-
EP3311493 ULPN synthesizers using Fractional-N PLL: A system for providing ultra low phase noise frequency synthesizers using Fractional-N PLL (Phase Lock Loop), Sampling Reference PLL and DDS (Direct Digital Synthesizer). Modern day advanced communication systems comprise frequency synthesizers that provide a frequency output signal to other parts of the transmitter and receiver so as to enable the system to operate at the set frequency band. The performance of the frequency synthesizer determines the performance of the communication link. Current days advanced communication systems comprises single loop Frequency synthesizers which are not completely able to provide lower phase deviations for errors (For 256 QAM the practical phase deviation for no errors is 0.4-0.5°) which would enable users to receive high data rate. This proposed system overcomes deficiencies of current generation state of the art communication systems by providing much lower level of phase deviation error which would result in much higher modulation schemes and high data rate.
READ MOREEP3311493 ULPN synthesizers using Fractional-N PLL: A system for providing ultra low phase noise frequency synthesizers using Fractional-N PLL (Phase Lock Loop), Sampling Reference PLL and DDS (Direct Digital Synthesizer). Modern day advanced communication systems comprise frequency synthesizers that provide a frequency output signal to other parts of the transmitter and receiver so as to enable the system to operate at the set frequency band. The performance of the frequency synthesizer determines the performance of the communication link. Current days advanced communication systems comprises single loop Frequency synthesizers which are not completely able to provide lower phase deviations for errors (For 256 QAM the practical phase deviation for no errors is 0.4-0.5°) which would enable users to receive high data rate. This proposed system overcomes deficiencies of current generation state of the art communication systems by providing much lower level of phase deviation error which would result in much higher modulation schemes and high data rate.
READ MORE -
10404261 Radar target detection system for autonomous vehicles: A system for detecting the surrounding environment of vehicle comprising a RADAR unit and at least one ultra-lowphase-noise frequency synthesizer, is provided. A RADAR unit configured for detecting the presence and characteristics of one or more objects in various directions. The RADAR unit may include a transmitter for transmitting at least one radio signal, and a receiver for receiving the at least one radio signalreturned from the one or more objects. The ultra-lowphase-noisefrequency synthesizer may utilize a dual loop design comprising one main PLL and one sampling PLL, where the main PLL might include a DDS or Fractional-N PLL plus a variable divider, or the synthesizer may utilize a sampling PLL only, to reduce phase-noise from the returned radio signal. This system enhances the detection of the exact location of the vehicle based on the received RADAR signatures of objects, azimuth and distance.
READ MORE10404261 Radar target detection system for autonomous vehicles: A system for detecting the surrounding environment of vehicle comprising a RADAR unit and at least one ultra-lowphase-noise frequency synthesizer, is provided. A RADAR unit configured for detecting the presence and characteristics of one or more objects in various directions. The RADAR unit may include a transmitter for transmitting at least one radio signal, and a receiver for receiving the at least one radio signalreturned from the one or more objects. The ultra-lowphase-noisefrequency synthesizer may utilize a dual loop design comprising one main PLL and one sampling PLL, where the main PLL might include a DDS or Fractional-N PLL plus a variable divider, or the synthesizer may utilize a sampling PLL only, to reduce phase-noise from the returned radio signal. This system enhances the detection of the exact location of the vehicle based on the received RADAR signatures of objects, azimuth and distance.
READ MORE -
Autonomous vehicles with ultra-low phase noise frequency: A target detection and imaging system, comprising a RADAR unit and at least one ultra-low phase noise frequency synthesizer, is provided. The target detecting, and imaging system can assist other sensors such as LiDAR, camera to further detect and investigate objects on the road from distance. RADAR unit configured for detecting the presence and characteristics of one or more objects in various directions. The RADAR unit may include a transmitter for transmitting at least one radio signal; and a receiver for receiving the at least one radio signal returned from the one or more objects. signals. The ultra-low phase noise frequency synthesizer may utilize dual loop design comprising one main PLL and one sampling PLL, where the main PLL might include a DDS or Fractional-N PLL plus a variable divider, or the synthesizer may utilize a sampling PLL only, to reduce phase noise from the returned radio signal. This proposed system overcomes deficiencies of current generation state of the art RADAR Systems by providing much lower level of phase noise which would result in improved performance of the RADAR system in terms of target detection, characterization etc.
READ MOREAutonomous vehicles with ultra-low phase noise frequency: A target detection and imaging system, comprising a RADAR unit and at least one ultra-low phase noise frequency synthesizer, is provided. The target detecting, and imaging system can assist other sensors such as LiDAR, camera to further detect and investigate objects on the road from distance. RADAR unit configured for detecting the presence and characteristics of one or more objects in various directions. The RADAR unit may include a transmitter for transmitting at least one radio signal; and a receiver for receiving the at least one radio signal returned from the one or more objects. signals. The ultra-low phase noise frequency synthesizer may utilize dual loop design comprising one main PLL and one sampling PLL, where the main PLL might include a DDS or Fractional-N PLL plus a variable divider, or the synthesizer may utilize a sampling PLL only, to reduce phase noise from the returned radio signal. This proposed system overcomes deficiencies of current generation state of the art RADAR Systems by providing much lower level of phase noise which would result in improved performance of the RADAR system in terms of target detection, characterization etc.
READ MORE -
US 8572303 Portable Universal Communication Device: Embodiments of the invention provide a portable device comprising at least one processor. The portable device also comprises a memory coupled to the processor comprising data. Further, the portable device comprises a detector configured to detect at least one external device. The at least one external device is configured to connect to the portable device. Further, the portable device comprises an interface to connect to the at least one external device. The interface is configured to transmit or receive one or more control signals excluding the data. Furthermore, the portable device comprises a controller configured to enable controlling of the portable device from the at least one external device; and controlling of the at least one external device from the portable device through the interface.
READ MOREUS 8572303 Portable Universal Communication Device: Embodiments of the invention provide a portable device comprising at least one processor. The portable device also comprises a memory coupled to the processor comprising data. Further, the portable device comprises a detector configured to detect at least one external device. The at least one external device is configured to connect to the portable device. Further, the portable device comprises an interface to connect to the at least one external device. The interface is configured to transmit or receive one or more control signals excluding the data. Furthermore, the portable device comprises a controller configured to enable controlling of the portable device from the at least one external device; and controlling of the at least one external device from the portable device through the interface.
READ MORE -
8161139 Network element includes an intelligent interface: A network element (NE) includes an intelligent interface (II) with its own operating environment rendering it active during the NE boot process, and with separate intelligence allowing it to take actions on the NE prior to, during, and after the boot process. The combination of independent operation and increased intelligence provides enhanced management opportunities to enable the NE to be controlled throughout the boot process and after completion of the boot process. For example, files may be uploaded to the NE before or during the boot process to restart the NE from a new software image. The II allows this downloading process to occur in parallel on multiple NE's from a centralized storage resource. Diagnostic checks may be run on the NE, and files, and MIB information, and other data may be transmitted from the II to enable a network manager to more effectively manage the NE.
READ MORE8161139 Network element includes an intelligent interface: A network element (NE) includes an intelligent interface (II) with its own operating environment rendering it active during the NE boot process, and with separate intelligence allowing it to take actions on the NE prior to, during, and after the boot process. The combination of independent operation and increased intelligence provides enhanced management opportunities to enable the NE to be controlled throughout the boot process and after completion of the boot process. For example, files may be uploaded to the NE before or during the boot process to restart the NE from a new software image. The II allows this downloading process to occur in parallel on multiple NE's from a centralized storage resource. Diagnostic checks may be run on the NE, and files, and MIB information, and other data may be transmitted from the II to enable a network manager to more effectively manage the NE.
READ MORE -
8762962 Automatic translation of a computer program language code: Embodiments of the methods and apparatus for automatic cross language program code translation are provided. One or more characters of a source programming language code are tokenized to generate a list of tokens. Thereafter, the list of tokens is parsed to generate a grammatical data structure comprising one or more data nodes. The grammatical data structure may be an abstract syntax tree. The one or more data nodes of the grammatical data structure are processed to generate a document object model comprising one or more portable data nodes. Subsequently, the one or more portable data nodes in the document object model are analyzed to generate one or more characters of a target programming language code.
READ MORE8762962 Automatic translation of a computer program language code: Embodiments of the methods and apparatus for automatic cross language program code translation are provided. One or more characters of a source programming language code are tokenized to generate a list of tokens. Thereafter, the list of tokens is parsed to generate a grammatical data structure comprising one or more data nodes. The grammatical data structure may be an abstract syntax tree. The one or more data nodes of the grammatical data structure are processed to generate a document object model comprising one or more portable data nodes. Subsequently, the one or more portable data nodes in the document object model are analyzed to generate one or more characters of a target programming language code.
READ MORE -
20090313004 Platform-Independent Application Development Framework: Embodiments of the invention provide a platform-independent application development framework for programming an application. The framework comprises a content interface configured to provide an Application Programming Interface (API) to program the application comprising a programming code to be executed on one or more platforms. The API provided by the framework is independent of the one or more platforms. The framework further comprises an application environment configured to provide an infrastructure that is independent of the one or more platforms and one or more plug-in interfaces configured to provide an interface between the application environment and the one or more platforms.
READ MORE20090313004 Platform-Independent Application Development Framework: Embodiments of the invention provide a platform-independent application development framework for programming an application. The framework comprises a content interface configured to provide an Application Programming Interface (API) to program the application comprising a programming code to be executed on one or more platforms. The API provided by the framework is independent of the one or more platforms. The framework further comprises an application environment configured to provide an infrastructure that is independent of the one or more platforms and one or more plug-in interfaces configured to provide an interface between the application environment and the one or more platforms.
READ MORE