US 6158011 Multi-access virtual private network

ABSTRACT – A virtual private network for communicating between a server and clients over an open network uses an applications level encryption and mutual authentication program and at least one shim positioned above either the socket, transport driver interface, or network interface layers of a client computer to intercept function calls, requests for service, or data packets in order to communicate with the server and authenticate the parties to a communication and enable the parties to the communication to establish a common session key. Where the parties to the communication are peer-to-peer applications, the intercepted function calls, requests for service, or data packets include the destination address of the peer application, which is supplied to the server so that the server can authenticate the peer and enable the peer to decrypt further direct peer-to-peer communications.

FIELD OF THE INVENTION

This invention relates a system and method for allowing private communications over an open network, and in particular to a virtual private network which provides data encryption and mutual authentication services for both client/server and peer-to-peer applications at the applications, transport driver, and network driver levels.

BACKGROUND OF THE INVENTION

A virtual private network (VPN) is a system for securing communications between computers over an open network such as the Internet. By securing communications between the computers, the computers are linked together as if they were on a private local area network (LAN), effectively extending the reach of the network to remote sites without the infrastructure costs of constructing a private network. As a result, physically separate LANs can work together as if they were a single LAN, remote computers can be temporarily connected to the LAN for communications with mobile workers or telecommuting, and electronic commerce can be carried out without the risks inherent in using an open network.

In general, there are two approaches to virtual private networking, illustrated in FIGS. 1A and 1B. The first is to use a dedicated server 1, which may also function as a gateway to a secured network 2, to provide encryption and authentication services for establishment of secured links to between the server 1 and multiple clients 4-6 over the aen network 7, represented in FIG. 1A as a cloud, while the second is to permit private communications links 8 to be established between any two computers or computer systems 9-12 on network 7, as illustrated in FIG. 1B.

The advantages of a client/server arrangement such as the on e shown in FIG. 1A are that the server can handle functions requiring the majority of the computing resources, increasing the number of potential clients, and that management of the network, including key management is centralized. The disadvantage of a client/server network of this type is that peer-to-peer communications links between applications on the client computers cannot utilize the security and management functions provided by the server, leaving such communications unprotected. On the other hand, the advantage of the direct peer-to-peer approach illustrated in FIG. 1B is that it permits secured links to be established between any computers capable of carrying out the required security functions, with the disadvantages being the cost of configuring each computer to carry-out encryption, authentication, and key management functions, and the lack of central control.

In both the client/server and peer-to-peer approaches, a virtual private network can in theory be based either on applications level technology or can operate at a lower level. Generally, however, peer-to-peer “tunneling” arrangements require modification of the lower layers of a computer’s communications architecture, while client/server arrangements can use the applications level approach because less modification of the clients is required, and thus the two approaches are in practice mutually exclusive. The present invention, on the other hand, seeks to provide a virtual private network which utilizes a client/server approach, including centralized control of encryption, authentication, and key management functions, while at the same time enabling secured peer-to-peer communications between applications, by utilizing the server to provide authentication and session key generation functions for both client to server communications and peer-to-peer communications, providing a virtual private network capable of serving both as an extended intranet or wide area network (WAN), and as a commercial mass marketing network, with high level mutual authentication and encryption provided for all communications.

In order to completely integrate the two approaches and maximize the advantage of each approach, the invention maintains the applications level infrastructure of prior client server private networking arrangements, while adding shims to lower levels in order to accommodate a variety of peer-to-peer communications applications while utilizing the applications level infrastructure for authentication and session key generation purposes. This results in the synergistic effect that not only are existing peer-to-peer tunneling schemes and applications level client server security arrangements combined, but they are combined in a way which greatly reduces implementation costs.

In order to understand the present invention, it is necessary to understand a few basic concepts about computer to computer communications, including the concepts of “layers” and communications protocols, and of mutual authentication and file encryption. Further information about layers and protocols can be found in numerous sources available on the Internet, a few of which are listed at the end of this section, while a detailed description of a mutual authentication and encryption system and method suitable for use in connection with the present invention can be found in U.S. Pat. No. 5,602,918, which is incorporated herein by reference. In general, the basic communications protocols and architecture used by the present invention, as well as authentication, encryption, and key management schemes, are already well-known, and can be implemented as a matter of routine programming once the basic nature of the invention is understood. The changes made by the present invention to the conventional client server virtual private network may be thought of as, essentially, the addition of means, most conveniently implemented as shims, which add a secured mutual authentication and session key generation channel between the server and all parties to a communication, at all levels at which a communication can be carried out.

Having explained the key differences between the present invention and existing systems, the basic concepts of layers and so forth will now be briefly explained by way of background. First, the concept of “layers,” “tiers,” and “levels,” which essential to an understanding of the invention, simply refers to libraries or sets of software routines for carrying out a group of related functions, and which can conveniently be shared or called on by different programs at a higher level to facilitate programming, avoiding duplication and maximizing computer resources. For example, the Windows NT device driver architecture is made up of three basic layers, the first of which is the Network Driver Interface Specification (NDIS 3.0) layer, the second of which is called the Transport Driver Interface (TDI) layer, and the third being the file systems. These layers are generically referred to as the network driver layer, the transport or transport driver layer, and the applications layer.

In the Windows NT architecture, the TDI layer formats data received from the various file systems or applications into packets or datagrams for transmission to a selected destination over the open network, while the NDIS layer controls the device drivers that send the data, packets, or IP datagrams, for example by converting the stream of data into a waveform suitable for transmission over a telephone line or a twisted pair cable of the type known as an Ethernet.

By providing layers in this manner, an applications software programmer can design an application program to supply data to the TDI layer without having to re-program any of the specific functions carried out by that layer, and all of the transmission, verification, and other functions required to send a message will be taken care of the TDI layer without further involvement by the applications software. In a sense, each “layer” simply accepts data from the higher layer and formats it by adding a header or converting the data in a manner which is content independent, with retrieval of the data simply involving reverse conversion or stripping of the headers, the receiving software receiving the data as if the intervening layers did not exist.

In the case of Internet communications, the most commonly used set of software routines for the transport or TDI layer, which takes care of the data formatting and addressing, is the TCP/IP protocol, in which the transport control protocol (TCP) packages the data into datagrams and provides addressing, acknowledgements, and checksum functions, and the internet protocol (IP) further packages the TCP datagrams into packets by adding additional headers used in routing the packets to a destination address. Other transport protocols which can be included in the TDI layer include the user diagram protocol (UDP), the internet control message protocol (ICMP), and non-IP based protocols such as Netbeui or IPX.

Additional “protocols” are may be used at the applications level, although these protocols have nothing to do with the present invention except that they may be included in the applications programs served by the network. Common applications level protocols which utilize the TCP/IP protocol include hypertext transfer protocol (HTTP), simple mail transfer protocol (SMTP), and file transfer protocol (FTP), all of which operate at the layer above the transport layer.

Some applications are written to directly call upon the TCP functions. However, for most applications utilizing a graphical user interface conveniently rely on a set of software routines which are considered to operate above the TDI layer, and are known as sockets. Sockets serve as an interface between the TCP set of functions, or stack, and various applications, by providing libraries of routines which facilitate TCP function calls, so that the application simply has to refer to the socket library in order to carry out the appropriate function calls. For Windows applications, a commonly used non-proprietary socket is the Windows socket, known as Winsock, although sockets exist for other operating systems or platforms, and alternative sockets are also available for Windows, including the Winsock 2 socket currently under development.

In order to implement a virtual private network, the encryption and authentication functions must be carried out at one of the above “levels,” for example by modifying the network drivers to encrypt the IP datagrams, by inserting authentication headers into the TCP/IP stacks, or by writing applications to perform these functions using the existing drivers. If possible, it is generally desirable to minimize modification of the existing levels by adding a layer to perform the desired functions, calling upon the services of the layer below, while utilizing the same function calls so that the higher layer also does not need to be modified. Such a layer is commonly referred to as a “shim.”

As indicated above, the preferred approach to implementing client/server virtual private networks is to use an applications level security system to encrypt files to be transmitted, and to then utilize existing communications layers such as Winsock, or TCP/IP directly. This is the approach taken by the commercially available access control system known as SmartGATE™, developed by V-One Corp. of Germantown, Md., which provides both encryption and mutual authentication at the applications level utilizing a dedicated server known as an authentication server and authentication client software installed at the applications level on the client computers. A description of the manner in which encryption and mutual authentication is carried out may be found in the above-cited U.S. Pat. No. 5,602,918. While the principles of the invention are applicable to other client/server based virtual private networks, SmartGATE™ is used as an example because it provides the most complete range of mutual authentication and encryption services currently available.

The present invention can be implemented using the existing SmartGATE™ system, but adds mutual authentication and encryption services to lower layers by intercepting function calls or data packets and, during initialization of a communications link, establishing separate channels between the party initiating the communication and the authentication server, and between the authentication server and the party which is to share in the communication, so as to mutually authenticate the parties with respect to the server, and so as to establish a session key which can be used for further direct communications between the parties.

A number of protocols exist which can be used, in total or in part, to implement the mutual authentication and encryption services at the lower layers, using the same basic authentication and encryption scheme currently implemented by SmartGATE™ at the applications level. These include, by way of example, the SOCKS protocol, which places a shim between the TDI or transport layer and the applications, and the commercially available program, known as SnareNet, which operates at the network driver level and can be directly utilized in connection with the present invention.

On the other hand, a network level implementation such as the SKIP protocol, which operates below the TDI layer to encrypt the datagrams, and which in its description explicitly precludes the generation of session keys (see the above cited U.S. Pat. No. 5,602,918), is fundamentally different in concept than the present invention. Similarly, alternative implementations such as Point-to-Point Tunneling Protocol (PPTP) which involve modifying the TCP/IP stack and/or hardware to provide encryption, as opposed to inserting shims, are not utilized by the preferred embodiment of the present invention, although individual aspects of the protocol could perhaps be used, and the present system could be added to computers also configured to accept PPTP communications.

The SmartGATE™ system uses public key and DES encryption to provide two-way authentication and 56-bit encrypted communications between a server equipped with the SmartGATE program and client computers equipped with a separate program. Currently, SmartGATE™ operates at the highest level, or applications level, by using shared secret keys to generate a session key for use in further communications between the authentication server or gateway and the client program. Since the session key depends on the secret keys at the gateway and client sides of the communication, mutual authentication is established during generation of the session key, which can then be used to encrypt further communications.

When installed on a client system, the SmartGATE™ client software reads a request for communications by an applications program, such as a browser program, and then proceeds to establish its own communications link with the destination server to determine if the server is an authentication server. If it is not, control of communications is relinquished, but if it is, then the security program and the server carry out a challenge/response routine in order to generate the session key, and all further communications are encrypted by the security program. Although this program is placed between the Winsock layer and the applications, it does not function as a shim, however, because it only affects communications directed to the authentication server.

Having briefly summarized the concepts used by the present invention, including the concepts of layers, protocols, and shims, and having described a specific applications level security program which is to be modified according to the present invention by adding shims in a way which enables secured authentication and session key generation channels to be set up from the lower layers, it should now be possible to understand the nature of the invention, and in particular how it integrates the two approaches to virtual private networking in a way which greatly expands the concept and yet can easily be implemented. More details will be given below, but as a final observation in this background portion of the patent specification, it should be noted that while the overall concept of the invention is in a sense very simple, it is fundamentally at odds with present approaches. For example, the literature is replete with references to conflicts between VPN standards and implementations, as exemplified by the title of an article from LAN Times On-Line, 9/96, (http://www.wcmh.com/), which reads Clash Over VPN Supremacy. Even a cursory search of the available literature indicates that the amount of information and choices available to those wishing to set up a virtual private network is overwhelming. One can choose between Netscape Communications Secure Socket Layer, Open Market Inc.’s Secure HTTP, Microsoft’s PPTP, among others. However, all of these approaches operate at a single level, and force a choice between establishing a network of the type shown in FIG. 1A and a network of the type shown in FIG. 1B. Only the present invention offer the advantages of both approaches, without the inflexibility of client/server arrangements or the costs of more distributed architectures.

For further information on the various competing VPN protocols and systems, see also The Development of Network Security Technologies, Internet Smartsec, 2/97 (http://www.smartsec.se), which compares SmartGATE™ to other application level security systems, including PPTP, SSL, and S-HTTP; Point-To-Point Tunneling Protocol (PPTP) Frequently Asked Questions, Microsoft Corp., date unknown, (http://www.microsoft.com), Simple Key-Management for Internet Protocols (SKIP), Aziz et al., date unknown, (http://skip.incog.com), and SOCKS Protocol Version 5, RFC 1928, Leech et al., 3/96 (http://andrew2.andrew.cmu.edu) (this document describes a protocol involving a TDI shim). For more general information on security problems, Internet protocols, and sockets, see Introduction to the Internet Protocols, Charles L. Hedrick, Rutgers university, 1987 (http://oac3.hsc.uth.tmc.edu); Windows Sockets–Where Necessity is the Mother of Reinvention, Stardust Technologies, Inc., 1996, (http//www.stardust.com), and Secure Internet Connections, LAN Times, Jun. 17, 1996 (Ibid).

SUMMARY OF THE INVENTION

It is accordingly a principal objective of the invention to provide a client/server virtual private network which is capable not only of carrying out authenticated secure communications over an open network between an authentication server and clients, but also authenticated secure peer-to-peer communications.

It is also an objective the invention to provide a virtual private network that provides data encryption and mutual authentication for both client/server and peer-topeer communications for different-types of applications, using both the applications level and lower levels of a communications hierarchy.

It is a further objective of the invention to provide a client/server virtual private network which can provide both client/server and peer-to-peer encryption and authentication services for any application sharing a specified socket or sockets, whether or not the application is recognized by the encryption and authentication program.

It is a still further objective of the invention to provide a client/server virtual private network which can provide encryption and authentication services at the applications level, transport driver interface level, and network interface level, without the need for modifying either the communication driver or network driver, or any sockets utilizing the communications driver interface.

It is yet another objective of the invention to provide a virtual private network which provides encryption and authentication services for peer-to-peer communications while maintaining centralized control of key distribution and management functions.

Finally, it is also an objective of the invention to provide a virtual private network which provides encryption and authentication services for peer-to-peer communications and in which registration is carried out by a central gateway server.

These objectives of the invention are accomplished by providing a virtual private network for communicating between a server and clients over an open network and in which the clients are equipped with an applications level encryption and mutual authentication program which includes at least one shim positioned above either the socket, transport driver interface, or network interface layers of a client computers communications hierarchy, and which intercepts function calls or data packets in order to authenticate the parties to the communication by establishing secured channels between the server and the parties to the communication, prior to establishment of the secured communications link between the parties, in order to carry out mutual authentication and session key generation functions.

More part cularly, according to the principles of a preferred embodiment of the invention, client communications software is provided which, at the socket or transport driver interface levels, intercepts function calls to the socket or transport driver and directs calls to the authentication server in order to perform encryption and authentication routines, and at the network driver interface, performs encryption and authentication functions by intercepting the datagrams or data portions of the packets transmitted by the transport driver interface based on communications between the authentication server and the client. According to this aspect of the invention, a system of providing authentication and encryption services for the purpose of establishing a virtual private network includes a plurality of shims arranged to operate at different protocol levels in order to establish a common secure communications link to an authentication server.

In one especially preferred embodiment of the invention, the client software includes a Winsock shim arranged to intercept function calls to the Winsock library on a client machine and redirect initial communications through the authentication client software to the authentication server, so that any function calls to the Winsock library of programs are intercepted by the shim and carried out by the applications level security program. In this embodiment, the client authentication software substitutes its own function calls for the original function calls in order to establish a secured communications link to the authentication server over which such functions as mutual authentication between the client and server, indirect authentication of peer applications by the now trusted server, session key generation, are carried out, as well as ancillary functions such as on-line registration (OLR), utilizing the unmodified original Winsock library and TCP/IP communications stacks.

By inserting a shim at the Winsock level, an applications level client/server based security program such as SmartGATE™ can be used to provide secure communications for any application which utilizes the Winsock library. In addition, by including analogous shims at other levels, the invention can be used to secure virtually any communications application, including those which by-pass the TDI layer and communicate directly with the network driver level.

Instead of the current array of mutually exclusive alternative methods and systems of establishing secured communications over an open network, the invention thus provides a single integrated method and system capable of carrying out both client/server communications and peer-topeer communications between a wide variety of communications applications regardless of whether the applications use a socket or even commonly accepted internet protocols, with complete mutual authentication and encryption of data files at all levels and between all parties to the network.

It will be appreciated that the term “virtual private network” is not to be taken as limiting, and that the principles of the invention can be applied to any remote access schemes which utilize the Internet or other relatively insecure networks to provide access for remote users, corporate intranets, and electronic commerce.

Related Posts