

Business Models for Dynamically Provisioned Optical Networks

Tal Lavian

Concept for "Utility" Bandwidth

- Low latency, high bandwidth services (>1Gb/s) are emerging requirements for business, medical, education, government and industry
- New applications development and business models could be stimulated by affordable and easily accessible high bandwidth in both local and wide area networks
- High bandwidth connections are typically full period today but full period 7x24 bandwidth is not always needed.
- Technologies are now available that suggest plausible new business model options to offer time slots for high bandwidth services
 - Dynamic provisioning of lambda and sub-lambda time slots
 - Periodically scheduled (N time slots per day, per week) or ad hoc

Application Profile

- A Lightweight users, browsing, mailing, home use
- B Current business applications, multicast, streaming, VPNs, mostly LAN
- C Emerging business, government, industry & scientific applications, data grids, virtual-presence

Network Profile

- A Internet routing, one to many
- B VPN services on/and full Internet routing, several to several
- C Very fat pipes (both full and non-full period services), limited multiple Virtual Organizations, few to few

Dynamic Wave Provisioning Service Business Model Examples

- Business Continuity/Disaster Recovery
 - Remote file storage/back-up
 - Recovery after equipment or path failure
 - Alternate site operations due to natural or man-made disaster
- Storage and data on demand
 - Rapid expansion of network attached storage capacity
 - Archival storage and retrievals
 - Logistical networking pre-fetch and cache
- Financial community and transaction GRIDs
 - Distributed computational and storage resources
 - Shared use of very high bandwidth network resources
 - Utility computing for pay-as-you-go business models

Transaction GRID Demonstration

- Real-time transactions processed and buffered at collection sites for Businesses "BB" & "SRU"
- Periodic transfer to remote site for batch processing using fixed timeslot dynamic lambda provisioning
- High bandwidth/low holding time connection provides periodically scheduled shared use path between collection and remote sites.

Demonstration Parameters

Parameter	Units
Transaction Collection Rate	Records/sec
Record size	Kbytes
Queue Load	Number of records
Queue size	Kbytes
Queue fill rate	Kbytes/sec
Next queue delivery	Date:hour:min:sec
Time to next queue delivery	Hour:min:sec
Last delivery average throughput	Kbps

All parameters are dynamic and updated in real time

DWDM-RAM Architecture Charts

DWDM-RAM Architecture

DWDM-RAM Architecture

DWDM-RAM Architecture ODIN – Optical Domain Intelligent Network

- Software suite that controls the OMNInet through lowerlevel API calls
- Designed for high-performance, long-term flow with flexible and fine grained control
- Stateless server, which includes an API to provide path provisioning and monitoring to the higher layers

DWDM-RAM Architecture Communication Protocols

- Standard off-the-shelf communication protocol suites
- Provide communication between application clients and DWDM-RAM services and between DWDM-RAM components
- Communication consists of mainly SOAP messages in HTTP envelopes transported over TCP/IP connections

DWDM-RAM Architecture Network Resource Scheduling

- Essentially a resource management service
- Maintains schedules and provisions resources in accordance with the schedule
- Provides an OGSI compliant interface to request the optical network resources

DWDM-RAM Architecture Data Transfer Scheduling

- Direct extension of NRS service, provides an OGSI interface
- Shares same backend scheduling engine & resides on same host
- Provides a high-level functionality
- Allow applications to schedule data transfers without the need to directly reserve lightpaths
- The service also perform the actual data transfer once the network is allocated

Applications	s Application	
Data Transfer Sche	eduling Collective	
Network Resource Sc	cheduling Resource	
Communication Pr	otocols Connectivity	Y
ODIN	Fabric	
OMNInet	Fabric	radiic

Data Transfer Scheduling

- Uses standard ftp
- Uses NRS to allocate lambdas
- Uses OGSI calls to request network resources

DWDM-RAM Architecture Applications

• Target is data-intensive applications since their requirements make them the perfect costumer for DWDM networks

DWDM-RAM Modes

• Applications may request a data transfer

Applications may
request a set of
resources through a
resource allocator,
which will handle the
network reservation

- NRS is the key for providing network as a resource
 - It is a service with an application-level interface
 - Used for requesting, releasing, and managing the underlying network resources
 - Understands the topology of the network
 - Maintains schedules and provisions resources in accordance with the schedule
 - Keeps one scheduling map for each lambda in each segment

Scheduling maps: Each with a vector of time intervals for keeping the reservations.

- NRS
 - Provides an OGSI-based interface to network resources
 - Request parameters
 - Network addresses of the hosts to be connected
 - Window of time for the allocation
 - Duration of the allocation
 - Minimum and maximum acceptable bandwidth (future)
 - Provides the network resource
 - On demand
 - By advance reservation
 - Network is requested within a window
 - Constrained
 - Under-constrained

• On Demand

- Constrained window: right now!
- Under-constrained window: ASAP!
- Advance Reservation
 - Constrained window
 - Tight window, fits the transference time closely
 - Under-constrained window
 - Large window, fits the transference time loosely
 - Allows flexibility in the scheduling

Under-constrained window

- Request for 1/2 hour between 4:00 and 5:30 on Segment D granted to User W at 4:00
- New request from User X for same segment for 1 hour between 3:30 and 5:00
- Reschedule user W to 4:30; user X to 3:30. Both requests are satisfied.

End-to-end Transfer Time (Un-optimized) $GigE \leftarrow J L2$ Switch $\leftarrow J10GE \leftarrow J$ switched lambdas20GB File Transfer
Set up: 29.7s. File
ransfe. File
Transfer: 174s. File
transfe
Tear down: 11.3s. File
ransfer rate: 920Mb/s. Effective rate: 744Mb/se, path

20GB File Transfer

1.5" margin