Services and Applications' infrastructure for agile optical networks

More questions than answers

Tal Lavian

Services and Applications' infrastructure for agile optical networks?

- Huge advancements in optical devices, components and networking.
 - The underline of the Internet is optical How can we take advantage of this?
 - How can the applications take advantage of this?
- Agile Optical Network is starting to appear. What services and interfaces we'll need between the optical control and the applications?
 - What are the applications?
 - The Internet architecture was built on some 15-20 years old assumptions. Are some modifications needed?
- Is packet switching good for all? In some cases, is circuit switching better? (move TeraBytes of SAN date, P2P, Streaming)
- End-to-End Argument Is is valid for all cases?
 - What cases not? What instead?

■ The current Internet architecture is based on L3. What is needed in order to offer services in L1-L2?

Computation vs. Bandwidth 10X in 5 years

Doubling Time (bits per second)

9 12 18

Silicon Computer Chips Data Storage (number of transistors) bits per square inch)

Number of Years

How Optical Agility differ? (vs. L3 Routing)

- Current internet architecture is based on L3 routers with static connection of routers ports (point to point)
- Until recently it took 4-8 month to set an optical link coast to coast.
 - Need to cross and contract with 4-6 organization with lawyers
 - Need patch panel with manual cable setting
 - Need static configurations
 - Extremely expensive (106 Monthly \$1M)
- current peering is mainly in L3, BGP and policy
- New fast provisioning in ASON (seconds)
 - A head of time static rout computation
 - MPLS, MP! S, CR-LDP, RSVP-TE
- New Service Architecture and mechanisms

Manual connectivity,

Service Composition

Current peering is mainly in L3. What can be done in L1-L2?

- The appearance of optical Access, Metro, and Regional networks
- L1-L2: Connectivity Service Composition
 - Across administrative domains
 - Across functionality domain (access, metro, regional, long-haul, undersee)
 - Across boundaries (management, trust, security, control, technologies)
 - Peering, Brokering, measurement, scalability
- Appearance of standards UNI NNI

Compose new type of Applications?

Dynamic L2VPN: enable new type of applications

- Agile connectivity for:
 - SAN across metro, regional and long haul.
 - Plain disk remote storage
 - Backup (start remote backup when the tape in Nebraska is ready and when all the optical connection are ready to be set)
- Set dynamic bandwidth connectivity to the Internet

Technology Composition

- L3 routing drop packets as a mechanism
 - (10⁻³ lose look good)
 - Circuit switching set the link a head of time
- Optical networking bit transmission reliability
 - (error $10^{-9} 10^{-12}$)
- L3 delay almost no delay in the optical layers
- Routing protocols are slow Optics in 50ms
 - Failure mechanism redundancy
- DWDM! s tradeoff- higher! bandwidth vs. more! s
 - For agile L1-L2 routing may need to compromise on bandwidth
- RPR break L3 geographical subnetting
- Dumb Network Smart Edge? Or opposite?

New Architecture Challenges

- We are facing enormous growth of traffic. How the current L3 centric architecture handle this growth?
- Supply New technologies for the Last Mile
 - Servers and storage are moved to Data Centers with big data pipes
 - Optical Ethernet, MEF, L2VPNs, Passive Optical Networks (PON)
 - Competition in the last mile, mainly business access
- Demand The need for more bandwidth
 - Distribution of data, storage and computation.
 - Streaming, virtual gaming, video conferencing,
 - P2P, KaZaA, Morpheus the next big thing that consume traffic?
 - Social differences, downloads of Gigabits a day

Backup Slides

Networking Issues

- Electrical versus Light
- <u>C</u>opper versus Fiber
- Wired versus Wireless
- Packet versus Circuit
- Flow versus Aggregate
- Stateless versus stateful
- Fixed versus Programmable

- End-to-End versus Hop-by-Hop
- Unicast versus Multicast
- Centralized versus Distributed
- Peer-to-Peer versus Client-Server
- Connectivity versus Service.
- Vertical versus Horizontal
- Users versus Provides

It is impossible to eliminate one completely in favor of the other! So, how are we composing the next generation Internet?

- Service Architecture instead of Connectivity Architecture
- Composing end-to-end services by negotiation
- *Deploying Optical Agility with Programmability and Scalability properties

Packet vs. Circuit

Packet Switch

- data-optimized
 - Ethernet
 - TCP/IP
- Network use
 - LAN
- Advantages
 - Simple
 - Low cost
- Disadvantages
 - unreliable

Circuit Switch

- Voice-oriented
 - SONET
 - ATM
- Network uses
 - Metro and Core
- Advantages
 - Reliable
- Disadvantages
 - Complicate
 - High cost

Networking – Composing the Next Step?

- How are we composing the next Internet?
 - Flimination
 - Addition
 - Combination
 - Survival of the fittest
- Composing the Internet = Choosing and combining components to construct services, at the same time optimizing some utility function (resources, monetary, etc)
 - Service Architecture
 - Optical Core
 - Programmability
 - Scalability
 - Composing by negotiation

Canarie Optical BGP Networks

Impedance Mismatch_

- Cross boundaries (Control, Management, security)
- Cross Technologies (Sonet, DWDM, ATM)
- Cross topologies (P2P, Rings all types, mesh,)
- Circlet , packets
- Speeds (1.5, 10, 51, 100, 155, 622, 16, 2.46, 106...)
- Fiber, copper, wireless
- Level of media security

Openet Architecture

Scalable Bandwidth and Services

