US 7617073 System and method for assessing and indicating the health of components

ABSTRACT – A system and method for visualization of the components of an enterprise system and the rendering of information about the health or status of the enterprise system, its components, and/or its subcomponents. The invention uses a combination of color codes or other indicators and a combination of algorithms and/or rules-based systems to control the computation of status/severities to associate to components and setup the color codes and indicators.

FIELD OF THE INVENTION

The present innovation preferably relates to the Availability Management and Business Processes/Systems Management of the Enterprise Systems Management (ESM) field where programs or humans assess the “health” of the various components, including information technology (IT) components or non-IT components, which are combined to build a complex system delivering a service.

BACKGROUND OF THE INVENTION

In today’s environments, companies are setting up very complex systems in order to provide services to their customers. Those services are often built using a large variety of components. For example, those components can be computers, computer peripherals, computer programs, networking equipment, and manufacturing equipment. Components can also be virtual components like business processes that can be combined into a business system.

The different components relate to each other in different ways. Some components are being parts of others, while some components are using the service provided by other components in some way. Those systems are represented in a number of different ways through Graphical User Interfaces (GUI) of computer programs. The more common representations are:

    • A single view showing the components at one level, such as the window seen when a user double clicks on the icon representing the computer on his or her desktop;
    • An expandable tree (like in the left window of the WINDOWS® EXPLORER); and
    • An star tree, such as the technology from Inxight Software Inc.

The users can navigate through the representation of the systems by expanding parts of the tree or by selecting the icons representing the component they want to explore further. This typically results in showing more details over the selected component. In doing so, the user can see the components that are part of the selected component or components that the selected component is depending upon.

However, with very complex systems, the amount of components to display quickly surpasses the capacities of today’s computer screens. That is why the GUIs are typically showing only one subset of the components of the system. The different representations are using different techniques for that matter but in any case they simply reduce the amount of components displayed to those being close to the last selected component.

When it comes to render the “health” or status information about the displayed components, the solutions implemented today are relying on some coloration applied to, around, or behind the icons representing the component. The color used indicates a severity level associated to the “health”/status of the component. This coloration technique has been used since the first implementation of such software. Different colors were associated to different severity levels, translating different “health” conditions. Those “health” conditions are usually conveyed to the software as alarms, alerts, events, Simple Network Management Protocol (SNMP) traps or equivalent forms. As discussed herein, these are sometimes referred to as events.

To translate how severe they are, a scale of severities is usually provided. Color codes are then associated to each severity level. There are two common ways of determination for the component coloration:

    • the component is colored using the color of the highest severity amongst the events; and
    • a status is computed from the events associated with the component. The status is assigned a severity (through some computation) and the color associated to that severity is used.

When currently available software have been applied in situations wherein the number of components made it difficult or impossible to display all the components, propagation techniques have been developed so that a component would get a color depending on its own health, but also on its subparts or the components depending on it. Notably, all existing implementations are using a single color code per component.

Typically, the color of the component will be determined by the highest severity among the status/alerts of the component itself and its subcomponents or components it depends upon. This means that some information is lost because when the component is assigned a color code, it is not possible to know if it is because of its own status/alerts or the ones from its subcomponents.

Some variations have been introduced, but they still use one single color code. For example, in HP™ OPENVIEW, the color of a component can be the result of a computation that is looking at the percentage of components at a given severity level to decide about the severity to associate to the component that they are part of or that depends on them. Additionally, BMC Software has created PATROL® Explorer which uses WINDOWS® EXPLORER-like displays to portray the enterprise hierarchically and topical maps to display the enterprise geographically or logically. Moreover, TIVOLI™ BUSINESS SYSTEMS MANAGER uses hyperbolic technology to provide information such as how an outage affects enterprise resources and relationships.

Because some information is lost in the process of aggregating the severities to one single color, there are some situations where the information provided by the color code requires the user to further manipulate the GUI before he can accurately assess the situation. Therefore, a need exists to be able to provide more indication information rather than the conglomeration of information into a single indicator.

SUMMARY OF THE INVENTION

The following provides a visualization of the components of such systems and the rendering of information about their “health” or status. The invention comprises using a combination of color codes or other indicators and a combination of algorithms and/or rules-based systems to control the computation of status/severities to associate to components and setup the color codes and indicators. Though the present disclosure focuses on the use of two or three different indicators, it is envisioned that the concepts herein may be applied to a plurality of indicators. The invention remedies the disadvantages of using a single color code or indicator for providing feedback on the health/status or components in a complex Enterprise System.

 

Related Posts