Prolific Inventor

Dr. Lavian has invented over 120 patents, 60 of which he has prosecuted pro-se before the US Patent and Trademark Office (USPTO). In this area of work, his focus is on network communicators, computer networks, Internet Protocols (TCP/IP), VoIP, streaming media, and Web technologies.

Dr. Lavian has extensive work experience in network communications, including eleven years with Silicon Valley-based, Nortel Networks, a global telecommunications and networking equipment leader, where he has held several positions including principal scientist, architect, and senior software engineer.

While working for Nortel Networks, Dr. Lavian created and chaired the company’s EDN Patent Committee. He enabled Nortel Networks to secure its intellectual property (IP) rights. He also helped the company generate a continuous stream of innovative ideas for switches, routers, and network communications devices, allowing the company to significantly enrich its IP portfolio, a portion of which was later sold for $4.5 billion.

Invented Over 120 Patents:

  • US 20180130102 Reliable rating system and method thereof: Embodiments of the invention provide means to the users of the system to provide ratings and corresponding feedback for enhancing the genuineness in the ratings. The system includes a memory coupled to a processor. The memory includes one or more instructions executable by the processor to enable the users of the system to rate each other based on at least one of sharing, exchanging, and selling one of activity, service or product. The system may provide a mechanism to encourage genuineness in ratings provided by the users. Furthermore, the instructions facilitate the rating receivers to provide feedbacks corresponding to the received ratings. The feedback includes accepting or objecting to a particular rating. Moreover, the memory includes instructions executable by the processor to enable the system to determine genuineness of an objection raised by a rating receiver.

    READ MORE

    US 20180130102 Reliable rating system and method thereof: Embodiments of the invention provide means to the users of the system to provide ratings and corresponding feedback for enhancing the genuineness in the ratings. The system includes a memory coupled to a processor. The memory includes one or more instructions executable by the processor to enable the users of the system to rate each other based on at least one of sharing, exchanging, and selling one of activity, service or product. The system may provide a mechanism to encourage genuineness in ratings provided by the users. Furthermore, the instructions facilitate the rating receivers to provide feedbacks corresponding to the received ratings. The feedback includes accepting or objecting to a particular rating. Moreover, the memory includes instructions executable by the processor to enable the system to determine genuineness of an objection raised by a rating receiver.

    READ MORE
  • US 20180146090 IVR menu to a user to enable the user to select an option: Embodiments of the present invention provide a system for enhancing user interface with vendors (service providers). The system may provide visual IVR menu to a user to enable the user to select an option there from. Further, the system may include a call-parking module communicably coupled to an application (at a user device) through the internet and configured for guiding the application based on a user request to perform at least one of: a) dialing a telephone number corresponding to the user request, the user request being determined based on a user selection from a visual IVR menu corresponding to the telephone number; b) inputting one or more required DTMF inputs at particular intervals; and c) connecting a user corresponding to the user device with the selected option corresponding to the IVR or on detection of human voice. Images (96)

    READ MORE

    US 20180146090 IVR menu to a user to enable the user to select an option: Embodiments of the present invention provide a system for enhancing user interface with vendors (service providers). The system may provide visual IVR menu to a user to enable the user to select an option there from. Further, the system may include a call-parking module communicably coupled to an application (at a user device) through the internet and configured for guiding the application based on a user request to perform at least one of: a) dialing a telephone number corresponding to the user request, the user request being determined based on a user selection from a visual IVR menu corresponding to the telephone number; b) inputting one or more required DTMF inputs at particular intervals; and c) connecting a user corresponding to the user device with the selected option corresponding to the IVR or on detection of human voice. Images (96)

    READ MORE
  • US 20190082043 User Interface for voice to electronic signal subsystem: Embodiments of the invention provide a communication system including a processor; and a memory coupled to the processor. The memory may include a communication module with an Interactive Voice Response (IVR) database. Herein, the database may include a list of telephone numbers associated with one or more destinations implementing one or more IVR menus. Further, the memory includes instructions set having one or more instructions executable by the processor for automatically interfacing with a user interface system comprising voice to electronic signal subsystem. More specifically, the voice request of the user may be converted into digital form. Further, the instructions executable by the processor may initiate search within said database following a voice command captured by said voice to electronic signal subsystem. Furthermore, the memory includes instructions executable by the processor to initiate voice call to a telephone number within said database according to the result of said search.

    READ MORE

    US 20190082043 User Interface for voice to electronic signal subsystem: Embodiments of the invention provide a communication system including a processor; and a memory coupled to the processor. The memory may include a communication module with an Interactive Voice Response (IVR) database. Herein, the database may include a list of telephone numbers associated with one or more destinations implementing one or more IVR menus. Further, the memory includes instructions set having one or more instructions executable by the processor for automatically interfacing with a user interface system comprising voice to electronic signal subsystem. More specifically, the voice request of the user may be converted into digital form. Further, the instructions executable by the processor may initiate search within said database following a voice command captured by said voice to electronic signal subsystem. Furthermore, the memory includes instructions executable by the processor to initiate voice call to a telephone number within said database according to the result of said search.

    READ MORE
  • US 20190128998 RADAR Systems UPLN phase noise: A target detection and imaging system, comprising a RADAR unit and at least one ultra-low phase noise frequency synthesizer, is provided. The target detecting, and imaging system can assist other sensors such as LiDAR, camera to further detect and investigate objects on the road from distance. RADAR unit configured for detecting the presence and characteristics of one or more objects in various directions. The RADAR unit may include a transmitter for transmitting at least one radio signal; and a receiver for receiving the at least one radio signal returned from the one or more objects. signals. The ultra-low phase noise frequency synthesizer may utilize dual loop design comprising one main PLL and one sampling PLL, where the main PLL might include a DDS or Fractional-N PLL plus a variable divider, or the synthesizer may utilize a sampling PLL only, to reduce phase noise from the returned radio signal. This proposed system overcomes deficiencies of current generation state of the art RADAR Systems by providing much lower level of phase noise which would result in improved performance of the RADAR system in terms of target detection, characterization etc.

    READ MORE

    US 20190128998 RADAR Systems UPLN phase noise: A target detection and imaging system, comprising a RADAR unit and at least one ultra-low phase noise frequency synthesizer, is provided. The target detecting, and imaging system can assist other sensors such as LiDAR, camera to further detect and investigate objects on the road from distance. RADAR unit configured for detecting the presence and characteristics of one or more objects in various directions. The RADAR unit may include a transmitter for transmitting at least one radio signal; and a receiver for receiving the at least one radio signal returned from the one or more objects. signals. The ultra-low phase noise frequency synthesizer may utilize dual loop design comprising one main PLL and one sampling PLL, where the main PLL might include a DDS or Fractional-N PLL plus a variable divider, or the synthesizer may utilize a sampling PLL only, to reduce phase noise from the returned radio signal. This proposed system overcomes deficiencies of current generation state of the art RADAR Systems by providing much lower level of phase noise which would result in improved performance of the RADAR system in terms of target detection, characterization etc.

    READ MORE
  • US 20130080898 A system for enhancing user interaction: Embodiments of the invention provide a system for enhancing user interaction with objects connected to a network. The system includes a processor, a display screen, a memory coupled to the processor. The memory comprises a database including a list of two or more objects and instructions executable by the processor to display a menu. The menu is associated with at least two independent objects. And the two independent objects are produced by two independent vendors.

    READ MORE

    US 20130080898 A system for enhancing user interaction: Embodiments of the invention provide a system for enhancing user interaction with objects connected to a network. The system includes a processor, a display screen, a memory coupled to the processor. The memory comprises a database including a list of two or more objects and instructions executable by the processor to display a menu. The menu is associated with at least two independent objects. And the two independent objects are produced by two independent vendors.

    READ MORE
  • US 9762251 Frequency synthesizer Advanced communication systems: A system for providing ultra low phase noise frequency synthesizers using Fractional-N PLL (Phase Lock Loop), Sampling Reference PLL and DDS (Direct Digital Synthesizer). Modern day advanced communication systems comprise frequency synthesizers that provide a frequency output signal to other parts of the transmitter and receiver so as to enable the system to operate at the set frequency band. The performance of the frequency synthesizer determines the performance of the communication link. Current days advanced communication systems comprises single loop Frequency synthesizers which are not completely able to provide lower phase deviations for errors (For 256 QAM the practical phase deviation for no errors is 0.4-0.5°) which would enable users to receive high data rate. This proposed system overcomes deficiencies of current generation state of the art communication systems by providing much lower level of phase deviation error which would result in much higher modulation schemes and high data rate.

    READ MORE

    US 9762251 Frequency synthesizer Advanced communication systems: A system for providing ultra low phase noise frequency synthesizers using Fractional-N PLL (Phase Lock Loop), Sampling Reference PLL and DDS (Direct Digital Synthesizer). Modern day advanced communication systems comprise frequency synthesizers that provide a frequency output signal to other parts of the transmitter and receiver so as to enable the system to operate at the set frequency band. The performance of the frequency synthesizer determines the performance of the communication link. Current days advanced communication systems comprises single loop Frequency synthesizers which are not completely able to provide lower phase deviations for errors (For 256 QAM the practical phase deviation for no errors is 0.4-0.5°) which would enable users to receive high data rate. This proposed system overcomes deficiencies of current generation state of the art communication systems by providing much lower level of phase deviation error which would result in much higher modulation schemes and high data rate.

    READ MORE
  • EP3311493 ULPN synthesizers using Fractional-N PLL: A system for providing ultra low phase noise frequency synthesizers using Fractional-N PLL (Phase Lock Loop), Sampling Reference PLL and DDS (Direct Digital Synthesizer). Modern day advanced communication systems comprise frequency synthesizers that provide a frequency output signal to other parts of the transmitter and receiver so as to enable the system to operate at the set frequency band. The performance of the frequency synthesizer determines the performance of the communication link. Current days advanced communication systems comprises single loop Frequency synthesizers which are not completely able to provide lower phase deviations for errors (For 256 QAM the practical phase deviation for no errors is 0.4-0.5°) which would enable users to receive high data rate. This proposed system overcomes deficiencies of current generation state of the art communication systems by providing much lower level of phase deviation error which would result in much higher modulation schemes and high data rate.

    READ MORE

    EP3311493 ULPN synthesizers using Fractional-N PLL: A system for providing ultra low phase noise frequency synthesizers using Fractional-N PLL (Phase Lock Loop), Sampling Reference PLL and DDS (Direct Digital Synthesizer). Modern day advanced communication systems comprise frequency synthesizers that provide a frequency output signal to other parts of the transmitter and receiver so as to enable the system to operate at the set frequency band. The performance of the frequency synthesizer determines the performance of the communication link. Current days advanced communication systems comprises single loop Frequency synthesizers which are not completely able to provide lower phase deviations for errors (For 256 QAM the practical phase deviation for no errors is 0.4-0.5°) which would enable users to receive high data rate. This proposed system overcomes deficiencies of current generation state of the art communication systems by providing much lower level of phase deviation error which would result in much higher modulation schemes and high data rate.

    READ MORE
  • 10764264 Evaluating a security context associated with the requested connection: A technique for authenticating network users is disclosed. In one particular exemplary embodiment, the technique may be realized as a method for authenticating network users. The method may comprise receiving, from a client device, a request for connection to a network. The method may also comprise evaluating a security context associated with the requested connection. The method may further comprise assigning the client device one or more access privileges based at least in part on the evaluation of the security context.

    READ MORE

    10764264 Evaluating a security context associated with the requested connection: A technique for authenticating network users is disclosed. In one particular exemplary embodiment, the technique may be realized as a method for authenticating network users. The method may comprise receiving, from a client device, a request for connection to a network. The method may also comprise evaluating a security context associated with the requested connection. The method may further comprise assigning the client device one or more access privileges based at least in part on the evaluation of the security context.

    READ MORE
  • A target detection and imaging system comprising a RADAR unit: A target detection and imaging system, comprising a RADAR unit and at least one ultra-low phase-noise frequency synthesizer, is provided. RADAR unit configured for detecting the presence and characteristics of one or more objects in various directions. The RADAR unit may include a transmitter for transmitting at least one radio signal, and a receiver for receiving the at least one radio signal returned from the one or more objects. signals. The ultra-low phase-noise frequency synthesizer may utilize dual loop design comprising one main PLL and one sampling PLL, where the main PLL might include a DDS or Fractional-N PLL plus a variable divider, or the synthesizer may utilize a sampling PLL only, to reduce phase-noise from the returned radio signal. This system helps in detecting and classifying human beings present on the road clearly and in time so as to provide a corrective input to the autonomous vehicle timely.

    READ MORE

    A target detection and imaging system comprising a RADAR unit: A target detection and imaging system, comprising a RADAR unit and at least one ultra-low phase-noise frequency synthesizer, is provided. RADAR unit configured for detecting the presence and characteristics of one or more objects in various directions. The RADAR unit may include a transmitter for transmitting at least one radio signal, and a receiver for receiving the at least one radio signal returned from the one or more objects. signals. The ultra-low phase-noise frequency synthesizer may utilize dual loop design comprising one main PLL and one sampling PLL, where the main PLL might include a DDS or Fractional-N PLL plus a variable divider, or the synthesizer may utilize a sampling PLL only, to reduce phase-noise from the returned radio signal. This system helps in detecting and classifying human beings present on the road clearly and in time so as to provide a corrective input to the autonomous vehicle timely.

    READ MORE
  • 10348313 Radar frequency synthesizer for autonomous car: Abstract An object detection system for autonomous vehicle, comprising a radar unit and at least one ultra-low phase noise frequency synthesizer, is provided. The radar unit configured for detecting the presence and characteristics of one or more objects in various directions. The radar unit may include a transmitter for transmitting at least one radio signal; […]

    READ MORE

    10348313 Radar frequency synthesizer for autonomous car: Abstract An object detection system for autonomous vehicle, comprising a radar unit and at least one ultra-low phase noise frequency synthesizer, is provided. The radar unit configured for detecting the presence and characteristics of one or more objects in various directions. The radar unit may include a transmitter for transmitting at least one radio signal; […]

    READ MORE
  • 10404261 Radar target detection system for autonomous vehicles: A system for detecting the surrounding environment of vehicle comprising a RADAR unit and at least one ultra-lowphase-noise frequency synthesizer, is provided. A RADAR unit configured for detecting the presence and characteristics of one or more objects in various directions. The RADAR unit may include a transmitter for transmitting at least one radio signal, and a receiver for receiving the at least one radio signalreturned from the one or more objects. The ultra-lowphase-noisefrequency synthesizer may utilize a dual loop design comprising one main PLL and one sampling PLL, where the main PLL might include a DDS or Fractional-N PLL plus a variable divider, or the synthesizer may utilize a sampling PLL only, to reduce phase-noise from the returned radio signal. This system enhances the detection of the exact location of the vehicle based on the received RADAR signatures of objects, azimuth and distance.

    READ MORE

    10404261 Radar target detection system for autonomous vehicles: A system for detecting the surrounding environment of vehicle comprising a RADAR unit and at least one ultra-lowphase-noise frequency synthesizer, is provided. A RADAR unit configured for detecting the presence and characteristics of one or more objects in various directions. The RADAR unit may include a transmitter for transmitting at least one radio signal, and a receiver for receiving the at least one radio signalreturned from the one or more objects. The ultra-lowphase-noisefrequency synthesizer may utilize a dual loop design comprising one main PLL and one sampling PLL, where the main PLL might include a DDS or Fractional-N PLL plus a variable divider, or the synthesizer may utilize a sampling PLL only, to reduce phase-noise from the returned radio signal. This system enhances the detection of the exact location of the vehicle based on the received RADAR signatures of objects, azimuth and distance.

    READ MORE
  • Autonomous vehicles with ultra-low phase noise frequency: A target detection and imaging system, comprising a RADAR unit and at least one ultra-low phase noise frequency synthesizer, is provided. The target detecting, and imaging system can assist other sensors such as LiDAR, camera to further detect and investigate objects on the road from distance. RADAR unit configured for detecting the presence and characteristics of one or more objects in various directions. The RADAR unit may include a transmitter for transmitting at least one radio signal; and a receiver for receiving the at least one radio signal returned from the one or more objects. signals. The ultra-low phase noise frequency synthesizer may utilize dual loop design comprising one main PLL and one sampling PLL, where the main PLL might include a DDS or Fractional-N PLL plus a variable divider, or the synthesizer may utilize a sampling PLL only, to reduce phase noise from the returned radio signal. This proposed system overcomes deficiencies of current generation state of the art RADAR Systems by providing much lower level of phase noise which would result in improved performance of the RADAR system in terms of target detection, characterization etc.

    READ MORE

    Autonomous vehicles with ultra-low phase noise frequency: A target detection and imaging system, comprising a RADAR unit and at least one ultra-low phase noise frequency synthesizer, is provided. The target detecting, and imaging system can assist other sensors such as LiDAR, camera to further detect and investigate objects on the road from distance. RADAR unit configured for detecting the presence and characteristics of one or more objects in various directions. The RADAR unit may include a transmitter for transmitting at least one radio signal; and a receiver for receiving the at least one radio signal returned from the one or more objects. signals. The ultra-low phase noise frequency synthesizer may utilize dual loop design comprising one main PLL and one sampling PLL, where the main PLL might include a DDS or Fractional-N PLL plus a variable divider, or the synthesizer may utilize a sampling PLL only, to reduce phase noise from the returned radio signal. This proposed system overcomes deficiencies of current generation state of the art RADAR Systems by providing much lower level of phase noise which would result in improved performance of the RADAR system in terms of target detection, characterization etc.

    READ MORE
  • US 8572303 Portable Universal Communication Device: Embodiments of the invention provide a portable device comprising at least one processor. The portable device also comprises a memory coupled to the processor comprising data. Further, the portable device comprises a detector configured to detect at least one external device. The at least one external device is configured to connect to the portable device. Further, the portable device comprises an interface to connect to the at least one external device. The interface is configured to transmit or receive one or more control signals excluding the data. Furthermore, the portable device comprises a controller configured to enable controlling of the portable device from the at least one external device; and controlling of the at least one external device from the portable device through the interface.

    READ MORE

    US 8572303 Portable Universal Communication Device: Embodiments of the invention provide a portable device comprising at least one processor. The portable device also comprises a memory coupled to the processor comprising data. Further, the portable device comprises a detector configured to detect at least one external device. The at least one external device is configured to connect to the portable device. Further, the portable device comprises an interface to connect to the at least one external device. The interface is configured to transmit or receive one or more control signals excluding the data. Furthermore, the portable device comprises a controller configured to enable controlling of the portable device from the at least one external device; and controlling of the at least one external device from the portable device through the interface.

    READ MORE
  • 8619793 Assignment of classes of traffic – priority queue: An apparatus and method for dynamic assignment of classes of traffic to a priority queue. Bandwidth consumption by one or more types of packet traffic received in the packet forwarding device is monitored to determine whether the bandwidth consumption exceeds a threshold. If the bandwidth consumption exceeds the threshold, assignment of at least one type of packet traffic of the one or more types of packet traffic is changed from a queue having a first priority to a queue having a second priority.

    READ MORE

    8619793 Assignment of classes of traffic – priority queue: An apparatus and method for dynamic assignment of classes of traffic to a priority queue. Bandwidth consumption by one or more types of packet traffic received in the packet forwarding device is monitored to determine whether the bandwidth consumption exceeds a threshold. If the bandwidth consumption exceeds the threshold, assignment of at least one type of packet traffic of the one or more types of packet traffic is changed from a queue having a first priority to a queue having a second priority.

    READ MORE
  • 8341257 Grid proxy architecture for network resources: A Grid Proxy Architecture for Network Resources (GPAN) is proposed to allow Grid applications to access resources shared in communication network domains. GPAN bridges Grid services serving user applications and network services controlling network devices through its proxy functions such as resource data and management proxies. Working with Grid resource index and broker services, GPAN employs distributed network service peers (NSP) in network domains to discover, negotiate and allocate network resources such as bandwidth for Grid applications. An elected master NSP is the unique Grid node that runs GPAN and represents the whole network to share network resources to Grids without Grid involvement of network devices. GPAN provides the Grid Proxy service (GPS) to interface with Grid services and applications, and the Grid Delegation service (GDS) to interface with network services to utilize network resources. Resource-based XML messaging is employed for the GPAN proxy communication.

    READ MORE

    8341257 Grid proxy architecture for network resources: A Grid Proxy Architecture for Network Resources (GPAN) is proposed to allow Grid applications to access resources shared in communication network domains. GPAN bridges Grid services serving user applications and network services controlling network devices through its proxy functions such as resource data and management proxies. Working with Grid resource index and broker services, GPAN employs distributed network service peers (NSP) in network domains to discover, negotiate and allocate network resources such as bandwidth for Grid applications. An elected master NSP is the unique Grid node that runs GPAN and represents the whole network to share network resources to Grids without Grid involvement of network devices. GPAN provides the Grid Proxy service (GPS) to interface with Grid services and applications, and the Grid Delegation service (GDS) to interface with network services to utilize network resources. Resource-based XML messaging is employed for the GPAN proxy communication.

    READ MORE
  • 8161139 Network element includes an intelligent interface: A network element (NE) includes an intelligent interface (II) with its own operating environment rendering it active during the NE boot process, and with separate intelligence allowing it to take actions on the NE prior to, during, and after the boot process. The combination of independent operation and increased intelligence provides enhanced management opportunities to enable the NE to be controlled throughout the boot process and after completion of the boot process. For example, files may be uploaded to the NE before or during the boot process to restart the NE from a new software image. The II allows this downloading process to occur in parallel on multiple NE's from a centralized storage resource. Diagnostic checks may be run on the NE, and files, and MIB information, and other data may be transmitted from the II to enable a network manager to more effectively manage the NE.

    READ MORE

    8161139 Network element includes an intelligent interface: A network element (NE) includes an intelligent interface (II) with its own operating environment rendering it active during the NE boot process, and with separate intelligence allowing it to take actions on the NE prior to, during, and after the boot process. The combination of independent operation and increased intelligence provides enhanced management opportunities to enable the NE to be controlled throughout the boot process and after completion of the boot process. For example, files may be uploaded to the NE before or during the boot process to restart the NE from a new software image. The II allows this downloading process to occur in parallel on multiple NE's from a centralized storage resource. Diagnostic checks may be run on the NE, and files, and MIB information, and other data may be transmitted from the II to enable a network manager to more effectively manage the NE.

    READ MORE
  • 8146090 Using time-value curves for resource management: A method and apparatus has been shown and described which allows Quality of Service to be controlled at a temporal granularity. Time-value curves, generated for each task, ensure that mission resources are utilized in a manner which optimizes mission performance. It should be noted, however, that although the present invention has shown and described the use of time-value curves as applied to mission workflow tasks, the present invention is not limited to this application; rather, it can be readily appreciated by one of skill in the art that time-value curves may be used to optimize the delivery of any resource to any consumer by taking into account the dynamic environment of the consumer and resource.

    READ MORE

    8146090 Using time-value curves for resource management: A method and apparatus has been shown and described which allows Quality of Service to be controlled at a temporal granularity. Time-value curves, generated for each task, ensure that mission resources are utilized in a manner which optimizes mission performance. It should be noted, however, that although the present invention has shown and described the use of time-value curves as applied to mission workflow tasks, the present invention is not limited to this application; rather, it can be readily appreciated by one of skill in the art that time-value curves may be used to optimize the delivery of any resource to any consumer by taking into account the dynamic environment of the consumer and resource.

    READ MORE
  • 8078708 Grid applications to access – shared in communication network: A Grid Proxy Architecture for Network Resources (GPAN) is proposed to allow Grid applications to access resources shared in communication network domains. GPAN bridges Grid services serving user applications and network services controlling network devices through its proxy functions such as resource data and management proxies. Working with Grid resource index and broker services, GPAN employs distributed network service peers (NSP) in network domains to discover, negotiate and allocate network resources such as bandwidth for Grid applications. An elected master NSP is the unique Grid node that runs GPAN and represents the whole network to share network resources to Grids without Grid involvement of network devices. GPAN provides the Grid Proxy service (GPS) to interface with Grid services and applications, and the Grid Delegation service (GDS) to interface with network services to utilize network resources. Resource-based XML messaging is employed for the GPAN proxy communication.

    READ MORE

    8078708 Grid applications to access – shared in communication network: A Grid Proxy Architecture for Network Resources (GPAN) is proposed to allow Grid applications to access resources shared in communication network domains. GPAN bridges Grid services serving user applications and network services controlling network devices through its proxy functions such as resource data and management proxies. Working with Grid resource index and broker services, GPAN employs distributed network service peers (NSP) in network domains to discover, negotiate and allocate network resources such as bandwidth for Grid applications. An elected master NSP is the unique Grid node that runs GPAN and represents the whole network to share network resources to Grids without Grid involvement of network devices. GPAN provides the Grid Proxy service (GPS) to interface with Grid services and applications, and the Grid Delegation service (GDS) to interface with network services to utilize network resources. Resource-based XML messaging is employed for the GPAN proxy communication.

    READ MORE
  • 7944827 Content-aware dynamic optical bandwidth allocation: Network resources allocated for particular application traffic are aware of the characteristics of L4+ content to be transmitted. One embodiment of the invention realizes network resource allocation in terms of three intelligent modules, gateway, provisioning and classification. A gateway module exerts network control functions in response to application requests for network resources. The network control functions include traffic path setup, bandwidth allocation and so on. Characteristics of the content are also specified in the received application network resource requests. Under request of the gateway module, a provisioning module allocates network resources such as bandwidth in optical networks and edge devices as well. An optical network resource allocation leads to a provisioning optical route. Under request of the gateway module, a classification module differentiates applications traffic according to content specifications, and thus creates and applies content-aware rule data for edge devices to forward content-specified traffic towards respective provisioning optical routes.

    READ MORE

    7944827 Content-aware dynamic optical bandwidth allocation: Network resources allocated for particular application traffic are aware of the characteristics of L4+ content to be transmitted. One embodiment of the invention realizes network resource allocation in terms of three intelligent modules, gateway, provisioning and classification. A gateway module exerts network control functions in response to application requests for network resources. The network control functions include traffic path setup, bandwidth allocation and so on. Characteristics of the content are also specified in the received application network resource requests. Under request of the gateway module, a provisioning module allocates network resources such as bandwidth in optical networks and edge devices as well. An optical network resource allocation leads to a provisioning optical route. Under request of the gateway module, a classification module differentiates applications traffic according to content specifications, and thus creates and applies content-aware rule data for edge devices to forward content-specified traffic towards respective provisioning optical routes.

    READ MORE
  • 7860999 Distributed computation in network devices: The present invention facilitates routing traffic over a network and distributing application level support among multiple routing devices during routing. Routing nodes are configured to process the content of the traffic to provide the requisite application level support. The traffic is routed, in part, based on the resources available for providing the processing. The processing of the traffic may be distributed throughout the network based on processing capacity of the routing nodes at any given time and given the amount of network congestion.

    READ MORE

    7860999 Distributed computation in network devices: The present invention facilitates routing traffic over a network and distributing application level support among multiple routing devices during routing. Routing nodes are configured to process the content of the traffic to provide the requisite application level support. The traffic is routed, in part, based on the resources available for providing the processing. The processing of the traffic may be distributed throughout the network based on processing capacity of the routing nodes at any given time and given the amount of network congestion.

    READ MORE