-
US 20180130102 Reliable rating system and method thereof: Embodiments of the invention provide means to the users of the system to provide ratings and corresponding feedback for enhancing the genuineness in the ratings. The system includes a memory coupled to a processor. The memory includes one or more instructions executable by the processor to enable the users of the system to rate each other based on at least one of sharing, exchanging, and selling one of activity, service or product. The system may provide a mechanism to encourage genuineness in ratings provided by the users. Furthermore, the instructions facilitate the rating receivers to provide feedbacks corresponding to the received ratings. The feedback includes accepting or objecting to a particular rating. Moreover, the memory includes instructions executable by the processor to enable the system to determine genuineness of an objection raised by a rating receiver.
READ MOREUS 20180130102 Reliable rating system and method thereof: Embodiments of the invention provide means to the users of the system to provide ratings and corresponding feedback for enhancing the genuineness in the ratings. The system includes a memory coupled to a processor. The memory includes one or more instructions executable by the processor to enable the users of the system to rate each other based on at least one of sharing, exchanging, and selling one of activity, service or product. The system may provide a mechanism to encourage genuineness in ratings provided by the users. Furthermore, the instructions facilitate the rating receivers to provide feedbacks corresponding to the received ratings. The feedback includes accepting or objecting to a particular rating. Moreover, the memory includes instructions executable by the processor to enable the system to determine genuineness of an objection raised by a rating receiver.
READ MORE -
US 20180146090 IVR menu to a user to enable the user to select an option: Embodiments of the present invention provide a system for enhancing user interface with vendors (service providers). The system may provide visual IVR menu to a user to enable the user to select an option there from. Further, the system may include a call-parking module communicably coupled to an application (at a user device) through the internet and configured for guiding the application based on a user request to perform at least one of: a) dialing a telephone number corresponding to the user request, the user request being determined based on a user selection from a visual IVR menu corresponding to the telephone number; b) inputting one or more required DTMF inputs at particular intervals; and c) connecting a user corresponding to the user device with the selected option corresponding to the IVR or on detection of human voice. Images (96)
READ MOREUS 20180146090 IVR menu to a user to enable the user to select an option: Embodiments of the present invention provide a system for enhancing user interface with vendors (service providers). The system may provide visual IVR menu to a user to enable the user to select an option there from. Further, the system may include a call-parking module communicably coupled to an application (at a user device) through the internet and configured for guiding the application based on a user request to perform at least one of: a) dialing a telephone number corresponding to the user request, the user request being determined based on a user selection from a visual IVR menu corresponding to the telephone number; b) inputting one or more required DTMF inputs at particular intervals; and c) connecting a user corresponding to the user device with the selected option corresponding to the IVR or on detection of human voice. Images (96)
READ MORE -
US 20190082043 User Interface for voice to electronic signal subsystem: Embodiments of the invention provide a communication system including a processor; and a memory coupled to the processor. The memory may include a communication module with an Interactive Voice Response (IVR) database. Herein, the database may include a list of telephone numbers associated with one or more destinations implementing one or more IVR menus. Further, the memory includes instructions set having one or more instructions executable by the processor for automatically interfacing with a user interface system comprising voice to electronic signal subsystem. More specifically, the voice request of the user may be converted into digital form. Further, the instructions executable by the processor may initiate search within said database following a voice command captured by said voice to electronic signal subsystem. Furthermore, the memory includes instructions executable by the processor to initiate voice call to a telephone number within said database according to the result of said search.
READ MOREUS 20190082043 User Interface for voice to electronic signal subsystem: Embodiments of the invention provide a communication system including a processor; and a memory coupled to the processor. The memory may include a communication module with an Interactive Voice Response (IVR) database. Herein, the database may include a list of telephone numbers associated with one or more destinations implementing one or more IVR menus. Further, the memory includes instructions set having one or more instructions executable by the processor for automatically interfacing with a user interface system comprising voice to electronic signal subsystem. More specifically, the voice request of the user may be converted into digital form. Further, the instructions executable by the processor may initiate search within said database following a voice command captured by said voice to electronic signal subsystem. Furthermore, the memory includes instructions executable by the processor to initiate voice call to a telephone number within said database according to the result of said search.
READ MORE -
US 20190128998 RADAR Systems UPLN phase noise: A target detection and imaging system, comprising a RADAR unit and at least one ultra-low phase noise frequency synthesizer, is provided. The target detecting, and imaging system can assist other sensors such as LiDAR, camera to further detect and investigate objects on the road from distance. RADAR unit configured for detecting the presence and characteristics of one or more objects in various directions. The RADAR unit may include a transmitter for transmitting at least one radio signal; and a receiver for receiving the at least one radio signal returned from the one or more objects. signals. The ultra-low phase noise frequency synthesizer may utilize dual loop design comprising one main PLL and one sampling PLL, where the main PLL might include a DDS or Fractional-N PLL plus a variable divider, or the synthesizer may utilize a sampling PLL only, to reduce phase noise from the returned radio signal. This proposed system overcomes deficiencies of current generation state of the art RADAR Systems by providing much lower level of phase noise which would result in improved performance of the RADAR system in terms of target detection, characterization etc.
READ MOREUS 20190128998 RADAR Systems UPLN phase noise: A target detection and imaging system, comprising a RADAR unit and at least one ultra-low phase noise frequency synthesizer, is provided. The target detecting, and imaging system can assist other sensors such as LiDAR, camera to further detect and investigate objects on the road from distance. RADAR unit configured for detecting the presence and characteristics of one or more objects in various directions. The RADAR unit may include a transmitter for transmitting at least one radio signal; and a receiver for receiving the at least one radio signal returned from the one or more objects. signals. The ultra-low phase noise frequency synthesizer may utilize dual loop design comprising one main PLL and one sampling PLL, where the main PLL might include a DDS or Fractional-N PLL plus a variable divider, or the synthesizer may utilize a sampling PLL only, to reduce phase noise from the returned radio signal. This proposed system overcomes deficiencies of current generation state of the art RADAR Systems by providing much lower level of phase noise which would result in improved performance of the RADAR system in terms of target detection, characterization etc.
READ MORE -
10764264 Evaluating a security context associated with the requested connection: A technique for authenticating network users is disclosed. In one particular exemplary embodiment, the technique may be realized as a method for authenticating network users. The method may comprise receiving, from a client device, a request for connection to a network. The method may also comprise evaluating a security context associated with the requested connection. The method may further comprise assigning the client device one or more access privileges based at least in part on the evaluation of the security context.
READ MORE10764264 Evaluating a security context associated with the requested connection: A technique for authenticating network users is disclosed. In one particular exemplary embodiment, the technique may be realized as a method for authenticating network users. The method may comprise receiving, from a client device, a request for connection to a network. The method may also comprise evaluating a security context associated with the requested connection. The method may further comprise assigning the client device one or more access privileges based at least in part on the evaluation of the security context.
READ MORE -
A target detection and imaging system comprising a RADAR unit: A target detection and imaging system, comprising a RADAR unit and at least one ultra-low phase-noise frequency synthesizer, is provided. RADAR unit configured for detecting the presence and characteristics of one or more objects in various directions. The RADAR unit may include a transmitter for transmitting at least one radio signal, and a receiver for receiving the at least one radio signal returned from the one or more objects. signals. The ultra-low phase-noise frequency synthesizer may utilize dual loop design comprising one main PLL and one sampling PLL, where the main PLL might include a DDS or Fractional-N PLL plus a variable divider, or the synthesizer may utilize a sampling PLL only, to reduce phase-noise from the returned radio signal. This system helps in detecting and classifying human beings present on the road clearly and in time so as to provide a corrective input to the autonomous vehicle timely.
READ MOREA target detection and imaging system comprising a RADAR unit: A target detection and imaging system, comprising a RADAR unit and at least one ultra-low phase-noise frequency synthesizer, is provided. RADAR unit configured for detecting the presence and characteristics of one or more objects in various directions. The RADAR unit may include a transmitter for transmitting at least one radio signal, and a receiver for receiving the at least one radio signal returned from the one or more objects. signals. The ultra-low phase-noise frequency synthesizer may utilize dual loop design comprising one main PLL and one sampling PLL, where the main PLL might include a DDS or Fractional-N PLL plus a variable divider, or the synthesizer may utilize a sampling PLL only, to reduce phase-noise from the returned radio signal. This system helps in detecting and classifying human beings present on the road clearly and in time so as to provide a corrective input to the autonomous vehicle timely.
READ MORE -
10404261 Radar target detection system for autonomous vehicles: A system for detecting the surrounding environment of vehicle comprising a RADAR unit and at least one ultra-lowphase-noise frequency synthesizer, is provided. A RADAR unit configured for detecting the presence and characteristics of one or more objects in various directions. The RADAR unit may include a transmitter for transmitting at least one radio signal, and a receiver for receiving the at least one radio signalreturned from the one or more objects. The ultra-lowphase-noisefrequency synthesizer may utilize a dual loop design comprising one main PLL and one sampling PLL, where the main PLL might include a DDS or Fractional-N PLL plus a variable divider, or the synthesizer may utilize a sampling PLL only, to reduce phase-noise from the returned radio signal. This system enhances the detection of the exact location of the vehicle based on the received RADAR signatures of objects, azimuth and distance.
READ MORE10404261 Radar target detection system for autonomous vehicles: A system for detecting the surrounding environment of vehicle comprising a RADAR unit and at least one ultra-lowphase-noise frequency synthesizer, is provided. A RADAR unit configured for detecting the presence and characteristics of one or more objects in various directions. The RADAR unit may include a transmitter for transmitting at least one radio signal, and a receiver for receiving the at least one radio signalreturned from the one or more objects. The ultra-lowphase-noisefrequency synthesizer may utilize a dual loop design comprising one main PLL and one sampling PLL, where the main PLL might include a DDS or Fractional-N PLL plus a variable divider, or the synthesizer may utilize a sampling PLL only, to reduce phase-noise from the returned radio signal. This system enhances the detection of the exact location of the vehicle based on the received RADAR signatures of objects, azimuth and distance.
READ MORE -
8341257 Grid proxy architecture for network resources: A Grid Proxy Architecture for Network Resources (GPAN) is proposed to allow Grid applications to access resources shared in communication network domains. GPAN bridges Grid services serving user applications and network services controlling network devices through its proxy functions such as resource data and management proxies. Working with Grid resource index and broker services, GPAN employs distributed network service peers (NSP) in network domains to discover, negotiate and allocate network resources such as bandwidth for Grid applications. An elected master NSP is the unique Grid node that runs GPAN and represents the whole network to share network resources to Grids without Grid involvement of network devices. GPAN provides the Grid Proxy service (GPS) to interface with Grid services and applications, and the Grid Delegation service (GDS) to interface with network services to utilize network resources. Resource-based XML messaging is employed for the GPAN proxy communication.
READ MORE8341257 Grid proxy architecture for network resources: A Grid Proxy Architecture for Network Resources (GPAN) is proposed to allow Grid applications to access resources shared in communication network domains. GPAN bridges Grid services serving user applications and network services controlling network devices through its proxy functions such as resource data and management proxies. Working with Grid resource index and broker services, GPAN employs distributed network service peers (NSP) in network domains to discover, negotiate and allocate network resources such as bandwidth for Grid applications. An elected master NSP is the unique Grid node that runs GPAN and represents the whole network to share network resources to Grids without Grid involvement of network devices. GPAN provides the Grid Proxy service (GPS) to interface with Grid services and applications, and the Grid Delegation service (GDS) to interface with network services to utilize network resources. Resource-based XML messaging is employed for the GPAN proxy communication.
READ MORE -
8078708 Grid applications to access – shared in communication network: A Grid Proxy Architecture for Network Resources (GPAN) is proposed to allow Grid applications to access resources shared in communication network domains. GPAN bridges Grid services serving user applications and network services controlling network devices through its proxy functions such as resource data and management proxies. Working with Grid resource index and broker services, GPAN employs distributed network service peers (NSP) in network domains to discover, negotiate and allocate network resources such as bandwidth for Grid applications. An elected master NSP is the unique Grid node that runs GPAN and represents the whole network to share network resources to Grids without Grid involvement of network devices. GPAN provides the Grid Proxy service (GPS) to interface with Grid services and applications, and the Grid Delegation service (GDS) to interface with network services to utilize network resources. Resource-based XML messaging is employed for the GPAN proxy communication.
READ MORE8078708 Grid applications to access – shared in communication network: A Grid Proxy Architecture for Network Resources (GPAN) is proposed to allow Grid applications to access resources shared in communication network domains. GPAN bridges Grid services serving user applications and network services controlling network devices through its proxy functions such as resource data and management proxies. Working with Grid resource index and broker services, GPAN employs distributed network service peers (NSP) in network domains to discover, negotiate and allocate network resources such as bandwidth for Grid applications. An elected master NSP is the unique Grid node that runs GPAN and represents the whole network to share network resources to Grids without Grid involvement of network devices. GPAN provides the Grid Proxy service (GPS) to interface with Grid services and applications, and the Grid Delegation service (GDS) to interface with network services to utilize network resources. Resource-based XML messaging is employed for the GPAN proxy communication.
READ MORE -
Rating system for determining whether to accept or reject objection raised by user in social network
8688796 Rating system for determining – user in social network: Embodiments of the invention provide means to the users of the system to provide ratings and corresponding feedback for enhancing the genuineness in the ratings. The system includes a memory coupled to a processor. The memory includes one or more instructions executable by the processor to enable the users of the system to rate each other based on at least one of sharing, exchanging, and selling one of activity, service or product. The system may provide a mechanism to encourage genuineness in ratings provided by the users. Furthermore, the instructions facilitate the rating receivers to provide feedbacks corresponding to the received ratings. The feedback includes accepting or objecting to a particular rating. Moreover, the memory includes instructions executable by the processor to enable the system to determine genuineness of an objection raised by a rating receiver.
READ MORE8688796 Rating system for determining – user in social network: Embodiments of the invention provide means to the users of the system to provide ratings and corresponding feedback for enhancing the genuineness in the ratings. The system includes a memory coupled to a processor. The memory includes one or more instructions executable by the processor to enable the users of the system to rate each other based on at least one of sharing, exchanging, and selling one of activity, service or product. The system may provide a mechanism to encourage genuineness in ratings provided by the users. Furthermore, the instructions facilitate the rating receivers to provide feedbacks corresponding to the received ratings. The feedback includes accepting or objecting to a particular rating. Moreover, the memory includes instructions executable by the processor to enable the system to determine genuineness of an objection raised by a rating receiver.
READ MORE