US 5577205 Chassis for a multiple computer system

ABSTRACT – A multiple computer system having team/work group features built in. A principal hardware component thereof is a unitary chassis of a compact tower configuration, designed to house electronics for up to four personal computers, all operating on a single power supply. The unitary chassis provides interconnecting cable for connecting up to four corresponding display terminals and keyboards. One of the personal computers in the chassis is designated the TEAMHUB and the remaining personal computers in the chassis are designated TEAMMATES. Up to three such TEAMMATES may be included in one such chassis. Two TEAMPRO systems may be readily combined to serve up to eight local users in a team/work group environment. Each such computer electronics within the TEAMCHASSIS provides a communication card, which may for example be a SCSI card providing data rate transfer between TEAMHUB and TEAMMATES at 10 Megabytes per second. Furthermore, within the TEAMCHASSIS, each computer comprises a CPU card and a monitor interface card, such as a VGA card. In addition, the chassis provides at least one 51/4 inch floppy disk drive and at least one 31/2 inch floppy disk drive, both of which can be shared by any of the four computers in a daisy chain configuration. In addition, each computer has its own hard disk drives. The system is also designed to connect to external devices, such as CD-ROM or other SCSI devices.

FIELD OF THE INVENTION

The present invention pertains generally to the field of personal computers (PCs) and high end work station computers and more specifically to a multiple computer system, wherein a single unitary chassis houses virtually all of the electronics for a plurality of personal computers, the display monitors and keyboards for which can be located at dispersed locations for operation in a teamwork or work group environment with from 2-8 users or in an enterprise wide network environment involving multiple teams or work groups of up to 250 users.

BACKGROUND OF THE INVENTION

The concept of interconnecting a plurality of computers to create one interactive network for small workgroups, is not per se new. By way of example, there are several different ways to connect a group of say up to eight computers to provide a single team/work group environment with different levels of services. From the simple printer switch box to the loosely coupled peer-to-peer (i.e. devices and applications having) Ethernet-connected workstations, various levels of interactive cooperation are currently available, however all suffer from a variety of disadvantages. For example, a printer sharing device is certainly a temporary and wholely inadequate solution because it provides only one of the many functions that a single team/work group requires. Industry trends show that future DOS-based operating systems will have the peer-to-peer connectivity built in. By that time, if a work group wants to take advantage of a full-fledged peer-to-peer function, they will have to set aside those inefficient hardware switch boxes. In the personal computer area, file exchange packages using a parallel port or a serial port for hooking up at least two personal computers, are useful in some cases, but they cannot provide a single team/work group environment with real-time connectivity. In fact, unless the work group has only two personal computers, that solution is not ideal. The prevailing method of using Ethernet or Token-Ring or the like to connect a group of up to eight desktop personal computers is not without disadvantages as well. Even though this solution provides a single team/work group environment with basic peer-to-peer or client/server functions, it also suffers from a number of disadvantages. By way of example, it provides no adequate security measures to guard against intruders who might illegally copy databases or the contents of confidential working files directly from unprotected media storage devices which also raises the possibility of virus contamination. Multiple personal computer systems of the prior art also fail to provide an efficient way for backing up data in a peer-to-peer environment. Furthermore, in order to protect the entry of data, typically each such PC system connected in a multiple user group configuration requires its own uninterruptible power supply (UPS), as well as its own regular power supply in order to operate. In fact, such prior art interconnected work group PC systems are inefficient in general because of redundancies, not only in power supply and UPS, but also in chassis boxes, floppy drives, wiring hubs and the like. In addition, such prior art multiple PC systems suffer from low data transfer rates, as well as the unpleasant requirement for a large and unwieldy chassis at each user’s location. Furthermore, there is no easy way for one user to monitor the displays or keyboard operations of any other user from his or her remote location and accordingly such prior art systems are not conducive to a supervised work group environment, such as for use in a classroom context.

The most common way of connecting conventional PCs, that is up to eight PCs, is to use Ethernet, Token-Ring or the like which provides for peer-to-peer connectivity between each system. However, such a loosely coupled Ethernet or Token-Ring based multiple PC system is not usually designed to be team or work group oriented and therefore cannot offer those functions that a team or work group oriented system can.

In an enterprise network environment, PC networking has become more and more important and indispensable. However, while today’s PC networking may have provided all the needed functions, it is not well organized nor well structured and because it lacks a well designed network architecture, it can sometimes be ineffective and inefficient. Current centralized file server networks cannot be combined with work group peer-to-peer networks on only one cabling system because one cabling system cannot accommodate all of the activities without sacrificing performance. Therefore, the concept of networking a large number of personal computers using a loosely coupled plurality of existing personal computers, is also a less than satisfactory concept using conventional prior art systems.

Accordingly, there is still an ongoing need for a more efficient team/work group oriented multiple PC system that can for example, accommodate up to eight users within a relatively small area, such as a typical small business office, retail store, restaurant or professional office environment. Furthermore, it would be desirable for such systems to be useable in enterprise-wide networking applications, wherein a plurality of such systems can accommodate as many as 250 users. Utilizing a work group-based subnet instead of a loosely coupled single PC as the basic enterprise-wide network building block, such networks can be well organized and easy to manage when wherein each node can communicate with other nodes at a high transfer rate within the work group and still access the centralized file server to optimize network productivity to the fullest.

SUMMARY OF THE INVENTION

The present invention solves the aforementioned ongoing need by providing a multiple computer system having team/work group features built in. A principal hardware component of a preferred embodiment of the present invention is a unitary chassis of a compact tower configuration designed to house electronics for up to four personal computers, all operating on a single power supply. The unitary chassis provides interconnecting cables for connecting up to four corresponding display terminals and keyboards. One of the personal computers in the chassis, referred to hereinafter as the “teamchassis”, is designated the “TEAMHUB” which may be for example, an Intel Model 386 or a 486-based system. The chassis provides hub-configured slots for the remaining PCs to share software applications, as well as to share hardware devices such as printers, modems, CD-ROMs (compact disc-read only memory), tapes, disks, etc. The teamchassis also provides the electronics for three additional computers designated hereinafter “TEAMMATEs” which may also be an Intel Model 386, or a 486-based system that provides the most desirable computing power for the work group. The teamchassis provides slots for various interface electronic cards for all of the four computers, including a communication card for each computer. The communication card, which may for example be a Small Computer System Interface (SCSI) card, provides the highest data transfer rate among TEAMHUB and TEAMMATEs at 10 megabytes per second. The teamchassis also accommodates shared floppy disk drives daisy-chain-connected to all computers. The drives provide an alternative boot up path for each TEAMMATE during setup or when a TEAMMATE’s system disk is faulty. They also provide diskless TEAMMATEs with remote boot capability. The TEAMCHASSIS also provides a single, centralized power supply that eliminates any possibility of accidental individual shutoff ensuring reliable work group data communications. An externally connected uninterruptible power supply backup (UPS) provides the TEAMHUB and TEAMMATEs with UPS service, ensuring work group data communication and data recovery whenever the external power is interrupted.

A monitor and keyboard for each individual computer, that is, the TEAMHUB and each of the three TEAMMATEs, are connected to the teamchassis by two cables, a VGA (video graphics array) monitor cable and a keyboard cable. The keyboards are specially designed for the system of the present invention. They possess all of the amenities of a regular personal computer keyboard, but they also provide, in addition to regular keyboard functions, a reset button, a built-in speaker buzzer, a system disk LED indicator, and two serial ports for a mouse, serial line printer, hand held scanner, card reader, modem/fax or the like. The present invention also provides what is referred to hereinafter as a “teampanel” which is a stand-alone system monitoring unit that is typically located near the teamchassis and provides switchability between the TEAMHUB and any selected TEAMMATE computer. The teampanel thus provides the most efficient and effective way for project supervision, group coordination, learning and teaching and facilitates work group communication while maximizing the work group productivity.

Within the teamchassis, each computer comprises a CPU card, a data communication card such as an SCSI card, and a monitor interface card such as a VGA card. In addition, the teamchassis provides at least one 51/4 inch floppy disk drive and at least one 31/2 inch floppy disk drive, both of which can be shared by any of the four computers. In addition, each computer has its own hard disk drives. An optional internal tape backup system and/or an optional CD-ROM are also provided. The system is also designed to connect to external devices, such as another CD-ROM or other SCSI devices commonly known to those familiar with SCSI interconnection systems. Each SCSI card, referred to herein also as the TEAMWORK card, includes a LAN driver designed to run directly with a variety of popular DOS-based client-server and peer-to-peer network operating systems, such as Netware, Novell-Lite, Lantastic and the like.

The overall multiple computer system of the present invention, hereinafter referred to as “TEAMPRO”, can be configured to have only one computer to start with and gradually be increased in the number of computers up to eight with significant cost savings. Multiple TEAMPRO work group computer systems can also be easily linked by wireless, Ethernet, or Token-Ring and the like, producing the most ideal enterprise-wide network. TEAMPRO can easily be hooked up with any existing personal computers by using a teamwork card including direct hookup with SUN and DEC workstations, providing an instant work group data communication capability. When hooked up to an enterprise-wide network, the TEAMHUB or TEAMMATE computers can instantly become a network node and expand the network connectivity effortlessly without reconstructing the cumbersome existing network cabling. TEAMPRO provides easy and direct hookup with personal portables through Ethernet, wireless, parallel, or enhanced parallel port and the like. In an enterprise-wide network environment, TEAMPRO can serve as a network bridge for portables, such as for laptop and notebook computers, creating a better network architecture to organize and manage network activities.

The teamchassis of the present invention is uniquely configured to efficiently house all of the aforementioned electronics, cabling, floppy and hard disk drives, tape back-up and common power supply for up to four computers. Despite the significant multiple computer capability of such a chassis, it is nevertheless a relatively compact unit which affords the unique opportunity to easily add or remove circuit cards to either increase the number of computers or readily service existing computers.

 

 

 

Related Posts