Grid Optical Network Service Architecture for Data Intensive Applications

Control of Optical Systems and Networks OFC/NFOEC 2006

Tal Lavian tlavian@cs.berkeley.edu
UC Berkeley, and Advanced Technology Research, Nortel Networks

Randy Katz – UC Berkeley
John Strand – AT&T Research

March 8, 2006
Impedance mismatch: Optical Transmission vs. Computation

Original chart from Scientific American, 2001
Support – Andrew Odlyzko 2003, and NSF Cyber-Infrastructure Jan 2006

DWDM- fundamental miss-balance between computation and communication
5 Years – x10 gap, 10 years- x100 gap
Waste Bandwidth

“A global economy designed to waste transistors, power, and silicon area -and conserve bandwidth above all- is breaking apart and reorganizing itself to waste bandwidth and conserve power, silicon area, and transistors."

George Gilder Telecosm

> Despite the bubble burst – this is still a driver
 • It will just take longer
The “Network” is a **Prime Resource for Large-Scale Distributed System**

Integrated SW System Provide the “Glue”

Dynamic optical network as a fundamental **Grid service** in data-intensive Grid application, to be **scheduled**, to be managed and **coordinated** to **support collaborative operations**
From Super-computer to Super-network

> In the past, computer processors were the fastest part
 • peripheral bottlenecks

> In the future optical networks will be the fastest part
 • Computer, processor, storage, visualization, and instrumentation - slower "peripherals"

> eScience Cyber-infrastructure focuses on computation, storage, data, analysis, Work Flow.
 • The network is vital for better eScience
Cyber-Infrastructure for e-Science: Vast amounts of Data– Changing the Rules of the Game

• PetaByte storage – Only $1M

• CERN - HEP – LHC:
 • Analog: aggregated Terabits/second
 • Capture: PetaBytes Annually, 100PB by 2008
 • ExaByte 2012
 • The biggest research effort on Earth

• SLAC BaBar: PetaBytes

• Astrophysics: Virtual Observatories - 0.5PB

• Environment Science: Eros Data Center (EDC) – 1.5PB, NASA 15PB

• Life Science:
 • Bioinformatics - PetaFlops/s
 • One gene sequencing - 800 PC for a year
Crossing the Peta \((10^{15})\) Line

- **Storage size, comm bandwidth, and computation rate**
 - Several National Labs have built Petabyte storage systems
 - Scientific databases have exceeded 1 PetaByte
 - High-end super-computer centers - 0.1 Petaflops
 - will cross the Petaflop line in five years
 - Early optical lab transmission experiments - 0.01 Petabits/s
 - When will cross the Petabits/s line?
e-Science example

<table>
<thead>
<tr>
<th>Application Scenario</th>
<th>Current</th>
<th>Network Issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt – Pt Data Transfer of Multi-TB Data Sets</td>
<td>![Copy from remote DB: Takes ~10 days (unpredictable)] ![Store then copy/analyze]</td>
<td>![Want << 1 day << 1 hour, innovation for new bio-science] ![Architecture forced to optimize BW utilization at cost of storage]</td>
</tr>
<tr>
<td>Access multiple remote DB</td>
<td>![N* Previous Scenario]</td>
<td>![Simultaneous connectivity to multiple sites] ![Multi-domain] ![Dynamic connectivity hard to manage] ![Don’t know next connection needs]</td>
</tr>
<tr>
<td>Remote instrument access (Radio-telescope)</td>
<td>![Cant be done from home research institute]</td>
<td>![Need fat unidirectional pipes] ![Tight QoS requirements (jitter, delay, data loss)]</td>
</tr>
</tbody>
</table>

Other Observations:

- Not Feasible To Port Computation to Data
- Delays Preclude Interactive Research: Copy, Then Analyze
- Uncertain Transport Times Force A Sequential Process – Schedule Processing After Data Has Arrived
- No cooperation/interaction among Storage, Computation & Network Middlewares
- Dynamic network allocation as part of Grid Workf l ow, allows for new scientific experiments that are not possible with today’s static allocation
Grid Network Limitations in L3

> Radical mismatch between the optical transmission world and the electrical forwarding/routing world

> Transmit 1.5TB over 1.5KB packet size

\[\Rightarrow \] 1 Billion identical lookups

> Mismatch between L3 core capabilities and disk cost

• With $2M disks (6PB) can fill the entire core internet for a year

> L3 networks can’t handle these amounts effectively, predictably, in a short time window

• L3 network provides full connectivity -- major bottleneck

• Apps optimized to conserve bandwidth and waste storage

• Network does not fit the “e-Science Workflow” architecture

Prevents true Grid Virtual Organization (VO) research collaborations
Lambda Grid Service

Need for Lambda Grid Service architecture that interacts with Cyber-infrastructure, and overcome data limitations efficiently & effectively by:

• treating the “network” as a primary resource just like “storage” and “computation”
• treat the “network” as a “scheduled resource”
• rely upon a massive, dynamic transport infrastructure: Dynamic Optical Network
• finesse the control of bandwidth across multiple domains
• while exploiting scalability and intra-, inter-domain fault recovery
• thru layering of a novel SOA upon legacy control planes and NEs
Bird’s eye View of the Service Stack

Value-Add Services

3rd Party Services

Grid Community Scheduler

Workflow Language

DRAC Built-in Services (sampler)

- smart bandwidth management
- Layer x <-> L1 interworking
- SLA Monitoring and Verification
- Alternate Site Failover
- Service Discovery
- Workflow Language Interpreter

Session Convergence & Nexus Establishment End-to-end

Proxy → Proxy → Proxy → Proxy → AAA

Legacy Sessions (Management & Control Planes)

Control Plane A

Control Plane B

Core

Metro

Access

Sources/Sinks

Servers

Storage

Visual

Sensors
Fail over From Rout-D to Rout-A

(SURFnet Amsterdam, Internet-2 NY, CANARIE Toronto, Starlight Chicago)
Transatlantic Lambda reservation
BIRN Mouse Example

Mouse Applications

Comp Grid
- GT4
- Meta-Scheduler
- NMI

Data Grid
- SRB
- WSRF/IF

Apps Middleware

Net Grid
- Lambda-Data-Grid
- DTS
- NRS
- WSRF/IF

Control Plane

Resource Managers
- C
- S
- D
- V
- I

Network(s)
Summary

- Cyber-infrastructure – for emerging e-Science
- Realizing Grid Virtual Organizations (VO)
- Lambda Data Grid
 - Communications Architecture in Support of Grid Computing
 - Middleware for automated network orchestration of resources and services
 - Scheduling and co-scheduling or network resources
Back-up
Generalization and Future Direction for Research

> Need to develop and build services on top of the base encapsulation

> Lambda Grid concept can be generalized to other eScience apps which will enable new way of doing scientific research where bandwidth is “infinite”

> The new concept of network as a scheduled grid service presents new and exciting problems for investigation:
 • New software systems that is optimized to waste bandwidth
 • Network, protocols, algorithms, software, architectures, systems
 • Lambda Distributed File System
 • The network as a Large Scale Distributed Computing
 • Resource co/allocation and optimization with storage and computation
 • Grid system architecture
 • enables new horizon for network optimization and lambda scheduling
 • The network as a white box, Optimal scheduling and algorithms
Enabling new degrees of App/Net coupling

> Optical Packet Hybrid
 • Steer the herd of elephants to ephemeral optical circuits (few to few)
 • Mice or individual elephants go through packet technologies (many to many)
 • Either application-driven or network-sensed; hands-free in either case
 • Other impedance mismatches being explored (e.g., wireless)

> Application-engaged networks
 • The application makes itself known to the network
 • The network recognizes its footprints (via tokens, deep packet inspection)
 • E.g., storage management applications

> Workflow-engaged networks
 • Through workflow languages, the network is privy to the overall “flight-plan”
 • Failure-handling is cognizant of the same
 • Network services can anticipate the next step, or what-if’s
 • E.g., healthcare workflows over a distributed hospital enterprise

DRAC - Dynamic Resource Allocation Controller
Teamwork

from/to peering DRACs

AAA

Negotiate

Detect

Alert, Adapt, Route, Accelerate

demand

supply
demand

DRAC, portable SW

dynamic provisioning plane
virtualization plane
connectivity plane

NE

Application

Admin.

Agile Network(s)

Application(s)
Example: Lightpath Scheduling

> Request for 1/2 hour between 4:00 and 5:30 on Segment D granted to User W at 4:00

> New request from User X for same segment for 1 hour between 3:30 and 5:00

> Reschedule user W to 4:30; user X to 3:30. Everyone is happy.

Route allocated for a time slot; new request comes in; 1st route can be rescheduled for a later slot within window to accommodate new request.
Scheduling Example - Reroute

> Request for 1 hour between nodes A and B between 7:00 and 8:30 is granted using Segment X (and other segments) is granted for 7:00

> New request for 2 hours between nodes C and D between 7:00 and 9:30 This route needs to use Segment E to be satisfied

> Reroute the first request to take another path thru the topology to free up Segment E for the 2nd request. Everyone is happy

Route allocated; new request comes in for a segment in use; 1st route can be altered to use different path to allow 2nd to also be serviced in its time window
Some key folks checking us out at our booth, GlobusWORLD ‘04, Jan ‘04

Ian Foster, Carl Kesselman, Larry Smarr