Prolific Inventor

Dr. Lavian has invented over 120 patents, 60 of which he has prosecuted pro-se before the US Patent and Trademark Office (USPTO). In this area of work, his focus is on network communicators, computer networks, Internet Protocols (TCP/IP), VoIP, streaming media, and Web technologies.

Dr. Lavian has extensive work experience in network communications, including eleven years with Silicon Valley-based, Nortel Networks, a global telecommunications and networking equipment leader, where he has held several positions including principal scientist, architect, and senior software engineer.

While working for Nortel Networks, Dr. Lavian created and chaired the company’s EDN Patent Committee. He enabled Nortel Networks to secure its intellectual property (IP) rights. He also helped the company generate a continuous stream of innovative ideas for switches, routers, and network communications devices, allowing the company to significantly enrich its IP portfolio, a portion of which was later sold for $4.5 billion.

Invented Over 120 Patents:

  • 20050083960 Transporting parcels of data using network elements: A network element with network element storage and independent intelligence may be configured to provide temporary mass storage to facilitate the transfer of large files across an optical network. The network element may also be provided with intelligence to enable the network element to maintain a higher level understanding of the data flows. Using network element storage enables network elements involved in data transmission across the network to temporarily store data being transferred on the network. This allows parcels of data to be transmitted part way through the network when a complete path through the network is not available. It also allows data to be aggregated at strategic locations on the network, such as at the location of a transmission bandwidth mismatch, to enable the data to be transmitted over the high capacity optical resource at a higher rate, thus more efficiently utilizing the bandwidth on the higher bandwidth resource.

    READ MORE

    20050083960 Transporting parcels of data using network elements: A network element with network element storage and independent intelligence may be configured to provide temporary mass storage to facilitate the transfer of large files across an optical network. The network element may also be provided with intelligence to enable the network element to maintain a higher level understanding of the data flows. Using network element storage enables network elements involved in data transmission across the network to temporarily store data being transferred on the network. This allows parcels of data to be transmitted part way through the network when a complete path through the network is not available. It also allows data to be aggregated at strategic locations on the network, such as at the location of a transmission bandwidth mismatch, to enable the data to be transmitted over the high capacity optical resource at a higher rate, thus more efficiently utilizing the bandwidth on the higher bandwidth resource.

    READ MORE
  • 20050076339 Automated negotiation for resources on a switched underlay network: A resource negotiation service is provided to enable business logic decisions to be made when obtaining switched underlay network resources, to interface business logic with network conditions and schedules. The resource negotiation service may be implemented as a web service or other network service to enable business logic to be used in the selection of available network resources. This may allow policy to be used on both the subscriber side and the network provider side to optimize network resource allocations for a proposed transfer. The policy may include subscriber policy, network policy, and other factors such as current and expected network conditions. The resource negotiation service may include an interface to enable existing subscribers and new customers to obtain switched underlay resources.

    READ MORE

    20050076339 Automated negotiation for resources on a switched underlay network: A resource negotiation service is provided to enable business logic decisions to be made when obtaining switched underlay network resources, to interface business logic with network conditions and schedules. The resource negotiation service may be implemented as a web service or other network service to enable business logic to be used in the selection of available network resources. This may allow policy to be used on both the subscriber side and the network provider side to optimize network resource allocations for a proposed transfer. The policy may include subscriber policy, network policy, and other factors such as current and expected network conditions. The resource negotiation service may include an interface to enable existing subscribers and new customers to obtain switched underlay resources.

    READ MORE
  • 20050076336 Network resources comprising the switched underlay network: A method and apparatus for resource scheduling on a switched underlay network enables coordination, scheduling, and scheduling optimization to take place taking into account the availability of the data and the network resources comprising the switched underlay network. Requested transfers may be fulfilled by assessing the requested transfer parameters, the availability of the network resources required to fulfill the request, the availability of the data to be transferred, the availability of sufficient storage resources to receive the data, and other potentially conflicting requested transfers. In one embodiment, the requests are under-constrained to enable transfer scheduling optimization to occur. The under-constrained nature of the requests enables requests to be scheduled taking into account factors such as transfer priority, transfer duration, the amount of time it has been since the transfer request was submitted, and many other factors.

    READ MORE

    20050076336 Network resources comprising the switched underlay network: A method and apparatus for resource scheduling on a switched underlay network enables coordination, scheduling, and scheduling optimization to take place taking into account the availability of the data and the network resources comprising the switched underlay network. Requested transfers may be fulfilled by assessing the requested transfer parameters, the availability of the network resources required to fulfill the request, the availability of the data to be transferred, the availability of sufficient storage resources to receive the data, and other potentially conflicting requested transfers. In one embodiment, the requests are under-constrained to enable transfer scheduling optimization to occur. The under-constrained nature of the requests enables requests to be scheduled taking into account factors such as transfer priority, transfer duration, the amount of time it has been since the transfer request was submitted, and many other factors.

    READ MORE
  • 20050076173 Preconditioning data to be transferred on a switched underlay network: Data may be preconditioned to be transferred on a switched underlay network to alleviate the data access and transfer rate mismatch, so that large files may be effectively transferred on the network at optical networking speeds. A data meta-manager service may be provided on the network to interface a data source and/or data target to prepare a data file for transmission, such as by dividing a large file into multiple pieces and causing those pieces to be stored on multiple storage subsystems. The file may then be read from the multiple storage subsystems simultaneously and multiplexed onto scheduled resources on the network. This enables the high bandwidth transfer resource to be filled by a data transfer without requiring the storage subsystem to be augmented to output the data at the network transfer rate. The file may be de-multiplexed at the data target to one or more storage subsystems.

    READ MORE

    20050076173 Preconditioning data to be transferred on a switched underlay network: Data may be preconditioned to be transferred on a switched underlay network to alleviate the data access and transfer rate mismatch, so that large files may be effectively transferred on the network at optical networking speeds. A data meta-manager service may be provided on the network to interface a data source and/or data target to prepare a data file for transmission, such as by dividing a large file into multiple pieces and causing those pieces to be stored on multiple storage subsystems. The file may then be read from the multiple storage subsystems simultaneously and multiplexed onto scheduled resources on the network. This enables the high bandwidth transfer resource to be filled by a data transfer without requiring the storage subsystem to be augmented to output the data at the network transfer rate. The file may be de-multiplexed at the data target to one or more storage subsystems.

    READ MORE
  • 20050076099 Live streaming media replication in networks: Replication of live streaming media services (SMS) in a communication network may be enabled by introducing the streaming media-savvy replication service on a network element, through a number of functions such as client/service registration and classification, packet interception and forwarding, media replication, status monitoring and configuration management. In an embodiment, client requests and server replies of an SMS are intercepted and evaluated by the network element. If the SMS is not streaming through the network element, the replication service registers the SMS and establishes a unique SMS session for the requesting clients. If the SMS is already streaming through the network element, the replication service replicates the streaming media and forwards it to the requesting clients. This reduces bandwidth usage on the links connecting the streaming media server with the network element and reduces the number of client connections to the streaming media provider's servers.

    READ MORE

    20050076099 Live streaming media replication in networks: Replication of live streaming media services (SMS) in a communication network may be enabled by introducing the streaming media-savvy replication service on a network element, through a number of functions such as client/service registration and classification, packet interception and forwarding, media replication, status monitoring and configuration management. In an embodiment, client requests and server replies of an SMS are intercepted and evaluated by the network element. If the SMS is not streaming through the network element, the replication service registers the SMS and establishes a unique SMS session for the requesting clients. If the SMS is already streaming through the network element, the replication service replicates the streaming media and forwards it to the requesting clients. This reduces bandwidth usage on the links connecting the streaming media server with the network element and reduces the number of client connections to the streaming media provider's servers.

    READ MORE
  • 20050074529 Visualization information on a switched underlay network: A visualization display network is created such that images to be displayed at the visualization presentation center(s) are formatted for direct display on the viewing terminals without requiring significant additional processing at the visualization presentation center. For example, the display terminals at the visualization presentation center may be configured to display signals received in a standard color format such as RGB, and the signals output from the visualization processing center and transported on a switched underlay optical network may be formed in the same color format. A visualization transfer service is provided to reserve resources on the switched underlay optical network and to coordinate visualization events between the visualization processing center, network, and visualization presentation center. Network resources may be scheduled in real time on demand or may be scheduled to be provided at a predetermined optionally under-constrained time.

    READ MORE

    20050074529 Visualization information on a switched underlay network: A visualization display network is created such that images to be displayed at the visualization presentation center(s) are formatted for direct display on the viewing terminals without requiring significant additional processing at the visualization presentation center. For example, the display terminals at the visualization presentation center may be configured to display signals received in a standard color format such as RGB, and the signals output from the visualization processing center and transported on a switched underlay optical network may be formed in the same color format. A visualization transfer service is provided to reserve resources on the switched underlay optical network and to coordinate visualization events between the visualization processing center, network, and visualization presentation center. Network resources may be scheduled in real time on demand or may be scheduled to be provided at a predetermined optionally under-constrained time.

    READ MORE
  • 20040076161 Traffic classes to queues different priority levels: An apparatus and method for dynamic assignment of classes of traffic to a priority queue. Bandwidth consumption by one or more types of packet traffic received in the packet forwarding device is monitored to determine whether the bandwidth consumption exceeds a threshold. If the bandwidth consumption exceeds the threshold, assignment of at least one type of packet traffic of the one or more types of packet traffic is changed from a queue having a first priority to a queue having a second priority.

    READ MORE

    20040076161 Traffic classes to queues different priority levels: An apparatus and method for dynamic assignment of classes of traffic to a priority queue. Bandwidth consumption by one or more types of packet traffic received in the packet forwarding device is monitored to determine whether the bandwidth consumption exceeds a threshold. If the bandwidth consumption exceeds the threshold, assignment of at least one type of packet traffic of the one or more types of packet traffic is changed from a queue having a first priority to a queue having a second priority.

    READ MORE
  • 20020021701 Bandwidth consumption of packet networks: An apparatus and method for dynamic assignment of classes of traffic to a priority queue. Bandwidth consumption by one or more types of packet traffic received in the packet forwarding device is monitored to determine whether the bandwidth consumption exceeds a threshold. If the bandwidth consumption exceeds the threshold, assignment of at least one type of packet traffic of the one or more types of packet traffic is changed from a queue having a first priority to a queue having a second priority.

    READ MORE

    20020021701 Bandwidth consumption of packet networks: An apparatus and method for dynamic assignment of classes of traffic to a priority queue. Bandwidth consumption by one or more types of packet traffic received in the packet forwarding device is monitored to determine whether the bandwidth consumption exceeds a threshold. If the bandwidth consumption exceeds the threshold, assignment of at least one type of packet traffic of the one or more types of packet traffic is changed from a queue having a first priority to a queue having a second priority.

    READ MORE
  • WO 2000041368 Dynamic assignment of classes of traffic to a priority queue: An apparatus and method for dynamic assignment of classes of traffic to a priority queue. Bandwidth consumption by one or more types of packet traffic received in the packet forwarding device is monitored to determine whether the bandwidth consumption exceeds a threshold. If the bandwidth consumption exceeds the threshold, assignment of at least one type of packet traffic of the one or more types of packet traffic is changed from a queue having a first priority to a queue having a second priority.

    READ MORE

    WO 2000041368 Dynamic assignment of classes of traffic to a priority queue: An apparatus and method for dynamic assignment of classes of traffic to a priority queue. Bandwidth consumption by one or more types of packet traffic received in the packet forwarding device is monitored to determine whether the bandwidth consumption exceeds a threshold. If the bandwidth consumption exceeds the threshold, assignment of at least one type of packet traffic of the one or more types of packet traffic is changed from a queue having a first priority to a queue having a second priority.

    READ MORE
  • WO 2000054460 Accessing network information on a network device: A computer-implemented method and system of distributing management of network resources on a network to network devices is provided. During execution, the system receives a request on a network device to execute a task that performs a set of operations related to managing the network, receives an application over the network wherein the application includes operations for performing the task, processes operations on the network device that requests network parameters from a remote network device, transmits the request for the network parameter over the network to the remote network, and receives the requested network parameter over the network from the remote network device.

    READ MORE

    WO 2000054460 Accessing network information on a network device: A computer-implemented method and system of distributing management of network resources on a network to network devices is provided. During execution, the system receives a request on a network device to execute a task that performs a set of operations related to managing the network, receives an application over the network wherein the application includes operations for performing the task, processes operations on the network device that requests network parameters from a remote network device, transmits the request for the network parameter over the network to the remote network, and receives the requested network parameter over the network from the remote network device.

    READ MORE
  • 20090279562 Network resources allocation for particular traffic: Network resources allocated for particular application traffic are aware of the characteristics of L4+ content to be transmitted. One embodiment of the invention realizes network resource allocation in terms of three intelligent modules, gateway, provisioning and classification. A gateway module exerts network control functions in response to application requests for network resources. The network control functions include traffic path setup, bandwidth allocation and so on. Characteristics of the content are also specified in the received application network resource requests. Under request of the gateway module, a provisioning module allocates network resources such as bandwidth in optical networks and edge devices as well. An optical network resource allocation leads to a provisioning optical route. Under request of the gateway module, a classification module differentiates applications traffic according to content specifications, and thus creates and applies content-aware rule data for edge devices to forward content-specified traffic towards respective provisioning optical routes.

    READ MORE

    20090279562 Network resources allocation for particular traffic: Network resources allocated for particular application traffic are aware of the characteristics of L4+ content to be transmitted. One embodiment of the invention realizes network resource allocation in terms of three intelligent modules, gateway, provisioning and classification. A gateway module exerts network control functions in response to application requests for network resources. The network control functions include traffic path setup, bandwidth allocation and so on. Characteristics of the content are also specified in the received application network resource requests. Under request of the gateway module, a provisioning module allocates network resources such as bandwidth in optical networks and edge devices as well. An optical network resource allocation leads to a provisioning optical route. Under request of the gateway module, a classification module differentiates applications traffic according to content specifications, and thus creates and applies content-aware rule data for edge devices to forward content-specified traffic towards respective provisioning optical routes.

    READ MORE
  • 20080040630 Time-value curves to provide dynamic QOS for time sensitive file: A method and apparatus has been shown and described which allows Quality of Service to be controlled at a temporal granularity. Time-value curves, generated for each task, ensure that mission resources are utilized in a manner which optimizes mission performance. It should be noted, however, that although the present invention has shown and described the use of time-value curves as applied to mission workflow tasks, the present invention is not limited to this application; rather, it can be readily appreciated by one of skill in the art that time-value curves may be used to optimize the delivery of any resource to any consumer by taking into account the dynamic environment of the consumer and resource

    READ MORE

    20080040630 Time-value curves to provide dynamic QOS for time sensitive file: A method and apparatus has been shown and described which allows Quality of Service to be controlled at a temporal granularity. Time-value curves, generated for each task, ensure that mission resources are utilized in a manner which optimizes mission performance. It should be noted, however, that although the present invention has shown and described the use of time-value curves as applied to mission workflow tasks, the present invention is not limited to this application; rather, it can be readily appreciated by one of skill in the art that time-value curves may be used to optimize the delivery of any resource to any consumer by taking into account the dynamic environment of the consumer and resource

    READ MORE
  • 20070169171 Technique for authenticating network users: A technique for authenticating network users is disclosed. In one particular exemplary embodiment, the technique may be realized as a method for authenticating network users. The method may comprise receiving, from a client device, a request for connection to a network. The method may also comprise evaluating a security context associated with the requested connection. The method may further comprise assigning the client device one or more access privileges based at least in part on the evaluation of the security context.

    READ MORE

    20070169171 Technique for authenticating network users: A technique for authenticating network users is disclosed. In one particular exemplary embodiment, the technique may be realized as a method for authenticating network users. The method may comprise receiving, from a client device, a request for connection to a network. The method may also comprise evaluating a security context associated with the requested connection. The method may further comprise assigning the client device one or more access privileges based at least in part on the evaluation of the security context.

    READ MORE
  • WO 2007008976 Authenticating network users-prevent unauthorized access: A technique for authenticating network users is disclosed. In one particular exemplary embodiment, the technique may be realized as a method for authenticating network users. The method may comprise receiving, from a client device, a request for connection to a network. The method may also comprise evaluating a security context associated with the requested connection. The method may further comprise assigning the client device one or more access privileges based at least in part on the evaluation of the security context.

    READ MORE

    WO 2007008976 Authenticating network users-prevent unauthorized access: A technique for authenticating network users is disclosed. In one particular exemplary embodiment, the technique may be realized as a method for authenticating network users. The method may comprise receiving, from a client device, a request for connection to a network. The method may also comprise evaluating a security context associated with the requested connection. The method may further comprise assigning the client device one or more access privileges based at least in part on the evaluation of the security context.

    READ MORE
  • 20180019755 Radar Applications with Ultra-low phase noise frequency gen: An object detection system for autonomous vehicle, comprising a radar unit and at least one ultra-low phase noise frequency synthesizer, is provided. The radar unit configured for detecting the presence and characteristics of one or more objects in various directions. The radar unit may include a transmitter for transmitting at least one radio signal; and a receiver for receiving the at least one radio signal returned from the one or more objects. The ultra-low phase noise frequency synthesizer may utilize Clocking device, Sampling Reference PLL, at least one fixed frequency divider, DDS and main PLL to reduce phase noise from the returned radio signal. This proposed system overcomes deficiencies of current generation state of the art Radar Systems by providing much lower level of phase noise which would result in improved performance of the radar system in terms of target detection, characterization etc. Further, a method for autonomous vehicle is also disclosed

    READ MORE

    20180019755 Radar Applications with Ultra-low phase noise frequency gen: An object detection system for autonomous vehicle, comprising a radar unit and at least one ultra-low phase noise frequency synthesizer, is provided. The radar unit configured for detecting the presence and characteristics of one or more objects in various directions. The radar unit may include a transmitter for transmitting at least one radio signal; and a receiver for receiving the at least one radio signal returned from the one or more objects. The ultra-low phase noise frequency synthesizer may utilize Clocking device, Sampling Reference PLL, at least one fixed frequency divider, DDS and main PLL to reduce phase noise from the returned radio signal. This proposed system overcomes deficiencies of current generation state of the art Radar Systems by providing much lower level of phase noise which would result in improved performance of the radar system in terms of target detection, characterization etc. Further, a method for autonomous vehicle is also disclosed

    READ MORE
  • 20170085708 Converting the audible menus to visual IVR menus: Embodiments of the invention provide a system for generating an Interactive Voice Response (IVR) database, the system comprising a processor and a memory coupled to the processor. The memory comprising a list of telephone numbers associated with one or more destinations implementing IVR menus, wherein the one or more destinations are grouped based on a plurality of categories of the IVR menus. Further the memory includes instructions executable by said processor for automatically communicating with the one of more destinations, and receiving at least one customization record from said at least one destination to store in the IVR database.

    READ MORE

    20170085708 Converting the audible menus to visual IVR menus: Embodiments of the invention provide a system for generating an Interactive Voice Response (IVR) database, the system comprising a processor and a memory coupled to the processor. The memory comprising a list of telephone numbers associated with one or more destinations implementing IVR menus, wherein the one or more destinations are grouped based on a plurality of categories of the IVR menus. Further the memory includes instructions executable by said processor for automatically communicating with the one of more destinations, and receiving at least one customization record from said at least one destination to store in the IVR database.

    READ MORE
  • 20170322687 Enhancing user interaction with objects: ABSTRACT System for enhancing user interaction with objects connected to a network Embodiments of the invention provide a system for improving user interaction with objects connected to a network. The system includes a processor, a display screen, a memory coupled to the processor. The memory comprises a database including a list of two or more […]

    READ MORE

    20170322687 Enhancing user interaction with objects: ABSTRACT System for enhancing user interaction with objects connected to a network Embodiments of the invention provide a system for improving user interaction with objects connected to a network. The system includes a processor, a display screen, a memory coupled to the processor. The memory comprises a database including a list of two or more […]

    READ MORE
  • 20170302282 Radar target detection system for autonomous vehicles: An object detection system for autonomous vehicle, comprising a radar unit and at least one ultra-low phase noise frequency synthesizer, is provided. The radar unit configured for detecting the presence and characteristics of one or more objects in various directions. The radar unit may include a transmitter for transmitting at least one radio signal; and a receiver for receiving the at least one radio signal returned from the one or more objects. The ultra-low phase noise frequency synthesizer may utilize Clocking device, Sampling Reference PLL, at least one fixed frequency divider, DDS and main PLL to reduce phase noise from the returned radio signal. This proposed system overcomes deficiencies of current generation state of the art Radar Systems by providing much lower level of phase noise which would result in improved performance of the radar system in terms of target detection, characterization etc. Further, a method or autonomous vehicle is also disclosed.

    READ MORE

    20170302282 Radar target detection system for autonomous vehicles: An object detection system for autonomous vehicle, comprising a radar unit and at least one ultra-low phase noise frequency synthesizer, is provided. The radar unit configured for detecting the presence and characteristics of one or more objects in various directions. The radar unit may include a transmitter for transmitting at least one radio signal; and a receiver for receiving the at least one radio signal returned from the one or more objects. The ultra-low phase noise frequency synthesizer may utilize Clocking device, Sampling Reference PLL, at least one fixed frequency divider, DDS and main PLL to reduce phase noise from the returned radio signal. This proposed system overcomes deficiencies of current generation state of the art Radar Systems by providing much lower level of phase noise which would result in improved performance of the radar system in terms of target detection, characterization etc. Further, a method or autonomous vehicle is also disclosed.

    READ MORE
  • 20170289332 IVR menu in a visual form to the caller: Embodiments of the invention provide a system for generating an Interactive Voice Response (IVR) database, the system comprising a processor and a memory coupled to the processor. The memory comprising a list of telephone numbers associated with one or more destinations implementing IVR menus, wherein the one or more destinations are grouped based on a plurality of categories of the IVR menus. Further the memory includes instructions executable by said processor for automatically communicating with the one of more destinations, and receiving at least one customization record from said at least one destination to store in the IVR database.

    READ MORE

    20170289332 IVR menu in a visual form to the caller: Embodiments of the invention provide a system for generating an Interactive Voice Response (IVR) database, the system comprising a processor and a memory coupled to the processor. The memory comprising a list of telephone numbers associated with one or more destinations implementing IVR menus, wherein the one or more destinations are grouped based on a plurality of categories of the IVR menus. Further the memory includes instructions executable by said processor for automatically communicating with the one of more destinations, and receiving at least one customization record from said at least one destination to store in the IVR database.

    READ MORE
  • 20170269797 Systems and Methods For Electronic Communication: Embodiments of the invention provide a system for enhancing user interaction with the Internet of Things in a network. The system includes a processor, and a memory. The memory includes a database including one or more options corresponding to each of the Internet of Things. Further, the memory includes instructions executable by the processor for providing the options to a user for enabling the user to select at least one option therefrom. Further, the instructions create a visual menu based on information corresponding to selection of the at least one option. The visual menu includes one or more objects corresponding to the Internet of Things. Furthermore, the instructions receive a rating for the visual menu from one or more second users of the Internet of Things. Additionally, instructions customize the visual menu based on the received rating.

    READ MORE

    20170269797 Systems and Methods For Electronic Communication: Embodiments of the invention provide a system for enhancing user interaction with the Internet of Things in a network. The system includes a processor, and a memory. The memory includes a database including one or more options corresponding to each of the Internet of Things. Further, the memory includes instructions executable by the processor for providing the options to a user for enabling the user to select at least one option therefrom. Further, the instructions create a visual menu based on information corresponding to selection of the at least one option. The visual menu includes one or more objects corresponding to the Internet of Things. Furthermore, the instructions receive a rating for the visual menu from one or more second users of the Internet of Things. Additionally, instructions customize the visual menu based on the received rating.

    READ MORE