US 6970183 Multimedia surveillance and monitoring system including network configuration

ABSTRACT – A comprehensive, wireless multimedia surveillance and monitoring system provides a combination of megapixel digital camera capability with full motion video surveillance with a network, including network components and appliances such as wiring, workstations, and servers with the option of geographical distribution with various wide area carriers. The full service, multi-media surveillance system is capable of a wide range of monitoring techniques utilizing digital network architecture and is adapted for transmitting event data, video and/or image monitoring information, audio signals and other sensor and detector data over significant distances using digital data transmission over a LAN, wireless LAN, Intranet or Internet for automatic assessment and response including dispatch of response personnel. Both wired and wireless appliance and sensor systems may be employed. GPS dispatching is used to locate and alert personnel as well as to indicate the location of an event. Automatic mapping and dispatch permits rapid response. The wireless LAN connectivity permits local distribution of audio, video and image data over a relatively high bandwidth without requirement of a license and without relying on a common carrier and the fees associated therewith. The surveillance system may be interfaced with a WAN (wide area Network) or the Internet for providing a worldwide, low cost surveillance system with virtually unlimited geographic application. Centralized monitoring stations have access to all of the surveillance data from various remote locations via the Internet or the WAN. A server provides a centralized location for data collection, alarm detection and processing, access control, dispatch processing, logging functions and other specialized functions. The server may be inserted virtually anywhere in the Intranet/Internet network. The topology of the network will be established by the geographic situation of the installation. Appropriate firewalls may be set up as desired. The server based system permits a security provider to have access to the appliance and sensor and surveillance data or to configure or reconfigure the system for any station on the network.

FIELD OF THE INVENTION

The subject invention is directed to surveillance and monitoring systems and is specifically directed to a comprehensive, hybrid multimedia surveillance system based on wireless data transmission, still image and/or step video, video streaming, audio, motion detection, event detection and/or physical condition detection using various network configurations including both wired and wireless Local Area Network (LAN) and Wide Area Network (WAN) communications and network communication techniques and methods with IP compatibility for communication over the Internet.

BACKGROUND OF THE INVENTION

Video monitoring and surveillance of locations or areas for security, safety monitoring, asset protection, process control, and other such applications by use of closed circuit television and similar systems have been in widespread use for many years. The cost of these systems has come down significantly in recent years as the camera and monitor components have steadily dropped in cost while increasing in quality. As a result, these systems have proliferated in their application and are proving extremely useful for both commercial and residential applications.

These “closed circuit television” systems typically consist of a monochrome or color television camera, a coaxial cable, and a corresponding monochrome or color video monitor, optional VCR recording devices, and power sources for the cameras and monitors. The interconnection of the camera and monitor is typically accomplished by the use of coaxial cable, which is capable of carrying the 2 to 10 megahertz bandwidths of closed circuit television systems. There are several limitations to coaxial cable supported systems. First, the cable attenuates by the signal in proportion to the distance traveled. Long distance video transmission on coaxial cable requires expensive transmission techniques. Second, both the cable, per se, and the installation is expensive. Both of these limitations limit practical use of coaxial closed circuit systems to installations requiring less than a few thousand feet of cable. Third, when the cable cannot be concealed is not only unsightly, but is also subject to tampering and vandalism.

Other hardwired systems have been used, such as fiber optic cable and the like, but have not been widely accepted primarily due to the higher costs associated with such systems over coaxial cable. Coaxial cable, with all of its limitations, remains the system of choice to the present day. Also available are techniques using less expensive and common twisted pair cable such as that commonly used for distribution of audio signals such as in telephone or office intercom applications. This cable is often referred to as UTP (twisted pair) or STP (shielded twisted pair) cable. Both analog and digital configurations are available. Both analog and digital techniques have been implemented. This general style of twisted pair cable is also widely used in Local Area Networks, or LAN’s, such as the 10Base-T Ethernet system, 100 Base-T, 1000 Base-T and later systems. Newer types of twisted pair cable have been developed that have lower capacitance and more consistent impedance than the early telephone wire. These newer types of cable, such as “Category 5” wire, are better suited for higher bandwidth signal transmission and are acceptable for closed circuit video applications with suitable interfaces with special interfaces. By way of example, typical audio signals are approximately 3 kilohertz in bandwidth, whereas typical video signals are 3 megahertz in bandwidth or more. Even with the increased bandwidth capability of this twisted pair cable, the video signals at base band (uncompressed) can typically be distributed directly over twisted pair cable only a few hundred feet. In order to distribute video over greater distances, video modems (modulator/demodulators) are inserted between the camera and the twisted pair wiring and again between the twisted pair wiring and the monitor. Twisted pair cable is lower in cost than coaxial cable and is easier to install.

Wireless systems utilizing RF energy are also available. Such systems usually consist of a low power UHF transmitter and antenna system compatible with standard television monitors or receivers tuned to unused UHF channels. The FCC allows use of this type of system without a license for very low power levels in the range of tens of milliwatts. This type of system provides an economical link but does not provide transmission over significant distances due to the power constraints placed on the system. The advantage of this system over hardwired systems is primarily the ease of installation. However, the cost is usually much higher per unit, the number of channels is limited and system performance can be greatly affected by building geometry or nearby electrical interference. Further, the video is not as secure as hardwired systems. The video may be picked up by anyone having access to the channel while in range of the transmitter and is thus, easily detected and/or jammed.

Because of the inherent limitations in the various closed circuit television systems now available, other media have been employed to perform security monitoring over wider areas. This is done with the use of CODECs (compressors/decompressors) used to reduce the bandwidth. Examples include sending compressed video over standard voice bandwidth telephone circuits, more sophisticated digital telephonic circuits such as frame relay or ISDN circuits and the like. While commonly available and relatively low in cost, each of these systems is of narrow bandwidth and incapable of carrying “raw” video data such as that produced by a full motion video camera, using rudimentary compression schemes to reduce the amount of data transmitted. As previously discussed, full motion video is typically 2 to 10 megahertz in bandwidth while typical low cost voice data circuits are 3 kilohertz in bandwidth.

There are known techniques for facilitating “full motion” video over common telecommunication circuits. The video teleconferencing (VTC) standards currently in use are: Narrow Band VTC (H.320); Low Bitrate (H.324); ISO-Ethernet (H.322); Ethernet VTC (H.323); ATM VTC (H.321); High Resolution ATM VTC (H.310). Each of these standards has certain advantages and disadvantages depending upon the volume of data, required resolution and costs targets for the system. These are commonly used for video teleconferencing and are being performed at typical rates of 128K, 256K, 384K or 1.544M bit for industrial/commercial use. Internet teleconferencing traditionally is at much lower rates and at a correspondingly lower quality. Internet VTC may be accomplished at 33.6 KBPS over dial-up modems, for example. Video teleconferencing is based on video compression, such as the techniques set forth by CCITT/ISO standards, Internet standards, and Proprietary standards or by MPEG standards. Other, sometimes proprietary, schemes using motion wavelet or motion JPEG compression techniques and the like are also in existence. There are a number of video teleconferencing and video telephone products available for transmitting “full motion” (near real-time) video over these circuits such as, by way of example, systems available from AT&T and Panasonic. While such devices are useful for their intended purpose, they typically are limited in the amount of data, which may be accumulated and/or transmitted because they do not rely on or have limited compression. There are also devices that transmit “live” or in near real-time over the Internet, such as QuickCam2 from Connectix, CU-See-Me and Intel products utilizing the parallel printer port, USB port, ISA, PCI card, or PCMCIA card on a laptop computer. Many of these are personal communications systems and have neither the resolution or refresh rate required or the security required to provide for good surveillance systems. NetMeeting from Microsoft and Proshare software packages from Intel also provide low quality personal image distribution over the Internet.

All of the current low cost Network products have the ability to transmit motion or “live” video. However, such products are limited or difficult, if not impossible, to use for security applications because the resolution and refresh rate (frame rate) of the compressed motion video is necessarily low because of limited resolution of the original sample and the applications of significant levels of video compression to allow use of the low bandwidth circuits. The low resolution of these images will not allow positive identification of persons at any suitable distance from the camera for example. The low resolution would not allow the reading of an automobile tag in another example.

In many security applications it is desirable to monitor an area or a situation with high resolution from a monitor located many miles from the area to be surveyed. As stated, none of the prior art systems readily available accommodates this. Wide band common carriers such as are used in the broadcast of high quality television signals could be used, but the cost of these long distance microwave, fiber or satellite circuits is prohibitive.

SUMMARY OF THE INVENTION

The subject invention provides a combination of megapixel digital camera capability with full motion video surveillance (such as with a CCTV security system) with a network, including network components and appliances such as wiring, workstations, and servers with the option of geographical distribution with various wide area carriers. The subject invention is a full service, multi-media surveillance system capable of a wide range of monitoring techniques utilizing digital network architecture.

Schools, banks, retail operations and other security conscious businesses and institutions have a need for advanced hardware and software solutions that provide total, user friendly control over their surveillance and monitoring equipment. A system desirably provides:

    • 1. Multimedia data collection;
    • 2. Automated control;
    • 3. Archive storage;
    • 4. Enhanced search and recall of archived event recordings;
    • 5. Preset responses to triggers and triggering events;
    • 6. Remote viewing and management from a wide area network including, preferably, World Wide Web (or Internet) accessibility.
    • 7. Automatic system failure analysis.
    • 8. Common infrastructure and workstations shared with other co-located systems.
    • 9. Wireless infrastructure for sensors, monitors and shared applications/systems

The subject invention is a comprehensive multimedia surveillance and monitoring system which is adapted for transmitting event data, video clips, high resolution images, audio signals and other sensor and detector data using digital transmission over both wired, wireless and optical networks. Processors on the networks, private Intranets and the Internet are used for automatic event assessment and response to include the dispatch of response personnel. Geolocation systems are used to locate personnel as well as to indicate the location of one or more events. Automatic mapping, dispatch and response vectoring permit rapid response. Additionally, the system can be used to guide at risk personnel away from harmful events. The wireless components permit local distribution of information with relatively high bandwidth without requirement of a license and without relying on a common carrier and associated fees.

Centralized servers and monitoring stations have access to all of the surveillance data from various remote locations via the Internet or wide area network (WAN). One or more servers provide for data collection, data retention, alarm detection and processing, access control, auto response generation, message transmission, dispatch processing, logging functions, configuration management, “cross point switching” of data, scene analysis, scheduled activation and deactivation detection, display data distribution and sequencing, general control and management, fault detection and diagnosis and/or other specialized functions. The server may be inserted virtually anywhere in the network.

The topology of the system is established by the geographic situation of the installation. Appropriate access codes and firewalls may be set up as desired to protect unauthorized access to the system or the collected data. The server permits the implementation of standard Internet tools and techniques such as TCP/IP, HTML and browser support that will allow nearly universal access to the system with proper security access codes. The system permits a security provider to have access to the sensor appliances and/or surveillance data and/or to configure or reconfigure the system form any station on the Internet, such as from a home PC. It will be understood, the network can be the Internet, and the protocol is preferred to be based on Internet-standard protocols such as TCP-IP, RTP, and the like.

In accordance with the teachings of the subject invention, the comprehensive, wireless multimedia surveillance and monitoring system is adapted for transmitting event data, video and/or image monitoring information, audio signals and other Network appliance sensor and detector data over significant distances using digital data transmission over networks such as a local area network (LAN), a wireless LAN (WLAN), a wide area network such as the Internet for other network automatic assessment and response including dispatch of response personnel. Wired, wireless and optical appliances and sensor systems may be employed. GPS and other geolocation technology is used to locate and alert and dispatch personnel as well as to indicate the location of one or more events. Automatic mapping, dispatch and response vectoring permits rapid response. The wireless LAN connectivity permits local distribution of audio, video and image data with relatively high bandwidth without requirement of a license and without relying on a common carrier and the fees associated therewith. The surveillance system may be interfaced with a WAN (wide area network) such as frame relay or the Internet for providing a worldwide, low cost surveillance system with virtually unlimited geographic application. Centralized monitoring stations have access to all of the surveillance data from various remote locations via the network or the WAN. A server provides a centralized location for data collection, alarm detection and processing, access control, auto response generation, paging, automatic e-mail generation, telephone dialing and message transmission, dispatch processing, logging functions, configuration management, and/or other specialized functions. The server may be inserted virtually anywhere in the Intranet/Internet network. Multiple sensors and appliances may be accommodated, as required. The topology of the network will be established by the geographic situation of the specific installation. Appropriate firewalls may be set up as desired to protect unauthorized access to the system or collected data. The server based system permits a security provider to have access to the appliance, related sensor and surveillance data or to configure or reconfigure the system from any station on the Intranet or Internet. The system of the subject invention permits monitoring of locations over great distances with sufficient resolution to provide widespread use as a security surveillance device. The following applications are fully incorporated herein by reference:

Ser. No.Filing DateU.S. Pat. No.
09/005,932Jan. 12, 1998
09/005,931Jan. 12, 1998
09/350,197Jul. 08, 1999
09/006,073Jan. 12, 1998
09/257,765Feb. 25, 1999
09/257,769Feb. 25, 1999
08/729,139Oct. 11, 1996
08/745,536Nov. 12, 19965,798,458
08/738,487Oct. 10, 19966,009,356
09/005,893Jan. 12, 1998
09/257,802Feb. 25, 1999
09/257,766Feb. 25, 1999
09/257,767Feb. 25, 1999
09/257,720Feb. 25, 1999

The subject invention is specifically directed to a system that can collect, process and transmit essential information for surveying and monitoring a selected zone or area. The system includes Network appliances such as video and/or image appliances, detectors and sensors as well as audio, condition and/or event monitoring systems. In its preferred form, the comprehensive multi-media safety and surveillance system of the subject invention provides both visual and audio information as well as critical data such as temperature fire and smoke detection. Manually operated transducers, such as panic buttons, door contacts, floor sensors, and the like may also be included to activate the system in the presence of an event at the sensor location, such as a fire alarm or security alarm panic bar or the like. In my aforementioned copending applications, incorporated herein by reference, numerous appliances, including but not limited to detection and sensor systems, are utilized to provide monitoring stations or personnel, such as security personnel, and/or a base monitoring station critical information from the sensor system and to record the information and permit reconstruction of events after the fact. The system of the subject invention permits detection of unexpected events, breach of security, and other activities in the vicinity of any appliance and/or sensor within the system and identifies the time and location of the event for permitting an appropriate response. A GPS or other geolocation system may be included to provide accurate positioning information of the appliances and/or sensors and roving or mobile response units such as security personnel. Steerable video cameras may be incorporated in order to monitor movements in the range of the sensors. The cameras may be activated and directed based on the location data provided by the integral GPS or geolocation system. It is also desirable to include focusing and timing functions so that selective sequencing, zoom and axial (x,y,z) positioning can be utilized. While the term camera is used throughout the application, this term is meant to include standard camera technology as well as CCD and CMOS camera units and other state-of the-art imaging devices.

In its preferred form, a plurality of sensor units, which may include at least one video image appliance sensor and/or at least one audio appliance sensor and/or at least one motion appliance sensor, are placed strategically about the facility to be monitored. In addition, strategically placed motion detectors, fire sensors, panic switches, smoke sensors and other monitoring equipment are incorporated in the system. Cameras may be placed throughout the facility and in other desired spaces including on the grounds outside the facility. The audio sensors/transducers and other sensors and detectors are also strategically located both internal and external of the facility.

While the system may be hardwired, in its preferred form the system of the present invention is adapted for use in connection with wireless transmission and receiving systems. The wireless system is particularly useful for adapting the system as a retrofit in existing facilities and also provides assurances against disruption of data transmission, as well as permitting roving interactive monitors that can be carried or worn. In the preferred embodiment, the wireless system is fully self-contained with each appliance and/or sensor unit having an independent power supply and, where required for image sensors, a sensor light source. The security system may include either motion sensitive, audio sensitive and/or image processing based activation systems so that the equipment is not activated until some event is detected, i.e., the system is action triggered.

In the preferred embodiment, the system will transmit any detected information to a monitor system located at a base monitoring station, located on site and/or at a remote or roving location, and/or a server for logging, forwarding, archiving same. The base station has instant live access to all of the image and audio signals as they are captured by the sensors, and where desired is adapted to record and make an historic record of the images for archive purposes. Where random access recording techniques are used, such as, by way of example, digital random access memory storage devices, the information by be readily searched for stored information.

If unauthorized personnel breach the security area or a panic handle is activated, for example, and the audio and video equipment is activated, signals will be immediately transmitted to the base station, usually with an alert signal to attract the attention of base personnel. This will give immediate access to information identifying the activity, the location and the personnel involved. Further, in the preferred embodiment of the invention, an appropriate response system will be activated for securing the immediate area and taking counter measures to protect the security of the area. This may include dispatch of personnel, sealing off the area, turning on lights, activating audio devices and/or, where appropriate, transmitting an audible and/or visual alarm as well as instructions.

In the preferred embodiment, when a large number of appliances are utilized in a complex system, the plurality of appliances may be synchronized whereby the plurality of data, including visual image data, may be displayed, recorded, and/or transmitted in either a split screen or serial fashion. A time or chronology signal may also be incorporated in the data scheme, whereby all collected real time streaming media on individual events are time stamped for exact time and date. Any signal which is capable of being captured and stored may be monitored in this manner.

Utilizing the wireless system of the invention in combination with the battery back-up power supply, it is possible to continue collecting information without using a central or public power source. This assures that the system will operate even if power is disrupted for any reason such as, by way of example, tampering by unauthorized personnel. The sensors can detect power outages and generate alarm conditions as reported over the LAN or WLAN. In its simplest form, only triggered sensors are active, and only the signals generated thereby are transmitted to the security station. In the preferred embodiment, a combination of hardwired and wireless devices and components will be used. One advantage with the use of certain wireless components is that the capture, retrieval, monitor and archive system utilizing a wireless transmitting/receiving system assures that transmission will not be lost if wires in a portion of the system are cut or otherwise interrupted, during a fire or an earthquake or tampering, for example. Wireless configurations are also particularly desirable for retrofit installations where it may be difficult to install cable. Further, in addition to ease of installation, wireless components are virtually portable and can be re-deployed based on history of need within a given installation simply by moving the component to a new location. In the preferred embodiment, components of such a system would be completely self-contained with an integrated power supply and, as required for image sensors, an integrated illumination system. The illumination system would provide lighting to permit capture of images in the event the public power system fails.

Of course, it is an important aspect of the invention that all of the collected data, including any video and images, be recorded to provide an historic video record. This will prove invaluable as an aid in reconstructing the events in a “post mortem” investigation. Recording can be local to the appliance for smaller amounts of data, or at a server for large amounts of data.

The system of the present invention is capable of transmitting the collected information over significant distances using typical voice bandwidth carriers in sufficient resolution to accommodate security surveillance and other high-resolution applications.

In one embodiment, one or more wireless cameras or sensor devices are in communication with a local Network system using a wireless LAN (local area network) connection. A monitoring station is also in communication with the Network at any desired location on the LAN. The monitoring station can monitor audio and/or video and/or image data and/or sensor data continuously, periodically as programmed, upon activation of panic button, or upon event detection such as by motion detection, contact closure or detection by an independent system that is in communication with the surveillance system. The wireless LAN connectivity permits local distribution of audio, video and/or image data with a relatively high bandwidth without requirement of a license and without relying on a common carrier and the fees associated therewith.

Where longer distance transmission is required, the surveillance system of the subject invention may be interfaced with a WAN (wide area network) or the Internet or wireless carrier. This provides a worldwide, low cost surveillance system with virtually unlimited geographic application. Such a system is very useful in applications where multiple buildings are part of the surveillance network, such as, by way of example, a college campus, school buildings or districts, or corporate campus or a geographically distributed government installation. One or more centralized monitoring stations can then have access to all of the surveillance data from various remote locations via the Internet or the WAN.

In an enhancement of the invention, a security server is added to the system for expanding and enhancing the capability and functionality of the surveillance system. The server provides a centralized location for data collection, alarm detection and/or processing, access control, dispatch processing, logging functions, data mining capability, configuration and management functions, map serving, format conversions, protocol conversions and other specialized functions. The server may be inserted virtually anywhere in the Intranet/Internet network provided adequate bandwidth is available. The topology of the network will be established by the geographic situation of the installation. Multiple servers may be employed. The server permits the implementation of standard network tools and techniques such as TCP/IP, HTML and browser support that will allow nearly universal access to the system with proper security access codes. Appropriate access controls and firewalls may be set up as desired. The server based system permits a security provider to have access to the appliance and/or sensor and surveillance data and/or to configure or reconfigure the system from any station on the Network, such as from a PC at home. The system supports and manages the collection, logging and archiving of data; data mining; the monitoring, assessment, response and dispatching of alarm conditions; data distribution to remote locations; routing; data format conversion as necessary; and signals the dispatch of response support where required.

An example of a multiple location, server based, Internet supported system in accordance with the subject invention is a typical school district. Using the subject invention, wireless appliances and/or sensors may be located in strategic areas in each school building and/or on each campus of a district. A wireless receiver (or multiple receivers) is then connected to the local area network on the campus and a monitor station is placed at a strategic location, for example, in the administration office. This allows collection of information from wireless appliances and distribution to wireless monitors. The collected data may be displayed on a PC monitor or other monitor such as a CRT console monitor or an LCD, portable and/or personnel communications devices, and/or any of a variety of suitable monitors and display units. In addition, the data is sent via the Network to a server located, for example, at the district office, where all campuses are monitored. Due to the bandwidth it is possible that each facility will require a local server. The server can also distribute and dispatch information upon the occurrence of an event. For example, if a panic button were to be activated at a sensor station, this signal would be immediately transmitted, assessed and a response initiated. If the panic button indicated a fire, a fire response team would be dispatched directly to the scene, as well as other appropriate responsive actions. In a worst case example, if a gunshot were detected using acoustic sensors, the server would be able to identify the appliance or sensor on the specific campus where the event occurred. Information could then be sent to appropriate authorities such as, by way of example, on site roving guards, to a centralized school district monitor point, the closest police station and the closest fire station, providing a fast response after the occurrence of the event.

The wireless nature of the appliances and sensors also minimizes the likelihood of tampering with the signals. Server functions can be distributed. For example, image, video and event data can be archived locally whereas dispatch data may occur at a central server. As a further example, monitoring can be local during classroom hours, and moved to the central district office after hours. Also, the district office could monitor in parallel at any time, especially when a critical event is being monitored. The multiple communication paths provide redundancy in the system making it unlikely that all monitoring stations would be down at one time. The system is a cost-effective, flexible and comprehensive system for enhancing the campus and building security issues currently facing most institutions and organizations.

One significant advantage to the system of the subject invention is that it permits multimedia surveillance in applications and locations where physical wiring cannot be used, and over distances not possible with other systems. The system of the present invention provides surveillance capability utilizing techniques ranging from closed-circuit, hard wired systems to the Internet and is not limited by the data capacity; or cost associated with systems currently on the market.

It is an important feature of the invention that it is adapted to the use of non-localized wireless carrier links. WLAN systems are generally restricted to distances ranging from 200 to 4000 feet. Greater distances can use common carriers for transmitting the data. CDPD data service, Internet two-way pager service, CDMA and wide band CDMA services, or an Internet satellite service and the like can be used. Even carriers generally not including an Internet gateway can be used if modified to provide an access path to the server or to the Internet gateway. For example, conventional (non-digital) cellular service can be combined with an ISP connection to provide a gateway to the Internet. This would permit a remote unit to be readily transported to a distant or remote location such as a soccer field to provide full communication capability with the networked system. Type of event, location and multimedia data can be dispatched to the mobile unit for initiating immediate action.

The server is the heart of the surveillance system and monitors the status of the wired and/or wireless sensors as well as the status of the monitor stations and network infrastructure anywhere on the system. The server monitors event detection and both manages and monitors response dispatch. The server also manages the collection, dissemination, logging and/or archiving of data. The server manages, monitors, configures and reconfigures the system components. This can be done seamlessly from a remote location, eliminating the requirement that personnel attend to each station except when hardware upgrades are required.

The server-supported system permits a broad range of signal and event processing. For example, the server can arm and disarm appliances and sensors for detection of external events, audio detection or video detection based on predetermined schedules or manual control via Internet or Intranet access. If an activated sensor is triggered, the server can dispatch alarm conditions in several ways, including by not limited to sending:

    • messages to specifically assigned monitoring stations or mobile units;
    • a telephone call to a designated land line (such as 911) with an audio message describing the event.
    • a telephone call to a designated wireless telephone number with an audio message describing the event in order to dispatch a mobile unit;
    • a numeric pager message with transmitted number signifying a voice mailbox;
    • a voice pager with audio message;
    • a text page describing the event;
    • a text message to wireless personal data assistant (PDA);
    • E-mail to specific addresses; graphical information showing, for example, a map of the event location to PDA. 
      The server-based system can be used to notify multiple parties, or can notify and wait for a confirmation and then perform programmed sequenced steps based on response or non-response of the notified entities. Complex alert “decision tree” sequences can be implemented for personnel and organization notification in any desirable hierarchy.

The multimedia surveillance system of the subject invention permits high-resolution still image transmission as well as full motion monitoring and step video. All three types of data may be delivered in any combination to maximize the quality of the data collected against bandwidth and storage requirements.

It is, therefore, an object and feature of the subject invention to provide a wireless communication link between appliances, sensors and/or monitors.

It is an additional object and feature of the subject invention to provide a multimedia surveillance system adapted for any of a plurality of monitoring and surveillance appliances which may be incorporated in the system via network connections through a server to provide a versatile, wide-ranging multi-media system which may be configured to meet specific application needs.

It is another object and feature of the subject invention to provide a multimedia surveillance system for transmitting video and image data over significant distances using typical voice bandwidth carriers such as the public telephone system, and wireless carriers such as cellular telephones, including AMPS, PCS, GSM, CDMA, wide band CDMA and the like, CDPD data links, two-way pagers, satellite networks such as Iridium and the like.

It is also an object and feature of the subject invention to provide a multimedia surveillance system adapted for utilizing wireless video and/or image data collection and/or transmission using the Internet and/or IP protocols.

It is also an object and feature of the subject invention to utilize network communication systems to distribute surveillance data and control data.

It is another object and feature of the subject invention to provide a security surveillance system adapted for use in connection with a wireless LAN (WLAN) communications system.

It is also an object and feature of the subject invention to provide a multimedia surveillance system adapted for making a permanent record of collected data in desired sequence and format such as before, during and after event detection, through programmed monitoring, event response and human control and intervention.

It is a further object and feature of the invention to provide location data, and other graphic information based on correlation of event detection and location data.

It is yet another object and feature of the invention to provide vectoring capability for guiding response personnel to specific locations in response to events and for guiding at risk personnel away from such events.

It is an additional object and feature of the invention to provide for automated dispatch with circuit selection, signaling control and priority dispatch techniques.

It is a further object and feature of the invention to provide remote management and configuration capability of a multimedia surveillance system.

It is a further object and feature of the invention to provide a server supported multimedia surveillance system having an Intranet and Internet compatible server for data retention, alarm processing, configuration management, access control, access logging, “cross point switching” of data, motion detection, scene analysis, scheduled activation and deactivation detection, display data distribution and sequencing and general control and management.

It is a further object and feature of this invention to provide a comprehensive, multi-media surveillance and security system for monitoring one or more selected zones form a remote location.

It is also an object and feature of the subject invention to provide communications between the monitored zone and a surveillance station using wireless communication techniques.

It is another object and feature of the subject invention to provide a comprehensive, multi-media system for generating, collecting, displaying, transmitting, receiving and storing data for security and surveillance.

It is an additional object and feature of the subject invention to provide a video and/or audio and/or data record of events occurring for archival and retrieval purposes.

It is yet another object and feature of the subject invention to provide apparatus for permitting security personnel to receive video images, audio information and data relating to critical components and areas.

It is an additional object and feature of the subject invention to provide interspersed full motion and still video for image surveillance and event reconstruction.

It is also an object and feature of the invention to provide location information of both the personnel and the event in order to dispatch appropriate response personnel in closest proximity of the event.

It is another object and feature of the invention to a system and method for time stamping events, images, and streams of data such as video, audio, and sensor data.

It is another object and feature of the invention to provide a panic button system for alerting as to a crisis.

It is another object and feature of the invention to provide a networked video intercom system.

It is a further object and feature of the invention to provide personnel/ID data base access.

It is an additional object and feature of the invention to provide image based data mining, including image changes, and object appearance, disappearance or significant change of location monitoring.

It is an additional object and feature of the invention to provide lighting control based on events.

It is a further object and feature of the invention to provide event-mapping schemes.

It is a further object and feature of the invention to provide interconnection between multimedia security systems and conventional security systems.

It is an additional object and feature of the subject invention to provide interconnection between multimedia security systems and conventional CCTV camera systems, including retrofit.

Other objects and features will be readily apparent from the accompanying drawings and detailed description of the preferred embodiments.

 

Related Posts