## **Optical Networking Services**

Tal Lavian tlavian @eecs.berkeley.edu

Some slides and most of the graphics are taken from other slides



### **Research Direction**

- The research topic that I'm looking after is Applications and Services Infrastructure for Optical Networking
- What is a service composition and how we build a service?
   What building blocks are needed and how cooperating and brokering should work in optical infrastructure and among providers?
- A good starting point can be to look into some applications and pick few (2-3). We can look into the TeraGrid and SAN, and we should see how the dynamic behavior of emerging optical networking technologies could benefit the applications
- We need to look all the way from the problem, solution, application, architecture, services, and how this is implemented and what services are needed in each layer

## **Agenda**

## **Optical Networking**

Three networks: LAN, MAN and WAN

Leading technologies: ASTN, Smart!, ASON, MPLS,

OE,

## **Challenges**

**Service Solutions** 

**Killer Applications** 

**Summary** 

### Three networks in The Internet



# Optical ASTN (Automatic Switch Transport Network)

3. Applications (SA Servers)



## **Optical Ethernet (OE)**

#### Goal

Ethernet Transport (L2) over Optical networks (L1)

#### **Benefits**

Optical agility and reliability

Ethernet simplicity and efficiency

Seamless transport from LAN to MAN and to WAN





## **Agenda**

## **Optical Networking**

## **Challenges**

Bandwidth provisioning

Data transport

**Enterprise Networks** 

QoS

**Network Heterogeneity** 

**Service Solutions** 

**Killer Applications** 

**Summary** 

## **The Metro Bottleneck**



**Optical Networking Services** 

## **Challenge 1: Bandwidth Provisioning**

## **Network congestion**

LAN access to MAN

#### Fibers in MAN and WAN

Insufficient use: <50% on lighting

Inefficient use: wavelength under load

#### Lack of mechanisms

Dynamic setup

User intelligence

## **Challenge 2: Data Transport Connectivity**

#### Packet Switch

### data-optimized

**Ethernet** 

TCP/IP

#### **Network use**

LAN

#### **Advantages**

Efficient

Simple

Low cost

#### **Disadvantages**

Unreliable

#### Circuit Switch

#### **Voice-oriented**

**SONET** 

**ATM** 

#### **Network uses**

Metro and Core

### **Advantages**

Reliable

### **Disadvantages**

Complicate

High cost

#### **Efficiency? Reliability**

## **Challenge 3: Enterprise Networks**

### **Network security**

**Encrypted communication** 

Selective routing

### **Network efficiency**

Fast transport

Extensible intranet and extranet

Dynamical connection and route setup

## **Challenge 4: QoS Guarantee**

### The Internet has rapidly increasing bandwidth

With the help of optical transport

With high-speed router and switches

### However, it does not provide server guarantee

Throughput

Delay

Jitter

Reliability

**Priority** 

## **Challenge 5: Network Heterogeneity**

### The Internet is fragmented in structure

LAN, MAN and WAN in terms of area

Actual domains operated by network service providers

### **Network Service providers**

Support a variety of L1-7 protocols

Realize data transport in their own ways

Control network by different methods and technologies

### **Interface problems**

Device interface: UNI, NNI

Layer-to-layer: IP QoS to Ethernet CoS

Switching: Ethernet to MPLS, RPR to MPLS

## **Agenda**

## **Optical Networking**

## **Challenges**

### **Service Solutions**

Optics + Ethernet

Smart bandwidth

Flexible VPN

QoS

**Network Coordination** 

## **Killer Applications**

## **Summary**

## **Solution:** Optics + Ethernet

### **Optical Networks**

- •Huge bandwidth
- •Fast and reliable

### **Ethernet Transport**

- Data efficiency
- •Simple and scalable



**Simple** 

**Fast** 

Reliable

## **Scenario 1: City Network**



## Scenario 2: Storage Area Network (SAN)



### **Smart Bandwidth**

#### **Bandwidth on Demand**

Schedulable bandwidth provisioning
Tunable bandwidth allocation
Dynamic optical links and wavelength
establishment

#### **Load Balance**

Bandwidth fairness Traffic re-route

#### Use differentiation

Traffic: sources and destinations
User: how much you pay, privilege
Application: medical, science computing

Content: video streaming, 3D games

#### **Base Technologies**

OE: RPR, 10GigE ASON MPLS/GMPLS Content networking

## Flexible VPN

#### Various needs

L1: Optical VPN

L2: Ethernet 802.1Q VLAN

L2: Ethernet Transparent LAN

L2+: MPLS-based VPN

L3: IP VPN

L4+: Content VPN

#### **Intelligent Control**

VPN on demand

Dynamic join/drop

Route adjustment

#### **Use differentiation**

Enterprise: SBC, Sprint, AOL

User group: discussion

App content: games, video conference

#### **Base technologies**

**ASON** 

Ethernet

MPLS/GMPLS

**IPVPN** 

Content networking





## **Coordination of Network Controls**

#### **Mapping**

IP2OE: IP control to Optical Ethernet control

OE2M: Optical Ethernet control to

MPLS control

NCIM: network interface mapping

> UNI

> NNI

#### **Use differentiation**

Network providers: carriers Service providers: ISP

#### **Base technologies**

Ib

**ASON** 

Ethernet

MPLS/GMPLS



## **QoS (Quality of Service)**

#### **Mechanisms**

L1: wavelength protection

L2: Ethernet CoS

> IEEE 801.p priority levels

L2+: MPLS CoS

L3: IP QoS

**Diffserv** 

> Intserv

#### Use differentiation

Network providers: carriers

Service providers: ISP

**Applications** 

Content

#### **Base technologies**

IP Intserv and Diffserv

**ASON** 

Ethernet

MPLS/GMPLS

## **Agenda**

**Optical Networking** 

**Challenges** 

**Service Solutions** 

**Killer Applications** 

**Summary** 

## **Large-volume Data Exchange**

**Optical SAN** 

**Backup on demand** 

**Disaster Recovery** 

Fast route to restore data after the disaster

Alternate routes to bypass the network in a disaster

**Optical Networking Services** 

## **Content Networking**

### **Content enabling extensions**

Content VPN

**Content Caching** 

**Content Multicasting** 

### **Application scenarios**

Video teleconferencing

Video on demand

Streaming media

06/28/18

Slide: 24

## **Distributed Server Groups**

### **Servers grouped in the Internet**

In SAN, data storage servers

In Web, HTTP servers

In Media, A/V media streaming servers

In Grid, supper computing servers

### **Application scenarios**

Global Load Balance

Server load fair distributions

**Grid Computing** 

- Media treatment: CT diagnoses
- CAD: fighter concurrent design

## **Agenda**

**Optical Networking** 

**Challenges** 

**Service Solutions** 

**Killer Applications** 

**Summary** 

## **Summary**

Optical transport brings abundant bandwidth

Efficient use of bandwidth becomes crucial

**Network Services enable** 

Use network flexibly and transparently

Add customized intelligence

Killer Applications night be OVPN or any other dynamic bandwidth provisioning

## **Backup**

## Resilient Packet Ring (RPR)

### A winning combination

"SONET/DWDM" + Ethernet

Ring MAC Protocol
Packet Add/Drop/Pass
Efficient Multicast/Broadcast

**Effective Use of Bandwidth Spatial re-use** 

Ring Protection

Fast and reliable layer 2 protection

**Topology Discovery Connectionless route discovery** 

Control Access Protocol
Ensures fair access to ring BW

Class of Service IEEE 802.1p



## 10 Gigabit Ethernet (10-GigE)

#### An immediate extension of GigE from LAN to LAN and WAN

Same Ethernet MAC protocol

Same frame format with the s

Fiber-only

IEEE 802.3ae Standard

10GEA: 10 GigE Alliance \_





STANDARD!

## **MPLS and Long-range VPNs**

- MPLS/GMPLS is the emerging switching protocol in optical core networks
- Long-range VPNs can be established by MPLS labels

