US 5589849 Display monitor position adjustment apparatus

ABSTRACT – A man-computer-man communications system, including a computer workstation (10), which is comprised of a display device (22), graphic tablet (18), stylus (14), and computer unit (24), where the physical orientation of the display device screen (16) is made adjustable in inclination angle, azimuth angle, and elevation height. The active area of the graphic tablet is a transparent surface area (18), which is coincident to the display screen and is approximately the same size as the display screen. The graphic tablet device may include active or passive stylus (14). A keyboard unit (12) and telephone unit (28) may be added to the workstation. An external communications system may be added to transmit and receive data to or from remote computers or other workstations. The display screen angle can be adjusted to inclination angles between horizontal and vertical orientations. The computer unit (24) controls the operation of the workstation and external communications.


This invention relates to communication systems used by individuals for general tele-writing, sketching and drawing of hand written information, to be transmitted to other individuals via computer systems. In particular it relates to computer workstations comprised of electrical and mechanical devices for the input, computation, and output of data, resulting an integrated ergonomically designed human-computer interface system.


In the following, a computer workstation is defined to be a combination of devices and apparatus, which may include computer hardware and software, that a person uses or operates during the performance various computing and communication tasks. These tasks includes, but is not limited to, technical calculations, business computations and local/remote communications. Prior art in this field includes many computer workstations and personal computers. Henceforth, a computer workstation will include personal computers, computer terminals, computer consoles, and like devices.

The person operating the workstation will be referred to as the user. Display devices used in computer workstations can be classified into two broad categories. The first category is often referred to as direct-view display devices, in which the user, looks directly at the actual display screen, not projected light image from other components. Most of the display devices in the prior art belong to this category, examples include the Cathode Ray Tube (CRT), liquid crystal, and plasma panel displays. The other category is referred to as non-direct view or projected image displays, where examples include the optical CRT projector and some laser addressed liquid crystal projection devices.

There are presently many computer workstations on the market, many having similar components and physical arrangements. The available workstations are very well known to those skilled in the workstation art. The majority of computer workstations have a CRT display device placed on the table or desk, a mouse unit, a computer unit, and an alphanumeric keyboard. The prior art CRT or other direct-view displays usually have the display screen at near vertical or near 45 degree screen inclinations. A graphic tablet is defined to be an electrical device, which repeatedly measures the position of a stylus, pen or a user’s finger over a defined area, encodes the positions into a digital signal, and transmits the data to a computer. A stylus is defined to be any elongated pen-like object that can be used for writing or sketching, including the user’s finger. The writing stylus is typically used to point, write, sketch, or draw onto the graphic tablet’s active area, referred to as the encoding area.

Prior art in computer workstations exist in various combinations of computers, display devices, and peripheral devices. However, the prior art fails to anticipate the importance of computer workstation with computer, graphic tablet, and display device, with inclined screen angle and its adjustability through large angles. U.S. Pat. No. 4,361,721 of Dagnelie discloses a teletext device having a graphic tablet and a CRT display at a screen inclination fixed near 45 degrees. However, the disclosure does not recognize display screen angle adjustability and does not teach a computing means of any type, which severely limits the usefulness of the device. U.S. Pat. No. 4,562,482 of Brown discloses a computerized executive workstation having a CRT display with a screen inclination angle of 50 degrees from the horizontal, during workstation operation. Although the CRT display can be retracted to a stored position below the work surface area, the teachings of Brown do not disclose a graphic tablet and do not disclose screen angle adjustability. These shortcomings restrict the workstation an operation without graphic input. The U.S. Pat. No. 4,668,026 of Lapeyre and Gundlach discloses a computer terminal cabinet for glare reduction, having a CRT display at an acute angle with the horizontal, a keyboard, and a printer. The reference teaches adjustable mounting only for glare reduction, and does not disclose a graphic tablet or a computer; thus also restricting the terminal to non-graphic input. U.S. Pat. No. 4,669,789 of Pemberton discloses a computer user’s desk having a CRT monitor at about 60 degrees from the horizontal, a keyboard, and dual disk drives. This reference does not disclose a graphic tablet or screen angle adjustability to inclinations near the horizontal. Again, the prior art does not anticipate graphic input or screen angle adjustability for optimal stylus control.

All the prior art of computer workstations, terminals or cabinets, of which the above is representative, disclose either display screens near vertical orientation, disclose fixed acute inclinations, or limited screen angle adjustability for glare reduction. No prior art can be found that disclose screen angle adjustability from horizontally to vertical, with a graphic tablet and computer. The prior art workstations can be used in either the conventional manner or at a fixed acute screen angle, but not both. The prior art fails to recognize the importance of an ergonomically design graphic input workstation capable of adjusting between conventional orientation and graphic input mode of operation with stylus data entry and screen angle near the horizontal (about 30 degrees for horizontal).

Although several graphic tablet and stylus devices are available in the market, they usually have been combined with a display device by electrical means only. The typical display and graphic tablet combination has an opaque tablet laying horizontally on the desk or table next to the display device, connected by an electrical cable. Some graphic tablet prior art includes a transparent tablet placed over the display screen, but typically the screen orientation is near vertical. Although this arrangement works satisfactory for general purpose computer processing, it has some definite shortcomings when high resolution graphic processing is attempted. This is important because today software is becoming more graphic intensive than ever before.

An important problem exists if the screen angle is near vertical. The user’s hand and wrist must bend to an uncomfortable position to write or sketch on the tablet-display surface. In addition, if the screen is at eye level, as with most prior art, the user’s arm must be raised and held at position that will become very tirersome to the user, if used for a significant amount of time. The above is not just a matter of convenience. These shortcomings have severely restricted the use of standard graphic tablet input devices in the marketplace. This is one reason that the mouse input device has found wide spread use as a graphic input device for computer workstations and personal computers. Specifically, the mouse unit slides over the work table or desk, providing a support for the user’s hand and arm. However, the mouse graphic input devices also have several disadvantages. First, it is difficult for the user to write, sketch, or draw with a mouse, because the device is too large and bulky to act as a pen or stylus. Secondly, the device must have a clear area on the table or desk for the unit to slide. This is valuable work space that some workstations cannot afford to lose.

Prior art workstations are inherently limited in their graphic interaction capabilities. The use of mice, joysticks, trackballs, and touch panels all have limitations for entering positional and functional data. For example, Computer-Aid Design (CAD) and Computer-Aided Design and Drafting (CADD) applications require precise and natural drawing and pointing means. An engineer or draftsman must be able to work at their workstation all day without great mental or physical fatigue. The prior art also does a poor job at providing a fatigue free workstation. In the area of teleconferencing applications, the computer workstation must be capable of real-time graphic and voice communications. The prior art workstations do not provide the means to accomplish that type of communications. In addition, conventional prior art workstations do not provide the ergonomically designed hardware support necessary for real-time electronic mail communications, while connected to either in Local Area Network communication means or remote communication means.


The disclosed invention solves the shortcomings of the prior art by arranging the standard workstation components so that it results in an integrated ergonomically designed universal workstation. The primary feature of the workstation is that its display device is oriented so that its screen angle is inclined at an angle. A transparent graphic tablet or stylus encoding means is placed over the display screen such that tablet or encoding area is parallel to the screen and above with a minimum space between them. Thus the tablet and screen appear to be one surface to the user. The display and tablet combination can be made to be adjustable through a multiplicity of screen angles. When the user writes with the stylus onto the tablet-surface and the surface is oriented at an angle of about 30 degrees, a natural writing and display surface exits, which provides a surprisingly synergistic and natural man-computer interface. In addition, the same workstation can be used for standard personal computing.

Accordingly, the present invention has for its first object a computer workstation with a display device oriented at an inclined angle near the horizontal such that the user can write, sketch or draw on the display screen-tablet surface it a natural manner, where it results in a new and surprising tele-writing, tele-drawing, and voice-graphics conferencing system.

Another equally important object of this invention is to provide a computer workstation having a graphic input means and adjustable screen orientation such that the user has an option of adjusting the screen for: (a) general purpose computer (e.g., vertical screen angle), (b) natural graphic input mode (e.g., screen angle of 30 degrees), or (c) a multiplicity of other orientations.

Another important object of this invention is to provide an ergonomically designed computer workstation integrating text, graphics, and voice means for the purpose of general purpose computing and communications.

A still another important object of this invention is to provide for a human-computer interface that results in a natural, easy to use, and useful computer workstation, personal computer, computer terminal, personal workstation, and/or computer console.

A further object of this invention is to allow precise hand controlled stylus pointing, sketching, writing, or drawing functions by a user for data entry into a computer means, computer network, distributed network, or communication system.

A still further object of this invention is to provide a workstation with graphic input and output means integrated with two way telephone voice means, such that real-time teleconferencing is made possible from the same workstation herein.

Another important object of this invention is to provide a computer based workstation capable of real-time electronic mail functions. This would involve communicating alphanumeric text, graphics, and images to remote locations, and having a capability of transmitting the user’s hand writing, including his or her’s personal signature, via electronic mail messages.

A further object of this invention is to provide an improved computer workstation for Computer-Aided Design and Computer-Aided Design and Drafting applications, as well as general purpose high resolution graphic image rendering systems.

Still further objects and advantages will become apparent form a consideration of the ensuing description and drawings.



Related Posts