives and node can’t evaluate it

• protocol not on active node

• must request packet from previous active node

– DLBootstrap Capsule
– DLRequest Capsule

– DLResponse Capsule

Rob Jaeger, University of Maryland,
Department of Computer Science

35

ANTS Execution Environment
AN_Ping

Application

NodeOS

ANTS
Execution Environment

OutChan
InChan

AN_Ping
Application

Ping
Capsule

NodeOS

ANTS
Execution Environment

OutChanInChan

DLBootstrap
Capsule

DLRequest
Capsule

DLResponse
Capsule

Rob Jaeger, University of Maryland,
Department of Computer Science

36

Agenda

• Local Computation

• New types of applications

• Programmable and Active Networks

• Architecture

• Issues

• Summary

Rob Jaeger, University of Maryland,
Department of Computer Science

37

Open Device ArchitectureOpen Device Architecture

Download

Service

Device HW
Operating System

JVM

Java
Service

Java
Service

Java Lib

C/C++
API

Java
API

Device
Code

DataCom API

Native
Code

Device
Drivers

JNI

Rob Jaeger, University of Maryland,
Department of Computer Science

38

 SNMP API for Network Mgmt

• API is generated automatically

• Device-based monitoring
– Query MIB

– Identify trends

• Initiate action locally
– Report trends and/or significant events

– Download problem specific diagnostic code
– Take corrective action

Rob Jaeger, University of Maryland,
Department of Computer Science

39

MIB API Example

Java
Virtual
Machine

SNMP PDU Layer

Instrumentation
& Annotation
Layer

Real Time Operating System

Processor and other Hardware

Native Variable Interface

MIB Map

Abstract Variable Interface

Client API

Client Bean

•API uses a MIB Map to
dispatch requests to variable
access routines
•Different parts of the MIB
tree can be serviced by
different mechanisms

•An ad hoc interface to the
SNMP instrumentation
layer
•A generic SNMP
loopback

Rob Jaeger, University of Maryland,
Department of Computer Science

40

Java Network Services
Environment

Service 2

Java Virtual Machine
JavaResouceManager

Java Network Services Environment

Service 3

Service 1

dependencies

Service 4

Rob Jaeger, University of Maryland,
Department of Computer Science

41

Our Prototype Java Environment

• Present RTOS with single unified task that
includes:
– Java VM (JVM)
– Java Resource Manager (JRM)

• thread scheduling
• manages CPU utilization

– JVM time-slice is managed by the JRM preemptive
thread scheduler

• internal memory manager
• garbage collection with priority based on available

memory

Rob Jaeger, University of Maryland,
Department of Computer Science

42

Why Java
• Dynamic class loading

• Reuse security mechanisms
– Byte-code Verifier
– Security Manager
– Class Loader

• System stability
– Constrain applications to the Java VMs
– Prohibit native code applications

• Extensible, portable, & distributable
services

Rob Jaeger, University of Maryland,
Department of Computer Science

43

But Java is slooowwwww

• Not appropriate in the fast-path
data forwarding plane
– forwarding is done by ASICs
– packet processing not affected

• Java applications run on the
CPU
– Packets destined for Java

application are pushed into the
control plane

Rob Jaeger, University of Maryland,
Department of Computer Science

44

Agenda

• Openness

• Local Computation

• New type of applications

• Programmable and Active Networks

• Architecture

• Issues & Questions

• Summary

Rob Jaeger, University of Maryland,
Department of Computer Science

45

Architecture Issues

 Approach 1: Native Threads

• One JVM per principle

• One RTOS task per JVM

• Non-interference between Java applications

• Difficult thread-to-thread communication
and sharing of data between threads

• Creates a dependency on underlying RTOS

• Multiple JVM instances consume resources

Rob Jaeger, University of Maryland,
Department of Computer Science

46

Architecture Issues

 Approach 2: Single JVM - Green Threads

• Present one unified task to the RTOS

• JVM manages CPU & memory resources
between competing threads;

• Propagation of component failure

• Requires modifications to the JVM

• Binding of resources to the JVM

Rob Jaeger, University of Maryland,
Department of Computer Science

47

 Security Issues

• Old model: Cannot isolate core
router functions
– Dangerous Pointers (C/C++)

• Can touch sensitive memory location

– Risk: Memory allocations and Free
• Allocation without freeing (leaks)
• Free without allocation (core dump !!!!

)

• Limited security in SNMP

Rob Jaeger, University of Maryland,
Department of Computer Science

48

Security and Stability

• secure download of Java Applications

• safe execution environment
– insulate core router applications from

dynamically loaded applications
– protect dynamically loaded services from one

another

Rob Jaeger, University of Maryland,
Department of Computer Science

49

Strong Security in the new model
• The new concept is to securely download

3rd party code to network devices
– Digital Signature
– Administratively Certified Services
– Access only to the published API
– Verifier - only correct code is loaded
– Class loader access list
– No pointers that can do harm
– No access outside the JVM space
– JVM has run time bounds, type, and execution

checking

Rob Jaeger, University of Maryland,
Department of Computer Science

50

Language Based Protection

• Type Safety
– Reference to Objects, not random memory

– Inappropriate accesses to memory not allowed
• Restricts what operations code can perform on what

memory locations
• operations on objects must be valid for that object

– dynamic access control (via reference)

– static access control (via public, private)

Rob Jaeger, University of Maryland,
Department of Computer Science

51

Access Control [6]

class A {

 private int i;

 public int j;

 public static void method1() {

 A a1 = new A();

 A a2 = new A();

 B.method2(a1); }

}

class B

 public static void method2 (A arg) {

 arg.j++;

 arg.i++; // illegal

 }

- method2 has access to public j

but not to private i

- method2 cannot forge a reference to a2

given the a1 reference

Rob Jaeger, University of Maryland,
Department of Computer Science

52

How to Access a Class

1. Must get Class Object

 a. Class is in classpath (not secure on net)

 b. Class reference is available (visible)

 c. Have a ClassLoader Object to load Class

2. Reference to Object

3. Access control (public)

 For static methods, need just 1 and 3

Rob Jaeger, University of Maryland,
Department of Computer Science

53

Class Loaders
• Load new classes into the JVM at runtime

– fetches code from URL or file
– submits to JVM for verification
– integrates code into JVM for execution
– references to other classes causes additional

class loader invocations

• Enforces protection - expose visibility and
hiding
– classes see classes loaded by same classloader
– can use class loaders to expose classes

Rob Jaeger, University of Maryland,
Department of Computer Science

54

NameSpaces

• A namespace is

– a set of unique names of classes loaded by a
Class Loader and the binding of each name to a
specific class object

– variables, methods, & type names are all
different instances in different domains

Rob Jaeger, University of Maryland,
Department of Computer Science

55

Cross Domain Communication

• Desire that Protection Domains share
classes and NOT require same Class Loader

• How do we achieve this?
– Runtime System to provide communication

between components.
– Java Network Service Environment
– What is the policy?

Rob Jaeger, University of Maryland,
Department of Computer Science

56

Building Protection Domains

• Given multiple namespaces
– Could use Object references for cross-domain

communication:
 class FileSystem {

 private int accessRights

 private Directory rootDirectory

 public File open(String fileName) [6]

}

– Enforce protection policies per client
– Problems result

Rob Jaeger, University of Maryland,
Department of Computer Science

57

Protection Domains - Revocation

• Access to an object reference cannot be
revoked

• Wrap object with revocable object that is a
delegator to real object
– all methods wrapped

• Programmer may forget to wrap objects
referenced by wrapped object (tracking
problem)

Rob Jaeger, University of Maryland,
Department of Computer Science

58

Protection Domains: Revocation[6]

class A { public int method1(int a1, int a2); }

class AWrapper {

 private A a;

 private boolean revoked;

 public int method1(int a1, int a2) {

 if (!revoked) return a.meth1(a1, a2) ;

 else throw new RevokedException;

 }

 public void revoke() {revoked=true;}

 public AWrapper (A realA) {

 a = realA; revoked = false; }

 }

Rob Jaeger, University of Maryland,
Department of Computer Science

59

 Protection Domains: Inter-
domain dependencies

• Sharing Object references between domains

• Mutable shared objects can be changed

• Malious attack:
– pass byte array w/ legal bytecode to classloader
– once verified, overwrite with illegal bytecode

• Should copy bytecode to classloader, not
pass reference

Rob Jaeger, University of Maryland,
Department of Computer Science

60

 Protection Domains:
Termination

• Upon domain termination:
– should all references obtained be released?

• two Strings in different domains may reference the
same underlying byte array

– should object be kept alive if referenced by
other domains?

• clients could hold onto references to objects of a
dead server

– GC frees objects when NO more references!!

Rob Jaeger, University of Maryland,
Department of Computer Science

61

 Protection Domains: Threads

• Method invocation for cross domain calls
both execute in same thread
– caller blocks until callee returns

• how does caller back out gracefully?

– untrusted domain calls stop() or suspend
after calling trusted method --

• state left unstable and blocked

– untrusted callee can block caller that may be
in critical section

Rob Jaeger, University of Maryland,
Department of Computer Science

62

 Protection Domains: Accounting

• How do you account for resources obtained
by a domain?
– CPU cycles
– Memory pages
– Bandwidth on a channel

Rob Jaeger, University of Maryland,
Department of Computer Science

63

 J Kernel Safety [6]

• Precise definition of protection domains
– local object
– non-local shared objects (capability objects)

• Define communication channels between
protection domains

• Support revocation of capabilities

• Clean termination semantics

Rob Jaeger, University of Maryland,
Department of Computer Science

64

J-Kernel Class Loaders

• Each ClassLoader defines a namespace
– must manage & secure namespace

– creates stub code at run-time for cross domain
communication -- use local RMI calls

• simulate thread switching for safe method calls
• contains a revoke method to set handle to null

– substitutes “safe” versions of standard classes
• e.g. file system access

Rob Jaeger, University of Maryland,
Department of Computer Science

65

J Kernel Concepts

• Capabilities:
– handles to resources in other domains

– client throws an exception

• Domain:
– each domain has a namespace and threads

under its control

– shared classes
– capabilities access is revoked upon termination

Rob Jaeger, University of Maryland,
Department of Computer Science

66

J Kernel Concepts

• Cross domain calls:
– Invoke calls to “capability” methods

• relies upon Java interface classes
• extend remote (stub creation and marshalling code)

– special calling convention
• non capability objects are copied

• capability objects are passed

Rob Jaeger, University of Maryland,
Department of Computer Science

67

Observations

• Provides high degree of safety for cross-
domain communication

• Expensive in terms of time
– thread switching (simulated)
– method invocation through stub

– copying of non-capabilities

Rob Jaeger, University of Maryland,
Department of Computer Science

68

Questions

• How do you insulate core router functionality?

• How do you securely download code?

• How do you do resource accounting?

• How do you assure resource safety?
– fair share or priority share quotas?

• CPU
• Memory
• Bandwidth

Rob Jaeger, University of Maryland,
Department of Computer Science

69

Questions

• How do you protect services from one
another (trusted -vs- untrusted)?
– stable state for critical sections

• caller dies/is killed while trusted in critical section

– enforce return from untrusted method
– reject forbidden actions

• Native or Green Threads?

Rob Jaeger, University of Maryland,
Department of Computer Science

70

Agenda

• Openness

• Local Computation

• New type of applications

• Programmable and Active Networks

• Architecture

• Issues

• Summary

Rob Jaeger, University of Maryland,
Department of Computer Science

71

Summary

– Turing Machine on network devices
– dynamic agents vs. static agents
– dynamic loading

– strong security through JVM
– safety among shared components via Java

Network Services Environment

 Enabling Technology for the Revolution

Rob Jaeger, University of Maryland,
Department of Computer Science

72

References
[1] P.Bernadat, D. Lambright, and F. Travostino, “Towards a Resource-safe Java for Service-

Guarantees in Uncooperative Environments,” IEEE Symposium on Programming
Languages for Real-time Industrial Applications (PLRTIA) ‘98, Madrid, Spain, Dec. ‘98.

[2] Active Networking Node OS Working Group, NodeOS Interface Specification", June 15,
1999

[3] Active Networks Working Group, "Architectural Framework for Active Networks Version
0.9", August 31, 1999

[4] T. Lavian, R. Jaeger, "Open Programmable Architecture for Java-enable Network Devices",
Stanford Hot Interconnects, August 1999.

[5] D. Wetherall et al. ANTS: A Toolkit for Building andDynamically Deploying Network
Protocols. OPENARACH'98

[6] C. Hawblitzel, C. Chang, G. Czajkowski, D. Hu, T. von Eicken, “Implementing Multiple
Protection Domains in Java”, 1998 USENIX Annual Technical Conference, New Orleans,
LA, June 1998

[7] R. Jaeger, T. Lavian, R. Duncan, “Open Programmable Architecture for Java-enabled
Network Devices”, To be presented at LANMAN ‘99, Sydney, Australia, November 1999

	Practical Considerations for Deploying a Java Active Networking Platform Robert F. Jaeger University of Maryland Department of Computer Science rfj@cs.umd.edu
	Programmable Network Devices
	Agenda
	Changing the Rules of the Game
	Non-vendor/Non-bundled Applications
	The Web Changed Everything
	Architecture to Augment Vendor-Provided Software
	Paradigm Shift
	Slide 9
	Device-based Intelligence
	Slide 11
	New Types of Applications
	Mobile Agents
	Local Intelligence for NMS: Diagnostic Agents
	Application Layer Collaboration Among Routers and Servers
	E-Commerce Example
	Slide 17
	Programmable Networks
	Slide 19
	The P1520 Reference Model
	Active Networking
	Active Network Objectives
	Active Network Architecture
	Node Operating System
	NodeOS - Channels
	Active Network Encapsulation Protocol
	NodeOS - Memory Pools
	NodeOS - Thread Pools
	NodeOS - File
	NodeOS - Flows
	ANTS Execution Environment
	Slide 32
	ANTS Code Distribution
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	SNMP API for Network Mgmt
	MIB API Example
	Java Network Services Environment
	Our Prototype Java Environment
	Why Java
	But Java is slooowwwww
	Slide 44
	Architecture Issues
	Slide 46
	Security Issues
	Security and Stability
	Strong Security in the new model
	Language Based Protection
	Access Control [6]
	How to Access a Class
	Class Loaders
	NameSpaces
	Cross Domain Communication
	Building Protection Domains
	Protection Domains - Revocation
	Protection Domains: Revocation[6]
	Protection Domains: Inter-domain dependencies
	Protection Domains: Termination
	Protection Domains: Threads
	Protection Domains: Accounting
	J Kernel Safety [6]
	J-Kernel Class Loaders
	J Kernel Concepts
	Slide 66
	Observations
	Questions
	Slide 69
	Slide 70
	Summary
	References

