More Questions Than Answers

Tal Lavian
Nortel Networks Labs
tlavian@nortelnetworks.com

The Light at the end of the Tunnel
Some Technology Innovation

- Fire
- Writing
- Wheel, wagon, steam engine, train, ship, car, airplane,
- Phone, radio, TV
- Consumer electronics
Technology and Sociology

- Mapping of social communication on top of the technology communication
- Focus - social behavior of the technology and technology adoption
- Technology aspects give a different point of view
- Technologies that change our community
Technology Advancements

- Facing many technology revolutions that some of them might have huge impact of our lives and we need to understand it

Need for question mark after every single point
Technologies - Agenda

- Big-Bandwidth Pipes
 - Video Conferencing
 - Virtual Presence (Holograms)
 - Last Mile - Optical Network availability
- Big Disk availability
 - Video Files, Storage capacity
- Computation
- Silicon
- New Applications
Big Bandwidth Pipes

- What if Last Mile is solved?
 - Optical, FTH, MEF, EFM, RPR, CDM......
 - Dedicated connection (circuit)

- Video Conferencing
 - does not really work (yet)
 - TV quality – 2.2Mbs, DVD 4.5Mbs (each direction)

- Virtual Presence – (not science fiction)
 - 8Gbs dedicated
Big Disk Availability

- What is the implication of having very large disk?
- What type of usage we will do with abounded disks?
- Currently disk cost is about $700/TB
- What type of applications can we use it?
- Video files – movie 1GB, - 70 cents store, in 5 years – 0.3 cents
 - How this change the use of personal storage?
 - type of new things we will store if the disk is so inexpensive?
Computation

- We have massive amount of computation in our hands
- In our watch, we have more computation that we needed to send Apollo 11 to the moon and the processor cost less than one cent
- We have amount of computation on our desk that is larger than supercomputer 15 years ago
- How this affects us?
Silicon

- Moor’s Law still working
- We can add much more functionalities into silicon
- Price point – consumer electronics
- The cost of new gadgets - commodity
Application adoption

- New innovations and adding new applications is a very simple process in the web time
 - Web itself
 - P2P apps
 - Recording Industry
 - Open Source
The Metro Bottleneck

End User
- Ethernet LAN
- IP/DATA
- 1GigE

Access
- DS1
- DS3
- LL/FR/ATM
- 1-40Meg

Metro
- OC-12
- OC-48
- OC-192
- 10G

Core
- OC-192
- DWDM n x
- 40G+

Other Sites

Berkeley Dec 2, 2003
Bandwidth is Becoming Commodity

- Price per bit went down by 99% in the last 5 years on the optical side
 - This is one of the problems of the current telecom market

- Optical Metro - cheap high bandwidth access
 - $1000 a month for 100FX (in major cities)
 - This is less than the cost of T1 several years ago

- Optical Long-Haul and Metro access - change of the price point
 - Reasonable price drive more users (non residential)
Summary

- Optical transport brings abundant bandwidth
- Efficient use of bandwidth becomes crucial
- Network Services enable
 - Use network flexibly and transparently
 - Add customized intelligence
- Killer Applications might be OVPN or any other dynamic bandwidth provisioning
Breakthrough...Bandwidth

Optical Capacity Revolution

- 1984: 50 Mbps
- 1994: 2.5 Gbps
- 1998: 320 Gbps
- 2001: 1.6 Tbps
- 2002: 6.4 Tbps

Moore's Law

Cost per Gigabit Mile

- 1993
- 1998
- 2002

Wavelengths will become the communications circuits of the future...

Source: Nortel marketing
“Blindsided by Technology”

- When a base technology leaps ahead in a dramatic fashion relative to other technologies, it always reshapes what is possible
- It drives the basic fabric of how distributed systems will be built

Source – Nortel’s marketing
Imagine it 5 years from now? There are more questions than answers. There is Light at the end of the Tunnel
Backup Slides
Agenda

- Technology and market drivers
- Abundant bandwidth
- Underline the Internet is optical
- What is WDM?
- Where are the bottlenecks?
- Architecture and protection
- Summary
- Backup slides
 - Underline technologies
 - Protection Rings
Changing the big picture

- Now the converged network looks different
- Dial-up bandwidth has huge implications
- Pushing bandwidth to the edges of the network
 - Affects service placement, for example
Bandwidth at the edges

- Services placed there (ServicePoP)
- Need to connect services to customers and other services
- Metro networks
 - Use of Ethernet as low cost/flexible mechanism
- Eventually fibers to pcmcia?!
Metro networks

- Interim step: services in servicePoPs
- Tap into fast connections here for enterprises
- Use of Ethernet as protocol to connect the enterprise to the MAN
- Avoid need for last mile for certain applications/services
Abundant Bandwidth

Why does this change the playground?

- Optical core bandwidth is growing in an order of magnitude every 2 years, 4 orders of magnitude in 9 years
 - 1992 - 100Mbs (100FX, OC-3)
 - 2001 - 1.6Tbs (160 DWDM of OC-192)
 - OC-768 (40Gbs) on single! is commercial (80Gbs in lab)

- 2-3 orders of magnitude bandwidth growth in many dimensions
 - Core - Optical bandwidth - (155mb/s ! 1Tb/s)
 - Core Metro - DWDM optical aggregation - (2.4Gb/s ! N*10Gb/s)
 - Metro - Access for businesses (T1 ! OC3, 100FX, 1-Gb/s)
 - Access - Cable, DSL, 3G - (28kb/s! 10mb/s, 1.5mb/s, 384kb/s)
 - LAN - (10mbp/s ! 10Gbp/s)
Why Does This Matter?

- How do these photonic breakthroughs affect us?
- This is a radical change to the current internet architecture
- WAN starts to be no longer the bottleneck
 - How congestion control/avoidance affected?
 - Why DiffServ if you can get all the bandwidth that you need?
 - Why do we need QoS?
 - Why do we need cache? (if we can have big pipes)
 - Where to put the data? (centralized, distributed)
 - What changes in network architecture needed?
 - What changes in system architecture needed?
 - Distributed computing, central computing, cluster computing
 - Any changes to the current routing?
Movie Distribution

- Each movie theater in a large area (SF, New York, Houston) requests 1 hour of bandwidth a week (OC192)
- All movies transferred during this time
- Efficient use of expensive but necessary fat pipe
Move to optical

- The key is to find a way to use the infrastructure that we have available in an efficient manner
- What services are available? What can we do?
- Challenges?
New type of businesses

- Data warehousing: no more mailing tapes
- Have tape vaults with gigabit connectivity
- Data is sent optically to destination, where it is written to magnetic tape
Abundant Bandwidth

Why does this change the playground?

- Optical core bandwidth is growing in an order of magnitude every 2 years, 4 orders of magnitude in 9 years
 - 1992 - 100Mbs (100FX, OC-3)
 - 2001 - 1.6Tbs (160 DWDM of OC-192)
 - OC-768 (40Gbs) on single! is commercial. (80Gbs in lab)
- 2-3 orders of magnitude bandwidth growth in many dimensions
 - Core - Optical bandwidth - (155mb/s ! 1Tb/s)
 - Core Metro - DWDM optical aggregation - (2.4Gb/s ! N*10Gb/s)
 - Metro - Access for businesses (T1 ! OC3, 100FX, 1-Gb/s)
 - Access - Cable, DSL, 3G - (28kb/s! 10mb/s, 1.5mb/s, 384kb/s)
 - LAN - (10mbp/s ! 10Gbp/s)
How this Affects our Lives?

- What are the new applications to use this abundant bandwidth?
 - Distance learning?
 - Telecommuting? (for the average person, not us)
 - Broadcasting? (I want to see TV channel 48 from Japan)
 - Video conference?
- What else? (this is a BIG question)
 - What are the new applications and services?
Need for new services

- Optical networking is evolving
 - Much more bandwidth
 - Agile reconfiguring of light path
- Need to take advantage of this and tie it to applications and services
 - Need to define the glue and the interface between the applications and lower levels.
- Can’t do computation in the optical core
 - Need to move the intelligence from the core to the edge.

- I’d like to focus and formulate a research program in this area of providing intelligent services at the Optical core.
Where are the bottlenecks

- Optical networking is evolving
- As soon as one problem is solved, the bottleneck is moving to a new place
- Currently it looks like the bottleneck is at the first mile
- Streaming media - bottleneck push on routers
- Much more bandwidth in the MAN move the bottlenecks away from the access and the edge
- Peering points between service provides
Streaming media as bandwidth driver

- Streaming needs big pipes - 2-3 orders or magnitudes more than web surfing.
 - Speed of 3Mbs is about 1GB per hour
- Constant traffic (can be turn on for hours with no one watching)
- Web looks like a big traffic driver on the edge - but it is small traffic on the core.
 - One hour web, 10 second a page, 360 pages, 10KB page \rightarrow 3.6MB
EFM – Ethernet First Mile

- Ethernet at the first mile start to be attractive.
- Drive more bandwidth to the end users
- Three proposals:
 - 22Mbs on the current phone line
 - PON – Passive Optical Network – split the optical link to 4 and additional 8 total 32 customers (60Mbs per residence)
 - Point-to-point optical – more expansive
- SBC and alike are interested.

- The tight of way is the main issue. Optical fibers work fine in harsh environment
 - Sewer net, Power line, Gas line, water line.
Where are the bottlenecks

- Optical networking is evolving
- As soon as one problem is solved, the bottleneck is moving to a new place
- Currently it looks like the bottleneck is at the first mile
- Streaming media - bottleneck push on routers
- Much more bandwidth in the MAN move the bottlenecks away from the access and the edge
- Peering points between service provides
Need for new services

- Optical networking is evolving
 - Much more bandwidth
 - Agile reconfiguring of light path
- Need to take advantage of this and tie it to applications and services
 - Need to define the glue and the interface between the applications and lower levels.
- Can’t do computation in the optical core
 - Need to move the intelligence from the core to the edge.

- I’d like to focus and formulate a research program in this area of providing intelligent services at the Optical core.
If we had the bandwidth…

- What if we all had 100Mb/s at home?
 - Killer apps, other apps, services
 - Peer-to-peer video swapping
 - Is it TV, HDTV, something else?

- What if we had larger pipes at businesses?
 - 1Gbs home office, 10GE/DWDM large organizations

- How would the network architecture look, if we solve the last mile problem?
Summary

- DWDM – phenomenal growth
- Abundant bandwidth
- Underline optical technologies
- The access is still bottleneck
- Reliability and protection
What is WDM?

Wavelength Division Multiplexing (WDM) acts as “optical funnel” using different colors of light (wavelengths) for each signal.

Source: Prof. Raj Jain Ohio U
Wavelength Division Multiplexing

Source: ??