Tal Lavian, Ph.D.

https://TelecommNet.com tlavian@TelecommNet.com Encino, CA 91316 (408)-209-9112

Telecommunications, Network Communications, Mobile Wireless, and Internet Technologies Expert

Dr. Lavian is a scientist, educator, and technologist with over 35 years of experience. He has co-authored over 25 scientific publication, journal articles, and peer-reviewed papers. He is an expert in network communications and telecommunications, including Internet protocols, data communications, and computer networks.

Dr. Lavian has spent 20 years researching, studying, and lecturing at UC Berkeley's College of Engineering. His research focuses on telecommunications systems, data networks, network services, network software, network protocols, and communications frameworks.

He holds a Ph.D. in Computer Science from UC Berkeley (2006), specializing in network communications; M.Sc., Electrical Engineering ('97) from Tel Aviv University; and B.Sc., Mathematics and Computer Science ('87)

EXPERTISE

Network communications, telecommunications, Internet protocols, and mobile wireless:

- **Network Communications:** Internet protocols; TCP/IP suite, TCP, UDP, IP, Ethernet, 802.3, network protocols, network software applications, data link, network, transport layers, SNMP, NMS, network management, packet switching, and network architecture.
- VolP/Streaming Media: VoIP, SIP, RTP, video/audio conferencing, streaming media, IP telephony, transport systems, PSTN, circuit switching, SS7, SONET, and TDM.
- **Mobile wireless:** Wi-Fi, 802.11, Bluetooth, 802.15, Wireless LAN (WLAN), MAC, PHY, ARQ, HARQ. Cellular, SMS, MMS, messaging, chat, mobile devices, and smartphones.
- Internet/cloud: Internet Technologies, Web applications, HTTP, HTTPS, network security, firewalls, SSH, FTP, e-mail, client-server, cloud computing, and distributed computing.
- Routing/switching: LAN, WAN, VPN, encapsulation, routing protocols, RIP, BGP, MPLS, OSPF, multicast, VPLS, Pseudowire, DNS, QoS, queuing, traffic control, network security, deep packet inspection, L4-L7 switching, network infrastructure, and architectures.

Dr. Lavian has extensive experience in the software development of computer networks, architectures, configurations, installations, and network testing. He has academic and hands-on experience in the above fields, including technology products from different companies, implementations, related standards, designs, systems, hardware, and software technologies.

ACCOMPLISHMENTS

- Principal Investigator (PI) for three US Department of Defense (DARPA) projects.
- Directed networking computation project for the US Air Force Research Lab (AFRL).
 PI of a wireless research project for an undisclosed US federal agency.
- An inventor of over 120 patents, over 60 prosecuted pro-se before the USPTO.
- Led and developed the first network resource scheduling service for grid computing.
- Managed and engineered the first demonstrated dynamic transatlantic allocation of 10Gbs Lambdas as a grid service.

- Developed and successfully demonstrated the first wire-speed active network on commercial hardware.
- Created and chaired Nortel Networks' EDN Patent Committee.

EXPERT WITNESS

Dr. Lavian has served as an expert witness in cases involving over 140 patents, providing expert reports and testimony in over 70 depositions. He has also testified in Federal courts, before judges and juries, USPTO PTAB IPR, and the ITC. These cases involved leading companies such as Amazon, LinkedIn, Avaya, Netflix, T-Mobile, ZTE, Ericsson, Cisco Systems, Juniper Networks, Polycom, Motorola, LG, WhatsApp, Instagram, Microsoft, Google, Huawei, Facebook, and Apple.

PROFESSIONAL EXPERIENCE

The University of California, Berkeley, Berkeley, California 2000-2019 U.C. Berkeley SkyDeck, Industry Fellow, Lecturer, Visiting Scientist, Ph.D. Candidate. Nortel's Scientist Liaison

Some positions and projects were concurrent, others sequential.

- U.C. Berkeley SkyDeck startups advanced technology research, development, business, and market.
- Industry fellow and lecturer at the Sutardja Center for Entrepreneurship and Technology (SCET).
- Conducted research projects in data centers (RAD Labs), telecommunication infrastructure (SAHARA), and wireless systems (ICEBERG).
- Acted as a scientific liaison between Nortel Research Lab and U.C. Berkeley, providing tangible value in advanced technologies.
- Developed long-term technology for the enterprise market, integrating communication and computing technologies.
- Studied network services, telecommunication systems and software, communications infrastructure, and data centers.
- Earned a Ph.D. in Computer Science with a specialization in network communications.

<u>TelecommNet Engineering, Inc.</u> Sunnyvale, California Principal Scientist

2006-Present

- Consulting in network communications, telecommunications, Internet protocols, and smartphone mobile wireless devices.
- Providing system architecture and technology analysis for computer networks, mobile wireless devices, and Internet web technologies projects.
- Providing expert witness services in network communications patent infringement lawsuits.

CRadar.Ai, U.C. Berkeley, California

2018-2019

CTO / Principal Investigator

- CRadar.Ai improves the Radar wireless RF signal phase noise purity by 100x.
- Accurate Radars are paramount for self-driving car safety. Radars "see" where Cameras and LiDars are "blind" (fog, rain, snow, direct sunlight, and darkness).

- The superior wireless RF signal quality provides a clean signal for high Radar accuracy.
- Improving Radar accuracy and resolution enables genuine redundancy and sensory fusion and puts the Radar into the sensory spearhead.

Aybell (VisuMenu Inc.), U.C. Berkeley, California

2016-Present

CEO/CTO

- Aybell transforms smartphones into visual menu systems, making the phone a
 frictionless point for user interactions with customer service platform features.
 Empowers consumers to reach suitable agents in call centers, overcoming customer
 service barriers. Aybell is a branding and marketing of VisuMenu advanced
 technologies.
- Architecture, design, and implementation of a cloud data center for connecting smartphone users to any company and service by digitizing interactive voice systems and exposing APIs to other applications through cloud service.
- The system was deployed as a cloud networking and cloud computing service on Amazon Web Services (AWS) and Google Cloud Platform (GCP).
- Technologies include Data Science analytics, Machine Learning (ML), Artificial Intelligence (AI), and Statistical Learning (SL). Building an NLP Parser using Python, NLTK, SpaCy, and other NLP libraries and modules.

VisuMenu, Inc., Sunnyvale, California

2010-2016

Co-Founder and Chief Technology Officer (CTO)

- Led the software design and development of a visual IVR system for smartphones and other mobile devices, based on the innovative use of wireless and network communications technologies.
- Designed a voice search engine for IVR / PBX using Asterisk, SIP, and VoIP.
- The system was deployed as a cloud networking and cloud computing service on Amazon Web Services (AWS) and Google Cloud Platform (GCP).
- VisuMenu advanced technologies rebranded as Aybell.

Ixia, Santa Clara, California

2008 - 2008

Network Communications Consultant

Researched and developed advanced network communications testing technologies:

- IxNetwork/IxN2X —IP routing, switching devices, and broadband access equipment.
 Provided traffic generation and emulation for the full range of protocols: OSPF, RIP,
 EIGRP, BGP, IS-IS, MPLS, unicast, multicast, broadcast, layer 2/3 VPNs, IPSec,
 carrier Ethernet, broadband access, and data center bridging. Tested and validated
 IEEE, ITU, and IETF RFC standards compatibility.
- IxLoad quickly and accurately modeled high-volume video, data, and voice subscribers and servers to test the real-world performance of multiservice delivery and security platforms.
- IxCatapult emulated a broad range of wireless access and core protocols to test wireless components and systems that, combined with IxLoad, provide an end-toend solution for testing wireless service quality.

- IxVeriWave employed a client-centric model to test Wi-Fi and wireless LAN networks by generating repeatable large-scale, real-world test scenarios that are virtually impossible to create by any other means.
- Test automation provided simple, comprehensive lab automation to help test engineering teams create, organize, catalog, and schedule execution of tests.

Nortel Networks, Santa Clara, California

1996 - 2007

Employed initially by Bay Networks, later acquired by Nortel Networks

Principal Scientist, Principal Architect, Principal Engineer, Senior Software Engineer

Held scientific and research roles at Nortel Labs, Bay Architecture Labs, and the CTO's office.

Principal Investigator for U.S. Department of Defense (DARPA) Projects

- Conceived, proposed and completed three research projects: active networks, DWDM-RAM, and a networking computation project for Air Force Research Lab (AFRL).
- Led a wireless research project for an undisclosed U.S. federal agency.

Academic and Industrial Researcher

- Analyzed new technologies to reduce risks associated with R&D investment.
- Headed research collaboration with leading universities and professors at U.C. Berkeley, Northwestern University, University of Amsterdam, and the University of Technology, Sydney.
- Evaluated competitive products relative to Nortel's products and technology.
- Proactively identified prospective business ideas, leading to new networking products.
- Predicted technological trends through researching the technological horizon and academic sphere.
- Designed software for switches, routers, and network communications devices.
- Developed systems and architectures for switches, routers, and network management.
- Researched and developed the following projects:

-	Data-Center Communications: network and server orchestration	2006-2007
•	DRAC: SOA-facilitated L1/L2/L3 network dynamic controller	2003-2007
•	Omega: classified project for undisclosed U.S. Federal Agency	2006-2006
•	Platform project for the U.S. Air Force Research Laboratory (AFRL)	2005-2005
•	Network resource orchestration for Web services workflows	2004-2005
•	A proxy study between Web/grids services and network services	2004-2004
•	Streaming content replication: real-time A/V media multicast at edge	2003-2004
•	DWDM-RAM: U.S. DARPA-funded program on agile optical transport	2003-2004
•	Packet capturing and forwarding service on IP and Ethernet traffic	2002-2003
•	CO2: content-aware agile networking	2001-2003
•	Active networks: US DARPA-funded research program	1999-2002
•	ORE: programmable network service platform	1998-2002
•	JVM platform: Java on network devices	1998-2001
•	Web-based device management: network device management	1996-1997

Technology Innovator and Patent Leader

- Created and chaired Nortel Networks' EDN Patent Committee.
- Facilitated a continuous stream of innovative ideas and their conversion into intellectual property rights.
- Developed intellectual property assets through invention and analysis of existing technology portfolios.

Aptel Communications, Netanya, Israel

1994-1995

Software Engineer, Team Leader

Start-up company focused on mobile wireless CDMA spread spectrum PCN/PCS.

- Developed a mobile wireless device using an unlicensed band Direct Sequence Spread Spectrum (DSSS); FCC part 15 - unlicensed transmitters.
- Designed and managed a personal communication network (PCN) and personal communication system (PCS), which were the precursors of short text messages (SMS).
- Designed and developed network communications software products in C/C++.
- Invented and implemented a two-way paging product.

Scitex Ltd., Herzeliya, Israel

1990-1993

Software Engineer, Team Leader

Software and hardware company acquired by Hewlett Packard (HP)

- Developed system and network communications in C/C++.
- I provided IT services, System Administration, and network administration.
- I worked on Unix systems, including IBM AIX, HP, and SUN Unix.
- Invented Parallel SIMD Architecture.
- Participated in the Technology Innovation group.

Shalev, Ramat-HaSharon, Israel

1987-1990

Start-up company

Software Engineer

Developed real-time software and algorithms in C/C++ and Pascal.

PROFESSIONAL ASSOCIATIONS

- IEEE senior member
- IEEE CNSV co-chair, Intellectual Property SIG (2013)
- President Next Step Toastmasters (an advanced TM club in the Silicon Valley) (2013-2014)
- Technical co-chair, IEEE Hot Interconnects 2005 at Stanford University
- Member, IEEE Communications Society (COMMSOC)
- Member, IEEE Computer Society
- Member, IEEE Systems, Man, and Cybernetics Society
- Member, IEEE-USA Intellectual Property Committee (2012)
- Member, ACM, ACM Special Interest Group on Data Communication (SIGCOM)
- Member, ACM Special Interest Group on Hypertext, Hypermedia, and Web (SIGWEB)
- Member, IEEE Consultants' Network (CNSV)
- Global Member, Internet Society (ISOC)
- President Java Users Group Silicon Valley Mountain View, CA,1999-2000
- Toastmasters International

FORMER ADVISORY BOARDS POSITIONS

- Quixey –search engine for wireless mobile apps
- Mytopia mobile wireless social games
- iLeverage Israeli Innovations

PROFESSIONAL AWARDS

- Top Talent Award Nortel
- Top Inventors Award Nortel EDN
- Certified IEEE-WCET Wireless Communications Engineering Technologies (2012)
- Toastmasters International Competent Communicator (twice)
- Toastmasters International Advanced Communicator Bronze
- Best Paper Presentation Award ICE/IEEE Conference. "R&D Models for Advanced Development & Corporate Research"

PERSONAL

USA FIT – San Jose Marathon running club (2017-2020)

Patents and Publications

Patents Issued

(Representative List)

<u>US 9,690,877</u>	Systems and methods for electronic communications	Link
<u>US 9,660,655</u>	Ultra-low phase noise frequency synthesizer	<u>Link</u>
<u>US 9,184,989</u>	Grid proxy architecture for network resources	<u>Link</u>
US 9,521,255	Systems and methods for visual presentation and selection of IVR menu	Link
<u>US 9,083,728</u>	Systems and methods to support sharing and exchanging in a network	<u>Link</u>
<u>US 9,021,130</u>	Photonic line sharing for high-speed routers	Link
US 8,762,963	Translation of programming code	Link
<u>US 8,762,962</u>	Methods and apparatus for automatic translation of a computer program language code	<u>Link</u>
US 8,745,573	Platform-independent application development framework	Link
<u>US 8,731,148</u>	Systems and methods for visual presentation and selection of IVR menu	<u>Link</u>
<u>US 8,688,796</u>	Rating system for determining whether to accept or reject an objection raised by a user in a social network	<u>Link</u>
<u>US 8,619,793</u>	Dynamic assignment of traffic classes to a priority queue in a packet-forwarding device	Link
<u>US 8,572,303</u>	A portable Universal communication device	<u>Link</u>
<u>US 8,553,859</u>	Device and method for providing enhanced telephony	<u>Link</u>
<u>US 8,548,131</u>	Systems and methods for communicating with an interactive voice response system	Link
<u>US 8,537,989</u>	Device and method for providing enhanced telephony	Link
<u>US 8,341,257</u>	Grid proxy architecture for network resources	Link
<u>US 8,161,139</u>	Method and apparatus for intelligent management of a network element	<u>Link</u>
<u>US 8,146,090</u>	Time-value curves to provide dynamic QoS for time-sensitive file transfer	Link
<u>US 8,078,708</u>	Grid proxy architecture for network resources	<u>Link</u>
<u>US 7,944,827</u>	Content-aware dynamic network resource allocation	Link

<u>US 7,860,999</u>	Distributed computation in network devices	<u>Link</u>
<u>US 7,734,748</u>	Method and apparatus for intelligent management of a network element	<u>Link</u>
<u>US 7,710,871</u>	Dynamic assignment of traffic classes to a priority queue in a packet-forwarding device	<u>Link</u>
<u>US 7,580,349</u>	Content-aware dynamic network resource allocation	<u>Link</u>
<u>US 7,433,941</u>	Method and apparatus for accessing network information on a network device	<u>Link</u>
<u>US 7,359,993</u>	Method and apparatus for external interfacing resources with a network element	<u>Link</u>
<u>US 7,313,608</u>	Method and apparatus for using documents written in a markup language to access and configure network elements	<u>Link</u>
<u>US 7,260,621</u>	The object-oriented network management interface	<u>Link</u>
<u>US 7,237,012</u>	Method and apparatus for classifying Java remote method invocation transport traffic	<u>Link</u>
<u>US 7,127,526</u>	Method and apparatus for dynamically loading and managing software services on a network device	<u>Link</u>
<u>US 7,047,536</u>	Method and apparatus for classifying remote procedure call transport traffic	<u>Link</u>
<u>US 7,039,724</u>	Programmable command-line interface API for managing the operation of a network device	<u>Link</u>
<u>US 6,976,054</u>	Method and system for accessing low-level resources in a network device	<u>Link</u>
<u>US 6,970,943</u>	Routing architecture includes a compute plane configured for high-speed processing of packets to provide application layer support.	<u>Link</u>
<u>US 6,950,932</u>	Security association mediator for Java-enabled devices	<u>Link</u>
<u>US 6,850,989</u>	Method and apparatus for automatically configuring a network switch	<u>Link</u>
<u>US 6,845,397</u>	Interface method and system for accessing inner layers of a network protocol	<u>Link</u>
<u>US 6,842,781</u>	Download and processing of a network management application on a network device	<u>Link</u>
<u>US 6,772,205</u>	Executing applications on a target network device using a proxy network device	<u>Link</u>
<u>US 6,564,325</u>	Method of and apparatus for providing multi-level security access to a system	<u>Link</u>
<u>US 6,175,868</u>	Method and apparatus for automatically configuring a network switch	<u>Link</u>
<u>US 6,170,015</u>	Network apparatus with Java co-processor	<u>Link</u>
<u>US 8,687,777</u>	Systems and methods for visual presentation and selection of IVR menu	<u>Link</u>

<u>US 8,681,951</u>	Systems and methods for visual presentation and selection of IVR menu	<u>Link</u>
<u>US 8,625,756</u>	Systems and methods for visual presentation and selection of IVR menu	<u>Link</u>
<u>US 8,594,280</u>	Systems and methods for visual presentation and selection of IVR menu	<u>Link</u>
<u>US 8,548,135</u>	Systems and methods for visual presentation and selection of IVR menu	<u>Link</u>
<u>US 8,406,388</u>	Systems and methods for visual presentation and selection of IVR menu	<u>Link</u>
<u>US 8,345,835</u>	Systems and methods for visual presentation and selection of IVR menu	<u>Link</u>
<u>US 8,223,931</u>	Systems and methods for visual presentation and selection of IVR menu	<u>Link</u>
<u>US 8,160,215</u>	Systems and methods for visual presentation and selection of IVR menu	<u>Link</u>
<u>US 8,155,280</u>	Systems and methods for visual presentation and selection of IVR menu	<u>Link</u>
<u>US 8,054,952</u>	Systems and methods for visual presentation and selection of IVR menu	<u>Link</u>
<u>US 8,000,454</u>	Systems and methods for visual presentation and selection of IVR menu	<u>Link</u>
EP 1,905,211	A technique for authenticating network users	<u>Link</u>
EP 1,142,213	Dynamic assignment of traffic classes to a priority queue in a packet forwarding	<u>Link</u>
EP 1,671,460	<u>device</u> <u>Method and apparatus for scheduling resources on a switched underlay network</u>	<u>Link</u>
<u>US 9,001,819</u>	Systems and methods for visual presentation and selection of IVR menu	<u>Link</u>
<u>US 8,949,846</u>	Time-value curves to provide dynamic QoS for time-sensitive file transfers	<u>Link</u>
<u>US 8,929,517</u>	Systems and methods for visual presentation and selection of IVR menu	<u>Link</u>
<u>US 8,903,073</u>	Systems and methods for visual presentation and selection of IVR menu	<u>Link</u>
<u>US 8,898,274</u>	Grid proxy architecture for network resources	<u>Link</u>
<u>US 8,880,120</u>	Device and method for providing enhanced telephony	<u>Link</u>
<u>US 8,879,703</u>	System method and device for providing tailored services when a call is on-hold	<u>Link</u>
<u>US 8,879,698</u>	Device and method for providing enhanced telephony	<u>Link</u>
<u>US 8,867,708</u>	Systems and methods for visual presentation and selection of IVR menu	<u>Link</u>
<u>US 8,787,536</u>	Systems and methods for communicating with an interactive voice response system	<u>Link</u>
<u>US 8,782,230</u>	Method and apparatus for using a command design pattern to access and configure network elements	<u>Link</u>

CA 2,358,525	Dynamic assignment of traffic classes to a priority queue in a packet forwarding device	<u>Link</u>
CA 2,989,752	Ultra-low Phase Noise Frequency Synthesizer	<u>Link</u>
<u>US 10,598,764</u>	Radar target detection and imaging system for autonomous vehicles with ultra- low phase noise frequency synthesizer	<u>Link</u>
<u>US 10,404,261</u>	Radar target detection system for autonomous vehicles with an ultra-low phase- noise frequency synthesizer	Link
<u>US 10,348,313</u>	Radar target detection system for autonomous vehicles with an ultra-low phase- noise frequency synthesizer	<u>Link</u>
<u>US 10,205,457</u>	RADAR target detection system for autonomous vehicles with an ultra-low phase-noise frequency synthesizer	<u>Link</u>
<u>US 10,764,264</u>	Technique for authenticating network users	<u>Link</u>
EP 3,311,493	An ultra-low phase-noise frequency synthesizer	<u>Link</u>
<u>US 9,831,881</u>	Radar target detection system for autonomous vehicles with ultra-low phase noise frequency synthesizer	<u>Link</u>
<u>US 9,762,251</u>	Ultra-low phase noise frequency synthesizer	<u>Link</u>
<u>US 9,705,511</u>	<u>Ultra-low phase noise frequency synthesizer</u>	<u>Link</u>

Patent Applications Published and Pending (Representative List)

<u>US 20150058490</u>	Grid Proxy Architecture for Network Resources	<u>Link</u>
<u>US 20150010136</u>	Systems and Methods for Visual Presentation and Selection of IVR Menu	<u>Link</u>
<u>US 20140379784</u>	Method and Apparatus for Using a Command Design Pattern to Access and Configure Network Elements	<u>Link</u>
<u>US 20140105025</u>	Dynamic Assignment of Traffic Classes to a Priority Queue in a Packet Forwarding Device	<u>Link</u>
<u>US 20140105012</u>	Dynamic Assignment of Traffic Classes to a Priority Queue in a Packet Forwarding Device	<u>Link</u>
<u>US 20140012991</u>	Grid Proxy Architecture for Network Resources	<u>Link</u>
<u>US 20130080898</u>	Systems and Methods for Electronic Communications	<u>Link</u>
<u>US 20130022191</u>	Systems and Methods for Visual Presentation and Selection of IVR Menu	<u>Link</u>
<u>US 20130022183</u>	Systems and Methods for Visual Presentation and Selection of IVR Menu	<u>Link</u>
<u>US 20130022181</u>	Systems and Methods for Visual Presentation and Selection of IVR Menu	<u>Link</u>
<u>US 20120180059</u>	<u>Time-Value Curves to Provide Dynamic QoS for Time Sensitive File</u> <u>Transfers</u>	<u>Link</u>
<u>US 20120063574</u>	Systems and Methods for Visual Presentation and Selection of IVR Menu	<u>Link</u>
<u>US 20110225330</u>	Portable Universal Communication Device	<u>Link</u>
<u>US 20100220616</u>	Optimizing Network Connections	<u>Link</u>
<u>US 20100217854</u>	Method and Apparatus for Intelligent Management of a Network Element	<u>Link</u>
<u>US 20100146492</u>	Translation of Programming Code	<u>Link</u>
<u>US 20100146112</u>	Efficient Communication Techniques	<u>Link</u>
<u>US 20100146111</u>	Efficient Communication in a Network	<u>Link</u>
US 20090313613	Methods and Apparatus for Automatic Translation of a Computer Program Language Code	<u>Link</u>
<u>US 20090313004</u>	Platform-Independent Application Development Framework	<u>Link</u>
<u>US 20090279562</u>	Content-aware dynamic network resource allocation	<u>Link</u>
<u>US 20080040630</u>	Time-Value Curves to Provide Dynamic QoS for Time Sensitive File	<u>Link</u>

Transfers

<u>US 20070169171</u>	A technique for authenticating network users	<u>Link</u>
<u>US 20060123481</u>	Method and apparatus for network immunization	<u>Link</u>
<u>US 20060075042</u>	Extensible Resource Messaging Between User Applications and Network Elements in a Communication Network	<u>Link</u>
<u>US 20050083960</u>	Method and Apparatus for Transporting Parcels of Data Using Network Elements with Network Element Storage	<u>Link</u>
<u>US 20050076339</u>	Method and Apparatus for Automated Negotiation for Resources on a Switched Underlay Network	<u>Link</u>
<u>US 20050076336</u>	Method and Apparatus for Scheduling Resources on a Switched Underlay Network	<u>Link</u>
<u>US 20050076173</u>	Method And Apparatus for Preconditioning Data to Be Transferred on a Switched Underlay Network	<u>Link</u>
<u>US 20050076099</u>	Method and Apparatus for Live Streaming Media Replication in a Communication Network	<u>Link</u>
<u>US 20050074529</u>	Method and apparatus for transporting visualization information on a switched underlay network	<u>Link</u>
<u>US 20040076161</u>	Dynamic Assignment of Traffic Classes to a Priority Queue in a Packet Forwarding Device	<u>Link</u>
<u>US 20020021701</u>	Dynamic Assignment of Traffic Classes to a Priority Queue in a Packet Forwarding Device	<u>Link</u>
WO 2006/063052	Method and apparatus for network immunization	<u>Link</u>
WO 2007/008976	A technique for authenticating network users	<u>Link</u>
WO2000/054460	Method and apparatus for accessing network information on a network device	<u>Link</u>
WO/2016/203460	Ultra-low phase noise frequency synthesizer	<u>Link</u>
WO/2005/033899	Method and apparatus for scheduling resources on a switched underlay network	<u>Link</u>
WO/2000/041368	Dynamic assignment of traffic classes to a priority queue in a packet forwarding device	<u>Link</u>
<u>US 20140156556</u>	A Time-variant rating system and method thereof	<u>Link</u>
<u>US 20140156758</u>	A Reliable rating system and method thereof	<u>Link</u>

<u>US 20170085708</u>	Systems and methods for visual presentation and selection of IVR menu	<u>Link</u>
<u>US 20160373117</u>	<u>Ultra-low phase noise frequency synthesizer</u>	<u>Link</u>
<u>US 20170322687</u>	Systems and methods for electronic communications	<u>Link</u>
<u>US 20170302282</u>	Radar target detection system for autonomous vehicles with ultra-low phase noise frequency synthesizer	<u>Link</u>
<u>US 20180019755</u>	Radar target detection system for autonomous vehicles with ultra-low phase noise frequency synthesizer	<u>Link</u>
<u>US 20170289332</u>	Systems and methods for visual presentation and selection of IVR menu	<u>Link</u>
<u>US 20170269797</u>	Systems and methods for electronic communication	<u>Link</u>
<u>US 20170099058</u>	Ultra-low phase noise frequency synthesizer	<u>Link</u>
<u>US 20170099057</u>	Ultra-low phase noise frequency synthesizer	<u>Link</u>
<u>US 20190128998</u>	Radar target detection and imaging system for autonomous vehicles with ultra-low phase noise frequency synthesizer	<u>Link</u>
<u>US 20190082043</u>	Systems and methods for visual presentation and selection of IVR menu	<u>Link</u>
<u>US 20180146090</u>	Systems and methods for visual presentation and selection of IVR menu	<u>Link</u>
<u>US 20180130102</u>	Reliable rating system and method thereof	<u>Link</u>

Publications

(Representative List)

- <u>"R&D Models for Advanced Development & Corporate Research"</u> Understanding Six Models of Advanced R&D Ikhlaq Sidhu, Tal Lavian, Victoria Howell University of California, Berkeley. ASEE Annual Conference and Exposition- 2015. Received "<u>Best Paper Presentation Award</u>" ICE/IEEE Conference June 2015.
- "Communications Architecture in Support of Grid Computing," Tal Lavian, Scholar's Press 2013ISBN 978-3-639-51098-0.
- <u>"Applications Drive Secure Light-path Creation across Heterogeneous Domains</u>, Feature Topic Optical Control Planes for Grid Networks: Opportunities, Challenges, and the Vision." Gommans L.; Van Oudenaarde B.; Dijkstra F.; De Laat C.; Lavian T.; Monga I.; Taal A.; Travostino F.; Wan A.; IEEE Communications Magazine, vol. 44, no. 3, March 2006, pp. 100-106.
- <u>Lambda Data Grid: Communications Architecture in Support of Grid Computing</u>. Tal I.
 Lavian, Randy H. Katz; Doctoral Thesis, University of California at Berkeley. January 2006.
- "Information Switching Networks." Hoang D.B.; T. Lavian; The 4th Workshop on the Internet, *Telecommunications and Signal Processing, WITSP2005*, December 19-21, 2005, Sunshine Coast, Australia.
- "Impact of Grid Computing on Network Operators and HW Vendors." Allcock B.; Arnaud B.; Lavian T.; Papadopoulos P.B.; Hasan M.Z.; Kaplow W.; *IEEE Hot Interconnects at Stanford University 2005*, pp.89-90.
- <u>DWDM-RAM: A Data Intensive Grid Service Architecture Enabled by Dynamic Optical Networks</u>. Lavian T.; Mambretti J.; Cutrell D.; Cohen H.J; Merrill S.; Durairaj R.; Daspit P.; Monga I.; Naiksatam S.; Figueira S.; Gutierrez D.; Hoang D.B., Travostino F.; CCGRID 2004, pp. 762-764.
- <u>DWDM-RAM: An Architecture for Data-Intensive Service Enabled by Next Generation Dynamic Optical Networks</u>. Hoang D.B.; Cohen H.; Cutrell D.; Figueira S.; Lavian T.; Mambretti J.; Monga I.; Naiksatam S.; Travostino F.; Proceedings IEEE Globecom 2004, Workshop on High-Performance Global Grid Networks, Houston, 29 Nov. to 3 Dec. 2004, pp.400-409.
- Implementation of a Quality of Service Feedback Control Loop on Programmable
 Routers. Nguyen C.; Hoang D.B.; Zhao, I.L.; Lavian, T.; Proceedings, 12th IEEE
 International Conference on Networks 2004. (ICON 2004) Singapore, Volume 2, 16-19
 Nov. 2004, pp.578-582.
- A Platform for Large-Scale Grid Data Service on Dynamic High-Performance Networks.
 Lavian T.; Hoang D.B.; Mambretti J.; Figueira S.; Naiksatam S.; Kaushil N.; Monga I.;
 Durairaj R.; Cutrell D.; Merrill S.; Cohen H.; Daspit P.; Travostino F; GridNets 2004, San Jose, CA., October 2004.
- <u>DWDM-RAM: Enabling Grid Services with Dynamic Optical Networks.</u> Figueira S.;
 Naiksatam S.; Cohen H.; Cutrell D.; Daspit, P.; Gutierrez D.; Hoang D. B.; Lavian T.;
 Mambretti J.; Merrill S.; Travostino F; Proceedings, 4th IEEE/ACM International
 Symposium on Cluster Computing and the Grid, Chicago, USA, April 2004, pp. 707-714.

- <u>DWDM-RAM: Enabling Grid Services with Dynamic Optical Networks.</u> Figueira S.;
 Naiksatam S.; Cohen H.; Cutrell D.; Gutierrez D.; Hoang D.B.; Lavian T.; Mambretti J.;
 Merrill S.; Travostino F.; 4th IEEE/ACM International Symposium on Cluster Computing and the Grid, Chicago, USA, April 2004.
- An Extensible, Programmable, Commercial-Grade Platform for Internet Service
 Architecture.
 Lavian T.; Hoang D.B.; Travostino F.; Wang P.Y.; Subramanian S.; Monga I.; IEEE Transactions on Systems, Man, and Cybernetics on Technologies Promoting Computational Intelligence, Openness and Programmability in Networks and Internet Services Volume 34, Issue 1, Feb. 2004, pp.58-68.
- DWDM-RAM: An Architecture for Data-Intensive Service Enabled by Next Generation Dynamic Optical Networks. Lavian T.; Cutrell D.; Mambretti J.; Weinberger J.; Gutierrez D.; Naiksatam S.; Figueira S.; Hoang D. B.; Supercomputing Conference, SC2003 Igniting Innovation, Phoenix, November 2003.
- <u>Edge Device Multi-Unicasting for Video Streaming.</u> Lavian T.; Wang P.; Durairaj R.; Hoang D.; Travostino F.; Telecommunications, 2003. ICT 2003. 10th International Conference on Telecommunications, Tahiti, Volume 2, 23 Feb.-1 March 2003 pp. 1441-1447.
- The SAHARA Model for Service Composition Across Multiple Providers. Raman B.;
 Agarwal S.; Chen Y.; Caesar M.; Cui W.; Lai K.; Lavian T.; Machiraju S.; Mao Z. M.;
 Porter G.; Roscoe T.; Subramanian L.; Suzuki T.; Zhuang S.; Joseph A. D.; Katz Y.H.;
 Stoica I.; Proceedings of the First International Conference on Pervasive Computing.
 ACM Pervasive 2002, pp. 1-14.
- <u>Enabling Active Flow Manipulation in Silicon-Based Network Forwarding Engines.</u>
 Lavian T.; Wang P.; Travostino F.; Subramanian S.; Duraraj R.; Hoang D.B.; Sethaput V.; Culler D.; Proceeding of the Active Networks Conference and Exposition, 2002.
 (DANCE) 29-30 May 2002, pp. 65-76.
- <u>Practical Active Network Services within Content-Aware Gateways.</u> Subramanian S.;
 Wang P.; Durairaj R.; Rasimas J.; Travostino F.; Lavian T.; Hoang D.B.; Proceeding of the DARPA Active Networks Conference and Exposition, 2002. (DANCE) 29-30 May 2002, pp. 344-354.
- <u>Active Networking on a Programmable Network Platform.</u> Wang P.Y.; Lavian T.; Duncan R.; Jaeger R.; Fourth IEEE Conference on Open Architectures and Network Programming (OPEN ARCH), Anchorage, April 2002.
- <u>Intelligent Network Services through Active Flow Manipulation.</u> Lavian T.; Wang P.; Travostino F.; Subramanian S.; Hoang D.B.; Sethaput V.; IEEE Intelligent Networks 2001 Workshop (IN2001), Boston, May 2001.
- <u>Intelligent Network Services through Active Flow Manipulation.</u> Lavian T.; Wang P.;
 Travostino F.; Subramanian S.; Hoang D.B.; Sethaput V.; Intelligent Network Workshop,
 2001 IEEE 6-9 May 2001, pp.73 -82.
- <u>Enabling Active Flow Manipulation in Silicon-based Network Forwarding Engine.</u> Lavian,
 T.; Wang, P.; Travostino, F.; Subramanian S.; Hoang D.B.; Sethaput V.; Culler D.;
 Journal of Communications and Networks, March 2001, pp.78-87.
- <u>Active Networking on a Programmable Networking Platform.</u> Lavian T.; Wang P.Y.; IEEE Open Architectures and Network Programming, 2001, pp. 95-103.

- <u>Enabling Active Networks Services on a Gigabit Routing Switch.</u> Wang P.; Jaeger R.; Duncan R.; Lavian T.; Travostino F.; 2nd Workshop on Active Middleware Services, 2000.
- <u>Dynamic Classification in Silicon-Based Forwarding Engine Environments.</u> Jaeger R.;
 Duncan R.; Travostino F.; Lavian T.; Hollingsworth J.; Selected Papers. 10th IEEE
 Workshop on Metropolitan Area and Local Networks, 1999. 21-24 Nov. 1999, pp.103-109.
- Open Programmable Architecture for Java-Enabled Network Devices. Lavian, T.;
 Jaeger, R. F.; Hollingsworth, J. K.; IEEE Hot Interconnects Stanford University, August 1999, pp. 265-277.
- Open Java SNMP MIB API. Rob Duncan, Tal Lavian, Roy Lee, Jason Zhou, Bay Architecture Lab Technical Report TR98-038, December 1998.
- Java-Based Open Service Interface Architecture. Lavian T.; Lau S.; BAL TR98-010 Bay Architecture Lab Technical Report, March 1998.
- Parallel SIMD Architecture for Color Image Processing. Lavian T. Tel Aviv University, Tel Aviv, Israel, November 1995.
- <u>Grid Network Services, Draft-ggf-ghpn-netservices-1.0.</u> George Clapp, Tiziana Ferrari, Doan B. Hoang, Gigi Karmous-Edwards, Tal Lavian, Mark J. Leese, Paul Mealor, InderMonga, Volker Sander, Franco Travostino, Global Grid Forum(GGF).
- <u>Project DRAC: Creating an applications-aware network.</u> Travostino F.; Keates R.; Lavian T.; Monga I.; Schofield B.; Nortel Technical Journal, February 2005, pp. 23-26.
- <u>Popeye Using Fine-grained Network Access Control to Support Mobile Users and Protect Intranet Hosts.</u> Mike Chen, Barbara Hohlt, Tal Lavian, December 2000.
- Open Networking Better Networking through Programmability, Open Networking -Better Networking through Programmability
- <u>Dangerous Liaisons Software Combinations as Derivative Works?</u>
 Determann L.; Berkeley Technology Law Journal. Volume 21, Issue 4, Fall 2006. (Lavian T. contributor to the technical section).
- Open Networking Networking Programmability Nortel Seminar, Tal Lavian, August 2000.

Presentations and Talks

(Not an exhaustive list)

- Lambda Data Grid
- A Platform for Large-Scale Grid Data Service on Dynamic High-Performance Networks
- Lambda Data Grid: An Agile Optical Platform for Grid Computing and Data-intensive Applications.
- Workflow Integrated Network Resource Orchestration
- <u>DWDM-RAM: DARPA-Sponsored Research for Data-Intensive Service-on-Demand</u>
 Advanced Optical Networks
- Impact of Grid Computing on Network Operators and HW Vendors
- Web Services and OGSA
- WINER Workflow Integrated Network Resource Orchestration.
- A Grid Proxy Architecture for Network Resources
- Technology & Society
- Abundant Bandwidth and how it affects us?
- Active Content Networking (ACN)
- DWDM-RAM: Enabling Grid Services with Dynamic Optical Networks
- Application-engaged Dynamic Orchestration of Optical Network Resources
- <u>DWDM-RAM: DARPA-Sponsored Research for Data-Intensive Service-on-Demand</u>
 Advanced Optical Networks
- An Architecture for Data-Intensive Service Enabled by Next Generation Optical Networks
- A Platform for Data-Intensive Services Enabled by Next Generation Dynamic Optical Networks
- A Platform for Data-Intensive Services Enabled by Next Generation Dynamic Optical Networks
- Optical Networks
- Grid Optical Network Service Architecture for Data-Intensive Applications
- Optical Networking & DWDM
- OptiCal Inc.
- OptiCal & LUMOS Networks
- Optical Networking Services
- Optical Networks
- Business Models for Dynamically Provisioned Optical Networks
- Business Model Concepts for Dynamically Provisioned Optical Networks
- Optical Networks Infrastructure
- Research Challenges in agile optical networks
- Services and Applications' infrastructure for agile optical networks
- Impact on Society
- Technology & Society
- TeraGrid Communication and Computation
- Unified Device Management via Java-enabled Network Devices
- Active Network Node in Silicon-Based L3 Gigabit Routing Switch
- Enabling Active Flow Manipulation (AFM) in Silicon-based Network Forwarding Engines

- Active Nets Technology Transfer through High-Performance Network Devices
- Enabling Active Networks Services on A Gigabit Routing Switch
- Programmable Network Node: Applications
- Open Innovation via Java-enabled Network Devices
- Practical Considerations for Deploying a Java Active Networking Platform
- Open Programmable Architecture for Java-enabled Network Devices
- Enabling Active Flow Manipulation In Silicon-based Network Forwarding Engines
- Enabling Active Flow Manipulation In Silicon-based Network Forwarding Engines
- Enabling Active Flow Manipulation In Silicon-based Network Forwarding Engines
- <u>DWDM-RAM: DARPA-Sponsored Research for Data-Intensive Service-on-Demand</u>
 Advanced Optical Networks
- DWDM-RAM: DARPA-Sponsored Research for Data-Intensive Service-on-Demand Advanced Optical Networks
- Open Programmable Architecture for Java-enabled Network Devices
- Open Java-based Intelligent Agent Architecture for Adaptive Networking Devices
- Edge Device Multi-unicasting for Video Streaming
- Intelligent Network Services through Active Flow Manipulation
- Java SNMP Oplet
- Unified Device Management via Java-enabled Network Devices
- Dynamic Classification in a Silicon-Based Forwarding Engine
- Integrating Active Networking and Commercial-Grade Routing Platforms
- Enabling Active Flow Manipulation In Silicon-based Network Forwarding Engines
- Open Distributed Networking Intelligence: A New Java Paradigm
- Open Networking Better Networking Through Programmability
- Open Programmability
- Active On A Programmable Networking Platform
- Open Networking Networking through Programmability
- Open Programmable Architecture for Java-enabled Network Devices
- Popeye Fine-grained Network Access Control for Mobile Users
- Integrating Active Networking and Commercial-Grade Routing Platforms
- Active Networking
- Programmable Network Devices
- Open Programmable Architecture for Java-enabled Network Devices
- To be smart or not to be?