-
US 20180130102 Reliable rating system and method thereof: Embodiments of the invention provide means to the users of the system to provide ratings and corresponding feedback for enhancing the genuineness in the ratings. The system includes a memory coupled to a processor. The memory includes one or more instructions executable by the processor to enable the users of the system to rate each other based on at least one of sharing, exchanging, and selling one of activity, service or product. The system may provide a mechanism to encourage genuineness in ratings provided by the users. Furthermore, the instructions facilitate the rating receivers to provide feedbacks corresponding to the received ratings. The feedback includes accepting or objecting to a particular rating. Moreover, the memory includes instructions executable by the processor to enable the system to determine genuineness of an objection raised by a rating receiver.
READ MOREUS 20180130102 Reliable rating system and method thereof: Embodiments of the invention provide means to the users of the system to provide ratings and corresponding feedback for enhancing the genuineness in the ratings. The system includes a memory coupled to a processor. The memory includes one or more instructions executable by the processor to enable the users of the system to rate each other based on at least one of sharing, exchanging, and selling one of activity, service or product. The system may provide a mechanism to encourage genuineness in ratings provided by the users. Furthermore, the instructions facilitate the rating receivers to provide feedbacks corresponding to the received ratings. The feedback includes accepting or objecting to a particular rating. Moreover, the memory includes instructions executable by the processor to enable the system to determine genuineness of an objection raised by a rating receiver.
READ MORE -
US 20130080898 A system for enhancing user interaction: Embodiments of the invention provide a system for enhancing user interaction with objects connected to a network. The system includes a processor, a display screen, a memory coupled to the processor. The memory comprises a database including a list of two or more objects and instructions executable by the processor to display a menu. The menu is associated with at least two independent objects. And the two independent objects are produced by two independent vendors.
READ MOREUS 20130080898 A system for enhancing user interaction: Embodiments of the invention provide a system for enhancing user interaction with objects connected to a network. The system includes a processor, a display screen, a memory coupled to the processor. The memory comprises a database including a list of two or more objects and instructions executable by the processor to display a menu. The menu is associated with at least two independent objects. And the two independent objects are produced by two independent vendors.
READ MORE -
US 9762251 Frequency synthesizer Advanced communication systems: A system for providing ultra low phase noise frequency synthesizers using Fractional-N PLL (Phase Lock Loop), Sampling Reference PLL and DDS (Direct Digital Synthesizer). Modern day advanced communication systems comprise frequency synthesizers that provide a frequency output signal to other parts of the transmitter and receiver so as to enable the system to operate at the set frequency band. The performance of the frequency synthesizer determines the performance of the communication link. Current days advanced communication systems comprises single loop Frequency synthesizers which are not completely able to provide lower phase deviations for errors (For 256 QAM the practical phase deviation for no errors is 0.4-0.5°) which would enable users to receive high data rate. This proposed system overcomes deficiencies of current generation state of the art communication systems by providing much lower level of phase deviation error which would result in much higher modulation schemes and high data rate.
READ MOREUS 9762251 Frequency synthesizer Advanced communication systems: A system for providing ultra low phase noise frequency synthesizers using Fractional-N PLL (Phase Lock Loop), Sampling Reference PLL and DDS (Direct Digital Synthesizer). Modern day advanced communication systems comprise frequency synthesizers that provide a frequency output signal to other parts of the transmitter and receiver so as to enable the system to operate at the set frequency band. The performance of the frequency synthesizer determines the performance of the communication link. Current days advanced communication systems comprises single loop Frequency synthesizers which are not completely able to provide lower phase deviations for errors (For 256 QAM the practical phase deviation for no errors is 0.4-0.5°) which would enable users to receive high data rate. This proposed system overcomes deficiencies of current generation state of the art communication systems by providing much lower level of phase deviation error which would result in much higher modulation schemes and high data rate.
READ MORE -
10764264 Evaluating a security context associated with the requested connection: A technique for authenticating network users is disclosed. In one particular exemplary embodiment, the technique may be realized as a method for authenticating network users. The method may comprise receiving, from a client device, a request for connection to a network. The method may also comprise evaluating a security context associated with the requested connection. The method may further comprise assigning the client device one or more access privileges based at least in part on the evaluation of the security context.
READ MORE10764264 Evaluating a security context associated with the requested connection: A technique for authenticating network users is disclosed. In one particular exemplary embodiment, the technique may be realized as a method for authenticating network users. The method may comprise receiving, from a client device, a request for connection to a network. The method may also comprise evaluating a security context associated with the requested connection. The method may further comprise assigning the client device one or more access privileges based at least in part on the evaluation of the security context.
READ MORE -
US 8572303 Portable Universal Communication Device: Embodiments of the invention provide a portable device comprising at least one processor. The portable device also comprises a memory coupled to the processor comprising data. Further, the portable device comprises a detector configured to detect at least one external device. The at least one external device is configured to connect to the portable device. Further, the portable device comprises an interface to connect to the at least one external device. The interface is configured to transmit or receive one or more control signals excluding the data. Furthermore, the portable device comprises a controller configured to enable controlling of the portable device from the at least one external device; and controlling of the at least one external device from the portable device through the interface.
READ MOREUS 8572303 Portable Universal Communication Device: Embodiments of the invention provide a portable device comprising at least one processor. The portable device also comprises a memory coupled to the processor comprising data. Further, the portable device comprises a detector configured to detect at least one external device. The at least one external device is configured to connect to the portable device. Further, the portable device comprises an interface to connect to the at least one external device. The interface is configured to transmit or receive one or more control signals excluding the data. Furthermore, the portable device comprises a controller configured to enable controlling of the portable device from the at least one external device; and controlling of the at least one external device from the portable device through the interface.
READ MORE -
8619793 Assignment of classes of traffic – priority queue: An apparatus and method for dynamic assignment of classes of traffic to a priority queue. Bandwidth consumption by one or more types of packet traffic received in the packet forwarding device is monitored to determine whether the bandwidth consumption exceeds a threshold. If the bandwidth consumption exceeds the threshold, assignment of at least one type of packet traffic of the one or more types of packet traffic is changed from a queue having a first priority to a queue having a second priority.
READ MORE8619793 Assignment of classes of traffic – priority queue: An apparatus and method for dynamic assignment of classes of traffic to a priority queue. Bandwidth consumption by one or more types of packet traffic received in the packet forwarding device is monitored to determine whether the bandwidth consumption exceeds a threshold. If the bandwidth consumption exceeds the threshold, assignment of at least one type of packet traffic of the one or more types of packet traffic is changed from a queue having a first priority to a queue having a second priority.
READ MORE -
8161139 Network element includes an intelligent interface: A network element (NE) includes an intelligent interface (II) with its own operating environment rendering it active during the NE boot process, and with separate intelligence allowing it to take actions on the NE prior to, during, and after the boot process. The combination of independent operation and increased intelligence provides enhanced management opportunities to enable the NE to be controlled throughout the boot process and after completion of the boot process. For example, files may be uploaded to the NE before or during the boot process to restart the NE from a new software image. The II allows this downloading process to occur in parallel on multiple NE's from a centralized storage resource. Diagnostic checks may be run on the NE, and files, and MIB information, and other data may be transmitted from the II to enable a network manager to more effectively manage the NE.
READ MORE8161139 Network element includes an intelligent interface: A network element (NE) includes an intelligent interface (II) with its own operating environment rendering it active during the NE boot process, and with separate intelligence allowing it to take actions on the NE prior to, during, and after the boot process. The combination of independent operation and increased intelligence provides enhanced management opportunities to enable the NE to be controlled throughout the boot process and after completion of the boot process. For example, files may be uploaded to the NE before or during the boot process to restart the NE from a new software image. The II allows this downloading process to occur in parallel on multiple NE's from a centralized storage resource. Diagnostic checks may be run on the NE, and files, and MIB information, and other data may be transmitted from the II to enable a network manager to more effectively manage the NE.
READ MORE -
7944827 Content-aware dynamic optical bandwidth allocation: Network resources allocated for particular application traffic are aware of the characteristics of L4+ content to be transmitted. One embodiment of the invention realizes network resource allocation in terms of three intelligent modules, gateway, provisioning and classification. A gateway module exerts network control functions in response to application requests for network resources. The network control functions include traffic path setup, bandwidth allocation and so on. Characteristics of the content are also specified in the received application network resource requests. Under request of the gateway module, a provisioning module allocates network resources such as bandwidth in optical networks and edge devices as well. An optical network resource allocation leads to a provisioning optical route. Under request of the gateway module, a classification module differentiates applications traffic according to content specifications, and thus creates and applies content-aware rule data for edge devices to forward content-specified traffic towards respective provisioning optical routes.
READ MORE7944827 Content-aware dynamic optical bandwidth allocation: Network resources allocated for particular application traffic are aware of the characteristics of L4+ content to be transmitted. One embodiment of the invention realizes network resource allocation in terms of three intelligent modules, gateway, provisioning and classification. A gateway module exerts network control functions in response to application requests for network resources. The network control functions include traffic path setup, bandwidth allocation and so on. Characteristics of the content are also specified in the received application network resource requests. Under request of the gateway module, a provisioning module allocates network resources such as bandwidth in optical networks and edge devices as well. An optical network resource allocation leads to a provisioning optical route. Under request of the gateway module, a classification module differentiates applications traffic according to content specifications, and thus creates and applies content-aware rule data for edge devices to forward content-specified traffic towards respective provisioning optical routes.
READ MORE -
7260621 Object-oriented network management interface: A system and method is provided for using an object-oriented interface for network management. An example system and method receives a management information base (MIB) including information related to one or more aspects of a network device, extracts a subset of information from the MIB describing at least one aspect of the network device, and generates a set of object-oriented classes and object-oriented methods corresponding to the subset of information in the MIB. In addition, this system and method interfaces with network management information on a network device, by providing a management information base (MIB) including information related to one or more aspects of a network device, and using a set of object-oriented classes and object-oriented methods that corresponds to the MIB and information related to one or more aspects of the network device.
READ MORE7260621 Object-oriented network management interface: A system and method is provided for using an object-oriented interface for network management. An example system and method receives a management information base (MIB) including information related to one or more aspects of a network device, extracts a subset of information from the MIB describing at least one aspect of the network device, and generates a set of object-oriented classes and object-oriented methods corresponding to the subset of information in the MIB. In addition, this system and method interfaces with network management information on a network device, by providing a management information base (MIB) including information related to one or more aspects of a network device, and using a set of object-oriented classes and object-oriented methods that corresponds to the MIB and information related to one or more aspects of the network device.
READ MORE -
20100146492 Translation of programming code: Embodiments of the invention may provide methods and/or systems for converting a source application to a platform-independent application. Source programming language code of the source application may be translated to target programming language code of the platform-independent application. The source programming language code may comprise Connected Limited Device Configuration (CLDC) code, and the platform-independent programming language may be independent of one or more device platforms. Further, one or more source resources associated with the source application may be converted to one or more target resources.
READ MORE20100146492 Translation of programming code: Embodiments of the invention may provide methods and/or systems for converting a source application to a platform-independent application. Source programming language code of the source application may be translated to target programming language code of the platform-independent application. The source programming language code may comprise Connected Limited Device Configuration (CLDC) code, and the platform-independent programming language may be independent of one or more device platforms. Further, one or more source resources associated with the source application may be converted to one or more target resources.
READ MORE