US 5689642 Recipient prioritized communication channel profiles

ABSTRACT – A method for a sender to automatically distribute information to a receiver on a network using devices (such as printers and facsimile machines) and communication channels (such as electronic mail) defined in a receiver profile. The receiver profile establishes the properties and mode for receipt of information for receivers on the network and the profile is published in a network repository for all network users or is accessible by selected groups or individuals on the network. Receivers have additional control over network senders by defining an information filter which further controls sender channel access (to a receiver) by defining some channels as having priority of access such as direct or delayed access, as well as selectively permitting senders to override the receiver profile. Consequently, receiver profiles provide a variable receiver definable link to senders using multiple forms of media as well as multiple hardware platforms and network configurations.

BACKGROUND OF THE INVENTION

The present invention relates to a method and apparatus for improving communication between devices or stations on a network. More specifically, the invention relates to a network having recipient defined communication channel profiles and the capability of network access of the profiles.

As networks and systems become more integrated and more complex, the amount and speed of information flow between users creates a need for more versatile and more efficient control over the information flow process. Current systems do not enable receivers of information to define how they prefer their information received. Typically a sender controls the form information should take, forcing the receiver to accept information in the form defined by the sender.

Protocols defining integrated system behavior for devices such as printers, scanners, workstations and facsimiles, are well known. These protocols define how the systems should integrate across networks. Operational transparency across networks and device platforms, provide users with an increasingly integrated and transparent system environment. In this environment the manipulation of information (such as documents) is transparent to users as a result of the various network protocols that define the manner in which devices manipulate information. For example, “Office Systems Technology” Xerox Corporation, Palo Alto, Calif., 1984, OSD-R8203, is an overview of the Xerox Corporation “8000” series products, which include workstations, services, ethernet and software development. The “8000” series products are integrated using Ethernet and the Xerox Network Systems Communication Protocols which include: Internet Transport Protocols: Xerox System Integration Standard, Xerox Corp., Stamford, Conn., December 1981, XSIS-028112; Courier: The Remote Procedure Call Protocol, Xerox System Integration Standard, Xerox Corp., Stamford, Conn., December 1981, XSIS-038112; Clearinghouse Protocol, Xerox Corp., Stamford, Conn., April 1984, XSIS-078404; Authentication Protocol, Xerox Corp., Stamford, Conn., April 1984, XSIS-098404; Filing Protocol, Xerox Corp., Stamford, Conn., May 1986, XNSS-108605. Another example of an integrated system is the ISDN telephone network that provides services such as fax mail boxes and voice mail boxes.

The following Xerox Corporation U.S. patents include examples of systems indicating a network, server and printer usually having shared remote user terminals: U.S. Pat. Nos. 5,153,577; 5,113,517; 5,107,443; 5,072,412; 5,065,347; 5,008,853; 4,947,345; 4,939,507; 4,937,036; 4,899,136; 4,531,239; 3,958,088; 3,920,895, also, Fuji Xerox Co. U.S. Pat. No. 5,113,355. By way of background for system user interfaces, U.S. Pat. Nos. 5,072,412 and 5,107,443 disclose workspaces having an object-based user interface that appear to share windows and other display objects. A display system object can be linked to several workspaces giving workspaces the appearance of shared windows. These workspaces can be navigated through using metaphors such as moving from one room to another through doors. Additionally, these workspaces can be shared by groups of users over a network. Also of interest are U.S. Pat. No. 5,008,853 disclosing shared structured data by multiple users across a network, and U.S. Pat. No. 5,065,347 disclosing a method of presenting information hierarchically using a folder metaphor. Also noted is a print server disclosure by IBM Corp. U.S. Pat. No. 4,651,278 issued Mar. 17, 1987 to A. Herzog, et al. Also, noted for examples of printer controls are Xerox Corporation U.S. Pat. No. 5,133,048, and the October 1990 publication “The Xerox DocuTech® Production Publisher” from BIS CAP International, Newtonville, Mass., by Charles LeComte. Noted also are Xerox Corporation U.S. Pat. No. 5,170,340, and allowed U.S. Ser. No. 07/591,324, on networking thereof. Additionally, “Acrobat” products by “Adobe” will provide transparent document sharing. “Acrobat” can be viewed using a portable document format, through a “PostScript” file format that describes pages and their interrelation within a document.

Also noted are commercial network systems with printers is the 1992 Xerox Corporation “Network Publisher” version of the “DocuTech®” publishing system, including the “Network Server” to customer’s Novell® 3.11 networks, supporting various different network protocols, such as “Ethernet™” and TCP/IP. Additionally noted is the Eastman Kodak “LionHeart™” system. A network publication noted is “Mastering Novell® Netware®”, 1990, SYBEX, Inc., Alameda, Calif., by Cheryl E. Currid and Craig A. Gillett. Further noted are page description languages (PDL) for printers and systems as defined in “Interpress™: The Source Book”, Simon & Schuster, Inc., New York, New York, 1988, by Harrington, S. J. and Buckley, R. R.; and Adobe Systems Incorporated “PostScript® Language Reference Manual”, Addison-Wesley Co., 1990. Also noted is the Apple Corp. “Quickdraw™” software and its published materials.

Printers (and printer controllers or servers) are also sometimes referred to as “shared resources” in a networked environment. The server typically functions as a “spooler” to buffer the jobs that are sent to it, as well as a page description language (PDL) “decomposer”, for converting the PDL files (e.g., “Interpress™” or “PostScript”®) to bitmapped files for application to the printer. Also of interest is Pennant Systems Co., Print Services Facility/2 (PFS/2), server-based software intended to act as a universal translator between various network protocols (LAN, TCP/IP and SNA) and printer document protocols (PCL and Postscript).

Another example of an established commercial integral system, with a shared printer and system server, comprises the Xerox Corporation “VP Local Laser Printing” software application package, which, together with the Xerox “4045” (or other) Laser Copier/Printer (CP), the “6085” “Professional Computer System” using Xerox Corporation “ViewPoint” or “GlobalView®” software and a “local printer print service! Option” kit, comprises the “Documenter” system. The laser printer prints text and graphics with high quality resolution on a variety of paper sizes and special papers, including transparencies, labels, and envelopes. When equipped with the optional copier feature, the “4045” CP also alternatively provides quick copies, functioning as a copier.! Printing occurs as a background process, enabling system users to continue with other desktop activities at their terminals. VP Local Laser Printing software can be loaded at a networked, remote, or standalone Xerox “6085” Professional Computer System (workstation).

Different workstations can access print services in different ways. To print a document, desirably the user can simply “copy” or “move” the document, with a mouse click or other command, to a printer icon on the workstation desktop, and set the displayed printing options, as on Xerox Corporation workstations. From other workstations such as the IBM PC’s, the user may need to select menu items or type in commands to obtain access. The workstation selectable print options can include the number of copies, selected pages to be printed, paper size, image orientation, a choice of printers, and phone numbers when sending to a facsimile device. In addition, the option sheet allows the user to specify whether to delete the “Interpress™” or other master, or retain it at the workstation desktop. Already print-formatted or master documents may be transmitted to the printer directly, eliminating the need to repeat the conversion or decomposition process if another copy of the document is desired. If saved, an “Interpress™” master can be stored at the file service or even mailed to one or more individuals via an electronic mail service. Utilizing an internetwork routing service, users can transmit “Interpress™” or other printing masters through a network and then across an internet, typically, via telephone lines, twisted pair wires, coaxial cables, microwaves, infrared, and/or other data links, allowing documents created in one location to be automatically routed to a print service and printer hundreds or even thousands of miles away, in seconds or minutes.

The recently announced Xerox Corporation developed “PaperWorks”™ product utilizes a special encoded fine pattern of special marks (“glyphs”), electronically recognized as such using PC computer software by the facsimile electronic image receiver. It was initially configured to operate on a conventional personal computer having a conventional internal fax card and a modem, electronic mail system or other network connection to telecommunications, and running “Windows”™ software. A “PaperWorks”™ fax form carries a coded identification region which, upon scanning, may be decoded by an appropriate processing system. This coded identification allows the system to determine which of several different pre-stored forms the received form is, and what its page layout is. From this, the system can also extract the necessary user-entered information from the form to facilitate processing. An important feature of the “PaperWorks”™ system is the use of data defining a control sheet image to provide information in accordance with which operations are performed on data defining a sequence of images data defining images, not actual physical sheets of a medium!. For example, the control sheet image can include information indicating a destination to which the fax server then transmits data defining said sequence of images.

The “User Handbook, Version 3.01” ©1988, for the Xerox “FaxMaster 21” product, indicates that it can automatically load hours of multi-page, multi-destination, facsimile transmission documents, and send them all with a few simple keystrokes, and can retrieve document from multiple locations, print them at the hub, store them on disk for later printout, or forward them to other facsimile terminals automated store and forward!. It provides electronic mail capability by storing documents for retrieval by remote network users. It provides confidential electronic! mailboxes, enabling secure document reception for only authorized personnel. It utilizes a personal computer with software, and can use remote touch-tone telephone access to the hub unit. Of particular interest, especially re voice telephone notification to recipients of fax messages, is U.S. Pat. No. 4,654,718 to T. Sueyoshi, assigned to Fuji Photo Film Co.. It refers to facsimile correspondence containing codes for telephone numbers and sensors in the receiving equipment for reading these telephone codes. An “Octel System 200” voice mail system is called “outcall notification” and may be as follows: when one receives a message on his voice mail system that telephone system dials your pager number to alert you that you have a message. One’s voice mail box number and pager number are both dedicated. Also, of course, manually, for many years, a Western Union operator would call a person to let them know that their telegram came in.

The aforementioned systems, however, do not enable the sender of information on a network to identify the receiver’s preferable form of receipt and respond accordingly. Nor do the aforementioned systems provide the receiver of information the capability of designating preferred forms of information receipt that can be automatically carried out by senders on the network. Given that hardware platforms and different software representations of identical information exist, more and more users require a system that establishes the preferred form with which their information should be received.

Accordingly it would be desirable to provide a system network wherein recipients of data on the network control the information flow and, particularly providing a network repository for receipt of information including control over the format, communication channel, and disposition of information sent.

It is an object of the present invention, therefore, to provide a new and improved method of data flow over a network. It is another object of the present invention to define the preferred form of receiving information such as physical properties (printed) or intermediate properties (electronic mail, digitally stored voice mail or facsimile mail) or services and devices such as printers, facsimiles, telephones and video terminals in a network repository. Still another object of the present invention is to be able to selectively group senders for preferred channels or preferred receipt status for data over a network. It is another object of the present invention to be able to select a set of communication channel profiles that identify a set of network users and to be able to define a distribution list with the set of communication channel profiles. Other advantages of the present invention will become apparent as the following description proceeds, and the features characterizing the invention will be pointed out with particularity in the claims annexed to and forming a part of this specification.

SUMMARY OF THE INVENTION

The present invention is a method for a sender to automatically distribute information to a receiver on a network using devices (such as printers and facsimile machines) and communication channels (such as electronic mail) defined in a receiver profile. The receiver profile establishes the properties and mode for receipt of information for receivers on the network and the profile is published in a network repository for all network users or is accessible by selected groups or individuals on the network. Receivers have additional control over network senders by defining an information filter which further controls sender channel access (to a receiver) by defining some channels as having priority of access such as direct or delayed access, as well as selectively permitting senders to override the receiver profile. Consequently, receiver profiles provide a variable receiver definable link to senders using multiple forms of media as well as multiple hardware platforms and network configurations.

 

 

Related Posts